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ARCHIVŮM MATHEMATICUM (BRNO) 
Vol. 21, No. 4, (J985), 219-228 

DECAYING TRAJECTORIES IN SUBLINEAR 
RETARDED EQUATIONS OF ARBITRARY ORDER 

BHAGAT SINGH, Manitowoc 
(Received September 5, 1983) 

Abstract. Sufficient conditions have been found to ensure that all solutions of the retarded 
sublinear equation 

Pn(t)(Pn-.i(t)(...pi(t)(p0y(t))')'...)')' + a(t)h(y(g(t)) - /(/), 

where h(t) satisfies sublinearity requirement approach limits as t -> oo. 
This phenomenon is later linked to complete nonoscillation. 

Key words. Ordinary differential equation, retarded argument, oscillatory criteria. 
AMS MOS Subject Clarification. Primary 34 K 15, 34 C 10. 

1. Introduction 

Recently Singh [7] obtained sufficient conditions which ensure that all solutions 
of the equation 
(1) (r(t) y'(t))' + a(t) f(g(t)y - f(f). 0 < y g 1, 

(where y is the ratio of odd integers) tend to finite or infinite limits as t -* oo. Our 
main purpose in this work is to extend this study to a more general setting represent
ed by the equation 

(2) Lny(t) + a(t)h(y(g(t)))^f(t), 

where n ^ 2 and Ln is a disconjugate differential operator defined by 

o) LAt)=pn(t)(pH.1(t)(...(p1(t)(p0(t)my ..)')'• 
Following our assumptions and notations in [9], we assume 

(i) pt e c([a, oo), (0, oo)), 0 ^ i £ n, 

(4) ]pr\t)dt=<x>, l g i ^ n - 1 ; 
a 

(ii) a,fge C([a, oo), R), there exists a t0 > a such that 

• - . . ' . . 0 < g(t) g t for t ^ t0, and g(t) -+ oo as t -* oo; 
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(iii) h a C(R, R), h is nondecreasing, and sign h(y) == sign y. There exists y e (0,1] 
which is ratio of odd integers, and a number Q > 0 such that 

(5) 0<h(tW£Q. 
Let 
(6) L0y(t) - p0(t) y(t), L(y(t) = pt(t) (Z,,_ xy(t))', 1 .£ i :£ m 

Th domain of Ln is definded to be the set of all functions y\Ty\co)"-»1? such 
that L(y(t), 0 £ i & n9 exist and are continuous on \Ty, oo). In what follows by 
a „solution" of equation (2) (or any other related equation) we mean a function y(t) 
which is nontrivial in any neighborhood of infinity and satisfies equation (2) 
for all sufficiently large t. A solution of (2) is called oscillatory if it has arbitrarily 
large zeros; otherwise the solution is called nonoscillatory. 

The main thrust of contemporary work in oscillation theory associated with 
functional equations has been to find oscillatory or nonoscillatory criteria. For 
this we refer the reader to Onose [3], Singh [8], Philos [4] and Staikos and Philos 
[10]. Lately, however, the asymptotic nature of oscillatory and nonoscillatory 
solutions is being studied quite extensively due to its growing importance in the 
stability of time dependent physical systems. A survey of some of these applica
tions is found in a recently published Russian text by SheVelov [11]. 

Our work here is related to that of Kusano and Onose [2], Staikos and Philos 
[10], Singh and Kusano [9] and Singh [5, 6, 7], but our results here are different 
and more complete. 

We say that a solution of equation (1) is completely nonoscillatory if Ly(t) is 
nonoscillatory for i = 1, 2, ..., n — 1. • . .' 

In section (3) of this work we find a condition for complete nonoscillation of 
equation (2), which is then linked to this equation having all solutions approaching 
limits as t -> oo. * 

2. Main results 

Let ik e {1, 2, ..., n — 1}, 1 g k <[ n — 1, and t,se [a, oo). We define IQ s 1 
t 

(7) WtSlPtk^.tPiJ^ ip*Hr)Ik-i(r,s;pik,...,ph)dr. 
a 

It is easily verified that for 1 g k g n — 1 

(8) Ik(t, s; p^r..., ph) » f p^l(r)I^t, r; p* , . . . , p<2)dr. 

Define 
(9) JiU,s)^pZlIi(t,s\pi,...,pd, Jt(t) = Jfa*) 

for 0 <; i g ?i — 1. The following Lemma is an adaptation of our Lemma 1 in [9]. 
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Lemma 1. In addition to (i) —(iii) suppose 

(10) Jp."KOI/(Old*<oo 
and 

(11) f [Jn-l(g(0)T P~n\t) | 11(0 | dt < 00. 

Then every solution y(t) of equation (2) satisfies 

(12) Xt) = 0(/B_1(0) as / - c o . 

Proof. Let j>(f) be a solution of (2) defined on [<0, co), ^ ^ a. There exist* 
T > t0 such that g(t) >. t0 for t >. T. n-times integration of (2) yields 

03) PoyXt)=IlCtW,T,pt,p2,...,pt) + 
i = 0 

+ J h-iit, r; p . , ..., />„_.) p ; ^ [/(r) - a(r) h(y(g(r))y] dr, 
r 

where Q, 0 g i g « — 1, are constants. Since (4) implies that 

lim [/,(*, T\p1,:..,pd\IIn-1(!> T;pi9 ...9pu-t) = 0, 
f->oo 

0 ^ / ^ / i — 2; using (8) in (13) we have 

| y(g(t)) | <; CJn_ t(r) + / . . t(r) J p ; x(r) [f /(r) | + | a(r) \ Q \ y(g(r) |y] dr 

for some constant C > 0 and t ^ T. Since g(r) <* t and (10) holds, we have 

(14) I y(g(0) l/J.-i(g(0) -̂  K + f [J . -^gW)] ' p;11 a(r) | [| y(g(r)) I /J . .J g(r))]y dr 
r 

for r ^ J", where K > 0 is a constant and T > Tis chosen so large that g(0 ;> T 
for i> ^ V. Using Bihari's lemma [1], we see that 

(15) ly(g(0)IMn-ife(0).^Go 

for some constant Q0 > 0, and the proof is complete. 

Theorem 1. In addition to (i) —(iii) suppose 

(16) l/p0(0] 1/PiW hlP2(x2) -•- l/p.-i(*.-i)' J pn~l(x) | a(x) | D W x ^ x 
t Xi * n - l 

xdxdxn_1dx l l-2 ...dXi < oo 
a/id ' ' 

(17) - l/l>o(0jl/Pi(*i)? 1/Pi(*2). •••..l/A-i(*.-i) ] A M/tol'd**-*.,-..* 

x . . . ,dx t < oo, 
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Then all solutions of equation (2) approach limits, finite or infinite as t -> co. 
Proof. Let y(t) be a solution of equation (2). Suppose to the contrary that 

(18) lim inf | y(t) | < lim sup | y(t) \. 
r-*oo t-+co 

Then Lty, 1 g i ̂  n, is oscillatory. Let T0 > t0 be large enough so that g(t) _: t 
for / ^ r . Since (18) holds, there exist positive numbers X and S, S < X, and 

(19) lim inf 1X01 < 8, 
f->.oo 

(20) lim sup | y(t) \ > X. 
t~*co 

From (16), (17) and (4), it followsAhat conditions of Lemma 1 are satisfied. There 
exist two numbers T > T0 and £ > 0 such that 

(21) \f(g(t))\^aJn-Mt))Y 

for t g: T in accordance with Lemma 1. Choose Tx > T large enough so that 

(22) l / P o C O i l / P i ^ f l / p ^ x ^ . . . , ! / ? . , - ^ . ! ) J |a(x) |p ;1(x)x 
t Xi Xn-i 

x K - i W ] v ^ ^ ' - i dxB_2, ...-dxj < (A -- <5)/4 
and 

(23) , , l/^0(0ll/Pl(^l) ?i/P2(^X... , l /Pn-l(^-l) J P;\x)\f(x)\X 
t xi xn-i 

xdxydxn-t,dxn-.2, ..., dxt < (X — S)/4 . 

for t ̂  Tt. Since / ( t ) is oscillatory, there exist arbitrarily large points A0 and_?0 

such that \y(A0)\ < S and \y(B0)\ > X. Let B > Tt be such that \ y(B)\ > X. 
Let [T2, r 4 ] be the smallest closed interval containing B such that |y(-T2) | = 
_= | ̂ (7^) f = S, T2>Tt, and Max | X O I > >* for f e [F2, T4]. Let M = 
= Max | y(t) | = | y(T3) |, T3e(T2, T4). It follows that M > A. Let 

(24) ei<e2<e3<v.. <en_2, 

where r 4 < el9 be zeros of (poWXOXPiW^oWXOX, .•'.;(pn-i(f)i...9{pl(t)x 
x (po^tyy* •••)')' respectively. On repeated integration of .equation (1) we have 

(25) (Poy(O)'J 1/Pi(xi) J 1/P2 x2), . ' . . , l/A-1(x,-a)x 

x J Pn \x) «(*) h(y(g(x))) dx dx„_2 dxw>3,..., dx t + 
* r t -2 

ei «2 en-2 

+ J 1/Pi(*i) 1 HPi(xi)> ->ilPn-i(xn-2) j / (x )^ (x )dxdx B _ 2 dx , , ^ , . . . , dx^. 

Integrating (25) between [ r 2 , T3"\ we have 
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(26) +(M - 5>= -l/p0(*o) J ^1/Pi(*i) / - . , l/p„-i(*»-2 "f x 

_ j xo ' xi - Xn-2 v 

xpB~-(*) a(x) h(y(g(x))) dxdxH.2,..., dx0 + 
Tj «i e2 e„-_ 

+ llPo(x0) J 1 l/_»i(*i)>J-— . l/P_-i(*.-a) J •J»."1(*)/(*)d*dj^_.'_,:rf/, dx0, 

since | ̂ i ) I = " and | Xr2) I = M. In view of (24) (see Singh [6") and (21); 
(26) yields 

(27) X - <5 = Q£ l /p 0 (x 0 )T T-/Pi(*i)T»--- /->.--(*.-2) x ' 
f XO . " • " " • - * 1 . -• 

« n - 2 • - • « - . . # • 

x J |flWIP«"1W[^-i(gW)]vdxdx l l_2,...,dx0 + 
Xn-2 

* n - 2 e„-2 « n - 2 

+ l/Po(*o) [ J l/Pl(^l))..*5l/jPn-i(^„-l) J X 
t X0 Xn-2 

x|/(x) \Pn\x), dxdxn_2, ..., dx0 

since h(t)/ty ^ Q and M > A. From (22), (23) and (27) we get 

(28) A - 5 ^ (A - <5)/4 + (A --• <5)/4, 

a contradiction. The proof is complete. 
Corollary 1. Ifp0 = pt = ... = pnmml then (16) and (17) reduce to 

(29) Jr""1(g)r))r(""n|fl(-«)'ldx<oo' 
artd -

(30) J ^ 1 | / ( x ) | d x < o o 

respectively. Hence subject to (29) and (30), a// solutions of the equation 

(31) y(rt)(0 + fl(0A(y(g(0))=/(0 
approach limits, finite or infinite, as / -> co. -

Corollary 2. _4// oscillatory solutions of equation (2) te/zd to zero as t -+ GO.' 

Remark 1. In regard to the bounded solutions of equation (2), Conditions (16) 
and (17) can be relaxed. Lemma 1 is not needed. 

We have the following theorem: 

Theorem 2. Suppose (i)—(iii) hold. Further suppose that 

(32) l /Po(Ojl /Pi (* i^ 
Xn-1 

xdxdXa-j dxn±29 ..., dx < co 
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and 

(33) l/po(0 J 1/Pi(*i),.-, l/ft-i(*.-i) J PiT'OO l /W I x 
1 X n - l 

xdjcdjc,,-!, ...,djc! < oo. 

JAwi 0// bounded solutions of equation (2) approach finite limits as t -• oo. 
Proof. Let XO be a bounded solution of equation (2). Suppose to the contrary 

thatlim inf \y(t) \ < lim sup | y(t) \. ThenLj>, 1 ^ i ^ nis oscillatory. Let T0 > t0 
t"*CO f->00 

be large enough so that g(t) ^ t0 for t ^ T0. There exist positive numbers A and 5 
such that S < A, and (19) and (20) of the proof of Theorem 1 hold. There exists 
a number T > T0 such that, for t ^ T, (32) and (33) imply 

(34) MoQ l/po(0 J 1/Pi(x0, .-> 1 /P . -L(*. - I ) J P7 lW I fl(x) | x 

x d x d x , , ^ ! , . . . jd^ i < (A — <5)/4 

and 

(35) l/po(0 J 1/P1(x1) Jl/p2(x2),..., llp.-Ax.-d J p;1(x)x 
* i xn - 1 

x l / ^ l d ^ d x ^ - , ..-.-dx,. < (A - 5)/4, 
where 
(36) M0 = sup{\y(t)\:t2:T}. 

(35) and (36) replace (22) and (23) respectively in the proof of Theorem 1. From 
this point on, the proof is the same as that of Theorem 1 from inequality (23) 
onward. Very minor modifications need be made. The proof is not complete. 

Example 1. Consider the equation 

(37) x(iv)(0 + ~ x(e-*t) = e~nlts 

r 
for t ^ . 1. Condition (29) of Corollary 1 is not satisfied. However, conditions (32) 
and (33) of Theorem 2 are satisfied. We notice that (37) has an unbounded solution 
x(t) = /. Thus Theorem 1 does not apply to (37); but according to Theorem 2 
all bounded solutions of (37) must approach finite limits. 

3. Complete nonoscillatioq 

Theorem 3. Suppose Conditions of Theorem 1 hold. Further suppose that a(t) > 
> 0 and 

(38) l i m ^ W ^ O . 
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Let y(t) be a solution of equation (2). Then either y(t) -* 0 as t -* oo or y(t) is 
completely nonoscillatory and approaches -f-oo as t -> oo. 

Proof. Suppose lim | y(t) | = p > 0. Without any loss of generality suppose 
t-*oo 

that y(t) is eventually positive. Dividing equation (2) by a(t) we observe that there 
exists a large T > t0 and a constant X > 0 such that 

(39) '<M))M*)<-1 
oo 

for f ̂  T. Since J l/Pi(t)dt -= oo 1 <; / g n — 1, conclusion follows. The proof 
is complete. 

Corollary 3. Suppose conditions of Theorem 3 hold. If Lty(t\ 1 ^ i £ n> is 
oscillatory then y(t) -» 0 as t <-+ oo, vvAere Xt) & a solution of equation (2). 

Proof. Suppose to the contrary that y(t) -> p 4= 0 as / -* oo. Without any loss 
of generality suppose that p > 0. There exists a large T such that in a manner of 
last theorem we have a A > 0 such that 

(40) (Lny(t))/a(t) < -X 

for t ^ T. Suppose L(y(t) is oscillatory for some i where 1 g i ^ n. Then (40) is 
contradicted, and the proof is complete. 

Example 2. Consider the equation 

(41) /"(') + e-*y(t) = -8e~2t + <T3'. 

All conditions of Theorem 3 are satisfied. This equation has y(t) == e~2t as a solu
tion satisfying the conclusion of Theorem 3. 

Theorem 4. Suppose conditions of Theorem 1 hold. Further suppose that a(t) > 
> 0 and 

(42) Hminf i / W L > 0 . 

rhe/e all solutions of equation (2) are nonoscillatory. 
Proof. Suppose to the contrary that a solution y(t) of equation (1) is oscillatory. 

By Theorem 1 y(t) -+ 0 as t -• oo. Dividing equation (1) by y(t) we observe in view 
of (42) that L„y(t)fa(t) eventually assumes a constant sign. But then p0(t) y(t) i.e 
y(t) is nonoscillatory, a contradiction. The proof is complete. 

Remark 2. Our next theorem links complete nonoscillation with eventually 
vanishing trajectories of equation (2). 

Theorem 5. Suppose a(t) > 0, (i)-(iii) hold and n is odd. Further suppose that 
liminf h(t)/ty > 0, and equation (2) has a completely nonoscillatory bounded solu-

Hon y(t) satisfying sign><0 = sign/(t) and * -. 
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(43) - • . ( - I ) ' " 1 Lett) = 0, / = 1, 2, ..., n-X. 

Let f(t)/a(t) be bounded, g'(t) k 0 for t =• t0 and 

(44) l/po(0j l/j»i(*i) f.... l/p„-i(x„-i) J (|/(x) | p;1(x))//(g(x))) x 
t Xl X„-l 

x dx9 ..., dxx < oo-

Then all solutions of equation (2) approach limits finite or infinite, as t -+ oo. 
Proof. Without any loss of generality, let T > t0 be large enough so that 

y(t) > 0 and y(g(t)) > 0 for t ^ T (4) and (43) imply that 

(45) lim L,}<0 = 0, i = 1, 2, ..., n ~ 1. 

We rewrite equation (1) as 

(46) (Lny(t))p;\t) + a(t)pn~\t) h(y(g(t))) -= / ( O A ^ O -

Integrating (46) between [/, oo) where / > Twe have 

(47) % T T T + K° f flW "•" ̂ d x + 

ng(o) « 
?yLB , iXx)/(g(x))g'(x)dx^ ? |/(x)|p;*(x)dx 
« /+ 1(g(*)) " J /(*(*)) ' 

where lim inf - ^ - > K0 > 0. 
t-oo ry 

Since third term on the left is nonnegative we have 

( 4 8 ) -h^m + KoJa(x)P;>(x)dxs] l / f r ) ' - ^ * * . 
/(g(0) °? W^" «J /(g(x)) 

Dividing (48) by p„.-i(0 a n ^ integrating again we get 

L"-2y}2 + *o f l/A-t(*i) f a(x)P:\x)dxdxt -
/ (g(0) ' *i 

? yLB-2K*)y(g(x))g'(x)dx ? ? | / (» ) |p ; i (» )dxdx t 

- J y + i/ , ^ =~ J lIPn-iS*l) J .YTTA ' 
. ' y7 (g(*)) ' ; *« ,vy(g(*)) 

which in view of (43) yields 

(49> ^ = ^ + ^ o f i / p . - i ( * i ) H * ) i ' ; x ( * ) d x d x 1 ^ 
/ (g(0) 

< f t / n • M f ' I /(X)\p;1(x)dxdxt 

S Jl/P»-i(xi)J 
' *« /(g(x)) 

pursuing this course we finally get 
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v(t\ oo oo 

< 5 0 > - - - ^ + --ol/Po(Ojl/l»i(*i)J..-,l/P_--t(*--_)x 
/(g(0) « *< ; ' 

00 . * ' . , ; . ' 

>> ^ a(x)p~l(x)dxdxn.l9...9dx1^ 
Xn-l 

<. llPo(t)JllPl(x1)J...,\lpn.1(xn.l) J \f(x)\P;\x)x 
t Xl Xn-l 

xy~y(g(x))dxdxn-ly ...,dxt. 
Now 

<5,» -i^ 4^-^"' 8"^"-
y\g(t)) yy(g(t)) 

Since signXO = sign/(f), y < 1 and y(t) is bounded from (50), (51) and (44) 
we get 

oo oo . oo 

(52) l / p o C O j l / p ^ X j ) ! . . . , ! ^ - ^ - ! ) J a(x)i?;1(x)dxdx,,_1,...,dx1 < oo 
t t Xn-t 

and since f(t)/a(t) is bounded for t ^ T, we also have 

(53)l/po(0?l/Pi(^i)?-,l/P»-i(^-i) f |/(x)|p;1(x)dxdxn_1,...,dx<oo. 
r * 1 Xn-l 

(52) and (53) are the conditions of Theorem 1. The proof is complete. 

Example 3. Consider the equation 

(54) yiiy)(t) + e-f-ny(t - n) = e"'"« - e'2t - e' _--

for t ^ n. This equation has y(t) = 1 — e""' as a bounded completely nonoscil-
latory solution satisfying all the conditions of the theorem. Hence all solutions 
of (54) approach limits as / -> oo. 
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