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OSCILLATORY BEHAVIOR OF ITERATIVE LINEAR 
ORDINARY DIFFERENTIAL EQUATIONS DEPENDS 

ON THEIR ORDER 

F R A N T l S E K N E U M A N 

(Received March 23, 1985) 

Abstract. Each iterative ordinary linear homogeneous differential equation of an odd order 
has nonvanishing solutions regardless to the oscillatory behavior of the iterated second order 
equation, whereas each solution of any iterative equation of an even order oscillates if the itera
ted second order equation is oscillatory. 
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1. Introduction 

It is known that each iterative linear differential equation of the third order 

/" + 4p(x) y' + 2p\x) y = 0 on / c= R, 

obtained by iterating the second order linear differential equation 

u"+p(x)u = 0, peC\I\ 

has always a nonvanishing solution on the whole interval /, see, e.g. [2]. 
This fact plays an important role in investigation of certain monotonic properties 

of solutions of the second order linear differential equations, [6]. 
The aim of this paper is to show in a very simple way that each iterative equation 

of an odd order has nonvanishing solutions regardless to the oscillatory behavior 
of the iterated second order differential equation, whereas each solution of any 
iterative equation of an even order oscillates if the iterated second order equation 
is oscillatory. For similar results see also V. Seda [5]. 

2. Notation and basic facts 

Let n ^ 2 be an integer. Consider a second order linear ordinary differential 
equation of the form 
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(p) U" + p(x) u = 0, p 6 Cn"2(I). 

Let ux and u2 be two of its linearly independent solutions. Evidently ux e Cn(I), 
u2 e C"(/), and their Wronskian W[u1, u2~\ (x) is a nonzero constant k. Define 

0 ) flOO := unC\x) . u$\x\ i = 1,..., n, xe/. 

Since >>ieC"(/) for each ( = 1 », and the Wronskian of the n functions, 
W\y\ > ••• > yn] (*) is nonvanishing everywhere on /(in fact, it is a nonzero constant), 
there exists a linear homogeneous differential equation 

(2) y™ + A--.(x) / - l ) + ... + Poto y = 0 on /, 

having all the j^'s a s - t s solutions. This equation depends on the original equation 
(p) but due to (1), it does not depend on a particular choice of solutions ux and 
u2of(p). 

The equation (2) is called the iterative equation obtained by iterating the iterated 
equation (p) and shortly denoted by It„[p] = 0. It can be shown that 

Ih[p\ = ym + 4p(x) y' + 2p'(x) y = 0, 

A4 |>] = yIV + 10P(x) y* + 10/>'(*) / + Qp\x) + 9P2(*)) y = 0, 
..., 

= » - . / / B + 1 > \ r / v . ^ - - ) 4 . ' ) / / B + 1 Cr) Л.И = /в ) + Г T * 1 P W / - 2 ) + 2(" 4 * )p'W/"-3) + ... = o; 

for pn-i, i = 2, 3, 4, 5 and 6 see e.g. [3]. However, we shall not need the explicit 
form of the coefficients for our considerations. 

Let us recall the following results. 

Lemma 1 (see O. Boruvka [1]). 
Each solution of the second order equation (p) is of the form 

(3) kx | a'(x) |~ 1 / 2 sin (a(x) + k2), xel, 

where kx and k2 are real constants, and a is a function of the class C"+1(/) with 
da(x)/d;t *- 0 on J. 

The equation (p) is one-side oscillatory (on I) if and only if a(/) is an interval 
of the form (a, oo) or (-co, b), a and b finite. The equation is both-side oscillatory 
(on /) if and only if a(/) = (—oo, oo). 

The function a in (3) is called the (first) phase of the equation (p) in BoriWka's 
terminology. Every phase a of (p) satisfies 

a(x) = e J (u\(a) + ul(a))~x da, e = 1 or - 1 , 
xo 

for x0 e I, where ux and u2 are linearly independent solutions of (P). 
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Lemma 2 (see [4]). 
Consider a linear homogeneous ordinary differential equation of the /i-th order 

defined on an interval /and its n-tuple of linearly independent solutions yl9..., ym 

forming coordinates of a curve y: I-+R" in n-dimensional vector space Vn, n ^ 2. 
it 

To each solution yc(x) = £ £*>>*(*), c # 0, of the differential equation we assing 
n 

the hyperplane //(c) = {fai, ..., yy„) e Vn; £ c ^ = 0} in F,, passing the origin 

Oe Vn. In this correspondence, to each zero of a solution yc there corresponds 
the parameter of an intersection of the curve y with the hyperplane H(c) including 
multiplicity, and conversely. 

For each Cn-diffeomorphism h of an open interval / onto / and nonvanishing 
function fe C\J) the coordinates zx of the curve 

z(t)=f(t)y(h(t)), 

belong to Cn(J) and their Wronskian is nonvanishing on /. 
n n 

If yc(x) again denotes a solution £ cy^x) for c # 0, and zc(t) -= £ c^f) , t e /, 
i-=l 1 - 1 

then to each zero x0 of a solution yc, i.e., yc(x0) = 0, there corresponds the zero 
t0 = h_1(^o) of the function (solution) zc including multiplicity, and conversely. 

3. Main result 

Theorem. Let n }> 2 be an integer and //„[p] = 0 be the iterative linear homogene
ous differential equation of the n-th order iterated from the second order equation (p), 
where peCn"2(I). 

If n is odd and a denotes any (first) phase of the equation (p), then 

'=» d/d*, is a positive solution of Itn[p\ = 0 on I. Moreover, there are n linearly 
independent nonvanishing solutions of /t„[p] = 0 on I. 

If n is even then the oscillatory behavior of solutions of (p) is the same as the 
oscillatory behavior of every solution of!tn\p\ = 0 on /, i.e., if(p) is not oscillatory 
then no solution of //„[p] = 0 is oscillatory on I, if (p) is one-side oscillatory on I 
then each solution of /rn[p] = 0 is one-side oscillatory on I and if (p) is both-side 
oscillatory then each nontrivial solution of /^„[p] = 0 is both-side oscillatory on L 

Corollary. Each iterative equation Itn[p] == 0 of and odd order has a nonvanishing 
solution, every solution of an iterative equation Itn[p] = 0 of an even order oscil
lates on I if the equation (p) is oscillatory on I, see V. Seda [J], 
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Proof. Due to the formula (3) in Lemma 1 and the definition (1), an n-tuple 
of linearly independent solutions yt of an iterative equation Itn[p] = 0 can be 
written in the form 

(4) yi(x) = | a'(x) | ( 1 -")/2(sin aOc))""4 (cos ofa))*'1, i = 1, ..., n, 

where a is a (first) phase of the equation (p); <x'(x) ?-0on1, ae Cn+1(I). 
If n is odd then 

| <x'(x) | ( 1 - n ) / 2 = | <x'(x) |(1-" )/2(sin2 a(x) + cos2 a(jt))(n~1)/2 = 

= I a'(x) | ( 1 ~n ) / 2 |sinn- ̂ (x) + r n ~^J sin"" 3a(x) cos2 a(x) + 

+ ... + fo " ^ ) s i n 2 a W c o s W ~ 3 a W + cosn_1a(x) 1 =-

=,. w + (""- 1 , , 2 )^) + - + (S::^)- + ' - w 

is a solution of Itn[p] = 0. Evidently, it does not vanish on I. 
For A : = a, / : = | a' | " 1 / 2 and yt given by the formula (4), Lemma 2 states 

that parameters of the intersections of the hyperplane H(c) passing the origin 
with curve z formed by the coordinates 

Zi(t) = sin""1'/cos'"1*, i = 1, ...,n, 

where t e a(7), establish zeros of the solution yc of Itn[p] = 0. 
The set of all points {z(t); t e <x(I)} is (generally) a subset of a compact (closed 

and bounded) set 0 in Vn (with the euclidean norm) of all points u(t) with z-th 
coordinate ut(t) = sin^fcos*"1/, fe[0, 2n] (closed interval). For odd n there 
holds 

« t w + ( ( n - 1 ) / 2 ) « 3 ( o + . . . + ( [ : : ^)u„- 2(o+«„(o= 
= (sin2 t + cos2 f)(n-1)/2 = l > 0, 

hence the hyperplane 

«(1,0,(<-V,'2).0. ...,0,(^^,0,^0 
has no common point with the set U In fact, the compact set (/lies in the hyper
plane 

/(n-l)/2\ /(„-l)/2\ 
2 + ł » s l » 

not passing the origin. Hence there exist n hyperplanes H(ct) = 0 passing the 
origin with independent vectors ci9 i = 1, ...,n, that have no common point 
with U Thereby no hyperplane H(ct) = 0 can intersect the curve z(t) e U for 
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t e a(7). Due to Lemma 2, this fact guarantees the existence of n linearly independent 
nonvanishing solutions of Jt„[p] = 0 for each odd n. 

Now, let n be even. For each point u(t0) of the set U, t0 e [0, 2rc], consider the 
point H ^ ) , where tx e [0, 2n\ and | tt - t0 | = n. The points «(t0) and u(tt), 
are opposite in Vn, i.e. 

«(r0)= -u(txy 

Each hyperplane i/(c) = 0 passing the origin in Vn has a common point, say »(tc), 
tc e [0, 2n), with the set £/. In fact, either »(t0) (and then also u(tx)) lie in the 
hyperplane H(c) = 0, or neither of them is in the hyperplane. In the first case, 
t0 or tx can be taken for tc. In the second case the points «(t0) and u(tx) lie in the 
opposite half-spaces of Vn with the boundary hyperplane H(c) = 0. Due to con
tinuity of u(t) on the closed interval with end-points t0 and tx, the existence of te 

for which u(te) belongs to H(c) = 0 is established. 
Keeping n even consider a hyperplane H(c) = 0. There always exists at least 

one point u e U lying in the hyperplane. On the other side, we have at most finite 
number of points of the set U that belong to the hyperplane H(c) = 0, other
wise the Wronskian of ut(t), i = 1, ..., n, is vanishing on [0, 2n\ that contradicts 
to Lemma 2. Now, if the equation (p) is not oscillatory then, according to 
Lemma 1, the interval cc(I) is finite and there exists at most finite number of 
parameters te e cc(I) for which z(te) belongs to the hyperplane H(c) = 0 for 
each fixed c ^ 0. Thus, due to Lemma 2, each solution of ItH[p] = 0 has only 
finite number of zeros in /. If (p) is one-side oscillatory, then a(7) is of the 
form (a, oo) or (—00,6), a and b being finite. In each hyperplane H(c) =-0 
there exists a finite number of points »(tc) e U, tee [0,2n). Since z(t) = 
= — z(t + n) = z(t + 2n) for all t e a(/), and the interval a(7) is one-side un-# 

bounded, the solution ye9 corresponding to the hyperplane H(c) = 0, is one-side 
oscillatory due to Lemma 2. Finally, when the equation (p) is both-side oscillatory 
then a(7) = ( — 00, 00) and each hyperplane H(c) = 0 intersects U in finite number 
of points but each of the points, say u(t*), coincides with z(t* + 2kn) for all k e Z, 
because t* + 2kn e a(7). Hence, due to Lemma 2, each solution of /t„[p] = 0 is 
both-side oscillatory. Q.E.D. 
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