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DECAYING TRAJECTORIES IN SUBLINEAR
RETARDED EQUATIONS OF ARBITRARY ORDER

BHAGAT SINGH, Manitowoc
(Received September 5, 1983)

Abstract. Sufficient conditions have been found to ensure that all solutions of ‘the returded
sublinear equation

20 (p.._x(f)-(.--m(l)(poy(t))’)’ ---)’)’ + a(r) h(x(g(r)) = f(t),

where h(t) satisfies sublinearity requirement approach limits as 7 — ©,
This phenomenon is later linked to complete nonoscillation.
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1. Introduction>

Recently Singh [7] obtained sufficient condmons which ensure that all solutions
of the equation

M (O YO +a0)EO) = f), 0<yS 1,

(wherey is the ratio of odd integers) tend to finite or infinite limits as ¢ = 0. Qur
main purpose in this work is to extend this study to a more general setting represent-
ed by the equation

2 Loy(t) + a(t) h(y(g(1)) = f11),
where n = 2 and L, is a disconjugate dlﬂ‘erentxal operator defined by
@ Lyy(#) =po(t) (Pa-1(t) (...(21() (Bo(8) 3@))'Y’ .Y

Followmg our assumptlons and notations in [9] we assume
() pie C([a, ®), (0, 0)),0 S i < n,

@) | [riwd=w, 1sisn-1;

(i) a, £, g € C([, ), R), there exists a 7, > a such that
0<g(t)st forext, and g(t)— o ast - oo;
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B. SINGH

(iii) he C(R, R), h‘ié nondecreasing, and sign h(y) = sign y. There exists y € (0,1] -
which is ratio of odd integers, and a number @ > 0 such that

(5) 0 < h(t)/t” £ Q.
Let '
(6)  Loy(®) = po() ¥(t), Lp(t) = p(t) Ly 3(t)), 1Sisn

Th domain of L, is definded to be the set of all functions y:[T,, ©0) - R such
~ that Ly(t), 0 £ i £ n, exist and are continuous on [T,, ). In what follows by
a ,,solution‘ of equation (2) (or any other related equation) we mean a function (z).
which is nontrivial in any neighborhood of infinity and satisfies equation (2)
for all sufficiently large ¢. A solution of (2) is called oscillatory if it has arbitrarily
large zeros; otherwise the solution is called nonoscillatory.

The main thrust of contemporary work in oscillation theory associated with
functional equations has been to find oscillatory or nonoscillatory criteria. For

this we refer the reader to Onose [3], Singh [8], Philos [4] and Staikos and Philos
[10]. Lately, however, the asymptotic nature of oscillatory and nonoscillatory
solutions is being studied quite extensively due to its growing importance in the
stability of time dependent physical systems. A survey of some of these applica-
tions is found in a recently published Russian text by Shevelov [11].

Our work here is related to that of Kusano and Onose [2], Staikos and Philos
[10], Singh and Kusano [9] and Singh [5, 6, 7], but our results here are different
and more complete.

We say that a solution of equation (1) is completely nonosclllatory if Ly(t) is
nonoscillatory fori = 1,2, ...,n - 1,

In section (3) of this work we find a condition for complete nonoscillation of
equation (2), which is then linked to this equation having all solutions approaching
limits as ¢ — o0. - .

2. Main results
Let i,e{1,2,...,n — 1}, lSk<n—l andtse[oc,oo) Wedcﬁnel,sl

O] - It s; Piks3 s Py) = .‘Pik ()] Ik-x(" S5 Pix» -- -apt,) dr.

It is easnly venﬁed thatfor 1 £k <n-1

® ' I.(t. S5 Pigszeees Pry) = I P LE (15 pus -0 P AP
Define - | R
© . T =pi' Lt sipy, - p), I(t) = J(1,0)

for0<ig<n-1. The following Lemma is an adaptation of our Lemma 1 in [9]_. _'
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Lemma 1. In addition to (i)— (iii) suppose

aw [P 01f®1dt < o0

and _

an Fur(e®)T 5°0) la) 1 dt < co.
Then every solution y(t) of equation (2) satisfies

(12) wt) =0(J,-,(t)) a5 t—o0.

Proof. Let y(t) be a solution of (2) defined on [t,, ), t, = «. There exists
T > t, such that g(t) = ¢, for t = T. n-times integration of (2) yields

n—1

(13) Poy(t) = 3, Cli(t, T p1s P2y s D) +

+ ; L-y(t, 75 P1s -ovs Pa=1) Py '(D [F(r) = a(r) h(x(g(r)))] dr,

where C;, 0 £ i £ n — 1, are constants. Since (4) implies that
lim [Ii(t’ T;I\’l{"-’pi)]/ln—l(t’ T;P;, “',pn-l) = 0’

t— o

0 <i<n— 2;using (8) in (13) we have

[ y(g()) | = CJues(t) + T, s(1) f( PO IO + la() Q] ¥e®) " dr

for some constant C > 0 and ¢ 2 T. Since g(t) < ¢ and (10) holds, we have

(14) | y(g(®) 1Ta-1(8(M) S K + }' [Ja- 1T 22" 1a() | [ ¥(8(r)) 1/Ta-1) &(r))T dr

for t = T', where K > 0is a constant and T’ > T'is chosen so large that g(f) 2 .T'
for t = T'. Using Bihari’s lemma [1], we see that

(15) | ¥(&(®) [/7n-1(&(1)) = Qo

for some constant Q, > 0, and the proof is complete.

Theorem 1. In addition to (i) —(iii) suppose

- (16) 1/po(r)°:j’1/p1(x) T 1/22(x2) oo UpnosGinet) | 2306 10G0) | [T i GOT

Xn-1

xdxdx,_;dx,_;...dx; < ®©
and

an - 1/po(t>}f 1p(ee) §1/23Cea)s ooor UpamsGnd) § 271 FGO) [ dxdXpoy %

Xn~1

X...,dx; < oo,
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Then all solutions of equation (2) approach limits, finite or infinite as t — .
Proof. Let y(¢) be a solution of equation (2). Suppose to the contrary that
(18) lim inf | y() | < lim sup | y(t)].
t=+ t— o .
Then L;y, 1 £ i £ n, is oscillatory. Let T, > t, be large enough so that g(¢) = ¢
for t =2 T. Since (18) holds, there exist positive numbers A and 6, 6 < 4, and

(19) lim inf | y(1)] < &,
) t-0

(20) © limsup | y(0)| > 2
. t*w

From (16), (17) and (4), it follows that conditions of Lemma 1 are satisfied. There
exist two numbers T > T, and ¢ > 0 such that

€2)) ‘ 1y | £ ¢ [Jn-1(8(NT

for t 2 T in accordance with-Lemma 1. Choose 7, > T large enough so that

@ U [UpiCx0) [ Upaea)s s Upa-i(ams) T 1aG0) | py () x

X[, -] dx dx,_; dx,_5, ..., dx; < (A — 5)/4
and

@) . ;u;zog)ifl/pl(xl)Tl/pz(xz), MpresCin) § 271001 1)1

T Xn-1

xdx dx,l 15 dXp—a, .. dx1 < (A - (5)/4

fort = T1 Since y (t) is oscxllatory, there exist arbxtrarlly large points A0 andB,
such that | 3(4,)| < & and | y(By)| > A. Let B > T, be such that | y(B)| > A
Let [T, T,] be the smallest closed interval containing B such that | J(T3) | =

= | W(TH)f=8, T,>T, and Max | y(¢)| > 4 for te[Tz, T,]. Let M =
= Max | y(t)| = | y(T35) |, T3 e(Tz, T,). It follows that M > A.'Let

(249) el < ey < ey < L < e,, 25

where T, < ey, be zeros of (po(t) Y1), P1(t) (o(t) W' -y (Pamz (s, (p1(0) X
X (poy(t)')', ...)")" respectively. On repeated integration of.equation (1) we have

@) . () fll/plg;c;) jzl/Pz X2, oo ppmy(Xam) X
x "f ") ) By(e() ¥ ity s, s dy +
# JUPCD) [P0 s Upaes(ama) | S P dx - Gy s B

Integrating (25) between [T, ,' T,] we have
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DECAYING TRAJECTORIES IN SUBLINEAR EQUATION

T; ey ez epn ~

(26) (M = &)= =1/po(x0) [ y 1/Ps(x1) 5 o> 1Piesla-2 f x

T2 xo - L3 Xn-2 Ty

xpn 1(x) a (X) h(y(g(x))) dx dxn 29 e dxo
Ty ey

+1/po(xo)I ] 1/P1(x1)j  1/pa- l(xn-z) I P ‘(x)f(x)dxdx.-zn , dxo; .-

T2 xo

since | (Ty) | = 6 and | W(T,) | = M. In view of (24) (see Snngh [6]) and (21),
(26) ylelds

eén-2 €pn-2 e,...

@ A~ a<Qél/po(xo)§ JRINCON RS 1/p;'.1<3c,-3)x

x§ 1a(6)] By 0) [ ‘(g(x))]’ dx dx,o, s dxg+

Xn-2

enh-3 en-2 en-2

+ 1/po(xo) 9. § 1Upi(x1)s ooos 1ppoy(xa-y) § %

Xn-2

X If(x) IP,.—l(x), dx dxn—-29 esey de
since h(t)/t” < Q and M > 4. From (22), (23) and (27) we get
(28) A—6<(A—08)4+(A—05)4

a contradiction. The proof is complete.

Corollary 1. If p, =p;, = ... = p,,'_,'t}‘z"_en (16) and (17) reduce to
(29 I f:”“gg) 0" Va(x)dx < o
and : -
(30) fr )l dx < o0

respectively. Hence subject to (29) and (30), all solutions of the equation

@3n ' YO + at) A1) = £()

approach limits, finite or infinite, as t — 0.
Corollary 2. All oscillatory solutions of equation (2) tend to zero ast - o.

Remark 1. In regard to the bounded solut.ions of equation (2), Conditions (16)
and (17) can be relaxed. Lemma 1 is not needed.
We have the following theorem: :

Theorem 2. Suppose (i)—(iii) hold. Further suppose that

(32)  1pe(®) §UpiGEDs woos UpamiCrant) | 2201 000) | X

Xn-1

xdxdx,.; dx,25, ..., dx < ©
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B. SINGH
and

(33) ' _llpo(t);f 1/py(x1), +-+5 1/Pa—1(Xs=1) }o Pr () 1 (%) [ %

Xn=-1

xdxdx,., ..., dx; < 0.

Then all bounded solutions of equation (2) approach finite limits as t — co.
Proof. Let y(¢) be a bounded solution of equation (2). Suppose to the contrary
thatliminf | y(#) | <limsup | »(¢) |. ThenL,;y,1 < i < nisoscillatory. Let T, > ¢,
-0 i
be large enough so that g(¢) = ¢, for ¢t = T,. There exist positive numbers A and
such that § < 4, and (19) and (20) of the proof of Theorem 1 hold. There exists

a number T > T, such that, for ¢t = T, (32) and (33) imply

(34) M3Q Upo(®) [ Upi(x0 s Upams(30-) [ pEG0) a0}
xdxdx,., ..., dx; < (1 — 6)/4
and
35 1/po(?) fllpl.(xx)xl 1/pa(%2), «oes 1/ Ppe1(Xpv) 050 P, {(x)x
x| f(x)|dxdx,.,, ...,dx; < (4 — §)/4,
where S
(36) Mo =sup{|pt)|:t =T}

(35) and (36) replace (22) and (23) respectively in the proof of Theorem 1. From
this point on, the proof is the same as that of Theorem 1 from inequality (23)
onward. Very minor modifications need be made. The proof is not complete.

Example 1. Consider the equation
@7 - A+ Sxey = e
t
for ¢t =Z.1. Condition (29) of Corollary 1 is not éatisﬁed. However, conditions (32)
and (33) of Theorem 2 are satisfied. We notice that (37) has an unbounded solution

x(t) = t. Thus Theorem 1 does not apply to (37); but according to Theorem 2
all bounded solutions of (37) must approach finite limits.

3. Complete nonoscillation

Theorem 3. Suppose Conditions of Theorem 1 hold. Further suppose that a(t) >
> 0and _

| £ .
@ fim Gy =
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DECAYING TRAJECTORIES IN SUBLINEAR EQUATION

Let y(t) be a solution of equation (2). Then either y(t) = 0 as t - oo or (t) is
completely nonoscillatory and approaches + o as t — oo,
Proof. Suppose 11m | ¥(t)| = B > 0. Without any loss of generality suppose

that y(z) is eventually posmve Dividing equation (2) by a(t) we observe that there -
exists a large T > ¢, and a constant 4 > 0 such that

(39) (Loy()/at) < =4

for t 2 T. Since [ 1/p(t)dt = 0 1 £ i < n — 1, conclusion follows. The proof
is complete.

Corollary 3. Suppose conditions of Theorem 3 hold. If Liy(t), 1 £i S n, is
oscillatory then y(t) — 0 as t = oo, where )(t) is a solution of equation (2).

Proof. Suppose to the contrary that p(t) — B + 0 as ¢t - co. Without any loss
of generality suppose that 8 > 0. There exists a large T such that in a manner of
last theorem we have a A > 0 such that ’

(40) Lopy(®))/a(t) < =2

for t 2 T. Suppose L;y(t) is oscillatory for some i where 1 < i < n. Then (40) is
contradicted, and the proof is complete.

Example 2. Consider the equatlon
(41) Y'(t) + e~ 1) = —8e'2‘ + e7 3,

All conditions of Theorem 3 are satisfied. This equation has y(t) = e~2* as a solu-
tlon satisfying the conclusion of Theorem 3.

Theorem 4. Suppose-conditions of Theorem 1 hold. Further suppose that a(t) >
> 0 and

(42) lim inf lff ;l > 0.

Then all solutions of equation (2) are nonoscillatory.

Proof. Suppose to the contrary that a solution y(¢) of equation (1) is oscillatory.
By Theorem 1 y(t) = 0 as ¢t — oo. Dividing equation (1) by )(¢) we observe in view
of (42) that L,y(t)/a(t) eventually assumes a constant sign. But then po(?) »(¢) i.e
¥(t) is nonoscillatory, a contradiction. The proof is complete.

Remark 2.-Our next theorem links complete nonoscillation thh eventually
vanishing trajectories of equatxon ).

Theorem 5. Suppose a(t) > 0, (i)—(iii) hold and n is odd. Further suppose that
lim inf A(2)/t* > O, and equation (2) has a completely nonoscillatory bounded solu-

t—= o

tion y(t) satisfying sign y(t) = sign y’(¢t) and - C -
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: B. SINGH
(43) S (=D Lyy 20, i=12,..,n~-1."
Let f(t)/a(t) be bounded, g'(t) =z O for t = t, and -
44 1/?0(‘)_! 1/P1(x1)f llpn-l(x,. 1) f (If(x)lp; l(x))/y (g(X))) X

X dx, ey dx1 < oo.

Then all solutions of equation (2) approach limits finite or infinite, as t — o0.
Proof. Without any loss of generality, let T > t, be large enough so that
¥(t) > 0 and y(g(t)) > O for ¢t = T. (4) and (43) imply that

(45) limLy(t)=0, i=12..,n—1.

t—

We rewrite equatlon (1) as
(46) (L) py (1) + a(t) py '(0) hOW)) = f(6) Py ' ().

Integrating (46) between [?, c0) where ' > T we have

@7 Lyr&(”t ()’)) + K, j a(x) py M(x) dx +
+ }" PLa-19(x) y'(g(x)) g'(x) dx _ 5 1f(x) | Py '(x) dx
¥ H(gx)) y(g()
where lim inf —~ h(r) > K, > 0.

t— r

Smce third term on the left is nonnegative we have

L,_1y(t) | f(x) | pa '(x) dx
48 o1 4 K n i(x)dx £ .
(48) V(&) of a(x) p; (x) dx I (et)

Dividing (48) by p,-,(t) and integrating again we get

Baead®) . g fipp,-x0) f ) 7000 dx v,

y'(g(®)
yLam 3300 ¥ (g0 () dx _ © | £(0)| p i) dx dx,
{ i (e) =] /p,.—x,(fc )| (609)
which in view of (43) yields
49) Loood®) | g, [ 1p,- () [ o) 5706 dx iy <

»'(g(®))
< jl/pn_l(xl)j |f<?€)lliz ((;C)))dxdxl

. pufsuing this course we finally get
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(50) _ +K01/po(t>51/px(xl)j  1Pae1(n-1) X

y'(g()

X j a(x)Pn_l(x) dxdx,-,, :dxl s

< Upo(®) [ 1ps(50) § s pa-sCes) § 1561570
x y~Y(g(x)) dx dx,_,, ..., dxl.
Now '
1) o o ys®) _ Y Y(g(1) < oo.

Y(e®) ~ y'(g®)

Since sign y(t) = signy'(¢), y < 1 and y(¢) is bounded from (50), (51) and (44)
we get

5D 1Ypo() § 1pr(es) § ooos 1pa-sCiaet) | a(x) pI () dx Aoy ooor d%y < 0

Xn-1

and since f(¢)/a(t) is bounded for ¢t = T, we also have

(53) 1/po(t) | 1pa(x) § ooos UpnosCiaes) § 1 £GP0 dx Aoy ooy dx < 00,

Xn-1

"(52) and (53) are the conditions of Theorem 1. The proof is complete.

Example 3. Consider the equation
(54) Y + e Yt —n) = et — e7 2 — et

for ¢t = n. This equation has y(¢) = 1 — e™* as a bounded completely nonoscil-
latory solution satisfying all the conditions of the theorem. Hence all solutions .
of (54) approach limits as ¢t — co.
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