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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 
OF A LINEAR DIFFERENTIAL EQUATION 
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Abstract The linear differential equation >(n) 4- p(t) y*k) 4- q(t) y = 0 is concerned in thii 
paper. Under the conditions that ratios of certain powers of the coefficients and some their 
derivatives of this equation are small, the asymptotic behaviour as t -* oo of the fundamental 
set of solutions are given. 
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1. Introduction 

Asymptotic behaviour of the n-order linear differential equations under the 
CO 

conditions J t9 | pk(t) \ dt < oo or pk(t) -> 0, where pk(t) are coefficients of this 
equation, were studied in many papers and they can be found in the monographs 
E. A. Coddington and N. Leviflson [1], P. Hartman [2]. The asymptotic behaviour 

00 

of this equation under the weaker assumptions that J tqpk(t) dt < oo we can find 
in [10,11]. In 1947 A. Wintner [12] derived asymptotic formulae for the differential 
equation y" + q(t) y = 0 (see them in the corollaries of this paper) which have 
wide application in quantum mechanics under conditions that ratios of certain 
powers q(t) and q'(t) are small (inproper integrals on [a, oo) exist). The similar 
conditions have been used in other papers [3, 4, 5, 8, 9] for differential equations 
of the second, the third, the fourth and binomial of the n-th order. 

Since some results of the n-order linear differential equations with two coefficients 
have been lately published [6, 7, 13], the aim of this paper will be investigation of 
asymptotic properties of the differential equation 
(1) /•> + p(t) y™ - ( - l)mq(t) y = 0. 

The results of this paper generalize the results for the third and fourth order 
and give new results for the second and the n-th order linear differential equation 
generally. 
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2. Preliminary results 

Let us consider the equation (1), where n, k, m are integers, n > 1, 1 rg k < n, 
m = l,29p(t), q(t) > 0 are continuous functions including the derivatives that 
stand in theorems. 

A vector-matrix form of the equation (1) is 

(2) z' = A(t)z9 

where A(t) == (atj(t)) is n . n matrix defined as follows 

1 if/ = i + l 

atJ(t) = 
(- l)m?(0 if i = n and j=- 1 
—p(t) if i = n andf = k + 1 
0 otherwise 

and z = [y, y', ...-y(B 1 } ] T . If we make a linear transformation w = Tz with 
continuously differentiable nonsingular matrix 

1X0 = dia [q(tf~^, q(tj~^, ..., q(tfi, l ] , 
we get the equation 

(3) W - U0<i(0r + AlP(0 qO)^ _1 + .42«'(0 ,(0_1] w, 

where _ 0 — (fly)» -^I — (<*y)» ^2 a r e n • n constant matrix defined as follows 

< 

1 iff = 1 + 1 
( - l ) m if/ = nandf-= 1 
0 otherwise 

x f — if i = n andf =- k + 1 
fly ~~ (0 otherwise 

x2_*«[i-l.i-.i-....,l.o]. 
oo JL 

Suppose J q(t) n dt = oo. By putting the substitution t = a(s) into (3), where a(s) 
m 

t j _ 
is the inverse function with co(t) = J g(s) B ds, the equation (3) reduces to 

a 

(4) X' = [A0 + „./(*) + A2q(s)~ x, 

where x(s) = (s), 

M.--_L, „)----L 
ítø-)]1" " «[<x(s)]1+ » 
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An asymptotic behaviour of solutions of the equation 

xf = [A+V(s) + R(s)']x 

was proved in Theorem 8.1 in [1], Now we proceed to apply this theorem for the 
equation (4) in two ways. In the first case we put V(s) = Atf(s) + A2g(s) and 
R(s) = 0, in the second one we put V(s) = Atf(s) and R(s) = A2g(s). 

Throughout by L[a, oo) we denote the Banach space of all complex valued 
functions which are Lebesque integrable on [a, oo). The next Lemma will be needed. 

- l - J -
Lemma. (D. B. Hinton [5].) Let h(t) >0on [a, oo) andh\t). h(t) » e L[a, oo). 

Then 

(i) h(t)»фLla, oo), 

(ü) [ (ii) [h'(t). h(t) 

-x-4-12 

(iii) \h'(t).h(t) -» 

^1 eL[a, oo), 

J eL[a, oo). 

3. Main results 

(5) 

Theorem 1. Let the functions p'(t) and q"(t) be continuous on [a, oo). Let 

<i"(t) P'(t) __, P(t)2 

U+J- ' a--^ 
and 1+2* 

q(tyn q(t) n q(t) 

be in L[a, oo). Then there exists a fundamental system z,(f) of the equation (2) such 
that 

i -n f t 
Tztq(t) -» eXpJ-A,J /-A,} Ui-í- ir-f-^L ldA^p,, 

I * L q(i) n J ) 

where Xt are the roots of the equation Xn - ( - l)m = 0 andpx = [1, Xu Xt,..., X"~ 1 ] r . 

Proof. To apply Theorem 8.1 of [1] denote A0 = A and V(s) == AJ(s) + 
+ A2g(s). Since det [XE — .40] = Xn — (—l)m, the characteristic roots Xt of A0 

are distinct andp, = [l,Xt9..., Xn~ x ] r are characteristic vectors of A0 corresponding 
to A|. 

By change of variable t = cc(s) we obtain 

P[«(s)] 
ÍIAs)|dí = 

= í _p_ 

q(t)' 

0 lUw*)]1" 
ds< 

P(t)q'(t) 

q(t) 
2 - ^ 

dt<; 
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- 2 / P\t) 

q(t) 
2 - 1 + 2* 

J Ľ I 4 ( 0 1 + " ^ 
dí m 

From the conditions of the theorem and from the Lemma we get /'(?) e £[0, oo). 
Similarly we deduce 

l 2 

J|g'(s)|ds 
- q(tr*\ v ^*\q(tr^\ 

dí <oo, 

«(0 

Jg(s)2dsší «'(0 

<ï(01+2-

dí < oo. 

So we obtained J | V'(s) \ ds < oo and F(s) -> 0 as .s -*• oo. 
o 

Now we investigate the characteristic roots k(s) of the matrix A0 + V(s). The 
characteristic equation has the form 

(6) i r ø ] - - ( - if + л«) д [A - ^ т r g ( s ) ] + Д [я - - ^ r g ( s ) ] = 0 -
It is evident that P[A(s)] -> A" — (— l)m, because/(s) -> 0 and g(s) -> 0 as s* -> oo. 
In the notation of Theorem 8.1 of [1] all j, 1 <j g n for a given i" are supposed 
to fall into one of two classes It and I2, where 

jellt if fD i;(s)ds->oo and f Dy(s) ds > -K, 

«a 

; e / 2 , if j D í / í ) d s < X , (s2 £ sx § 0), 

where K > 0 is a constant and Z>f/s) = Re [A,(s) - A/,.?)]. 
To proove this fact we express A(s) in the form 

A(s) == A + ft*) + y(s), 

where /?(s) -> 0, y(s) -> 0 as 5 -> oo and y(s) e L[0, 00). For this aim we look for 
numbers ct, c2 such that 

P(s) = cj(s) + cag(^) 

and P[A + )S(s)] e L[0, 00). From (6) it follows 

(7) 
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+in [*+«*) -^«(« ) ] -
All terms of the first product in (7), except [A + P(s)\kf(s)9 contain/2^), g2(s) or 
f(s) g(s) and so they are in £[0, oo). Since we choose p(s) = ctf(s) + c2g(s)9 all 
terms of [A + p(s)\kf(s) are in L[0, oo). Therefore, if we put 

- ( - 1 ) M + f(s) A* + A" - Xn^g(s)^~ + nfts) A""1 « 0, 

i.e. 

we obtain that each term of P[A + jff(s)] contains f2(s)9g
2(s) or f(s)g(s) and 

hence P[A + £(y)] e L[0, oo). Evidently j8(s) -> 0 as s -* oo. 
Now we are to proove y(s) -> 0 as s -> oo and y(s) e L[0, oo). Since X(s) =- A + 

+ p(s) + y(s) is the characteristic root of A0 + V(s)9 hence 

* [* + P(s) + y(*)] = -4(*) y(s) + P[A + /?(*)] == 0 
and so 
(9) \A(s)y(s)\ = \P[X + fi(s)\\. 

By the same way as (7) we see that 

p& + P(s)+y(S)\ = - ( - i r + / w n [* + * * « + M - - ^ ^ J M ] + 

do) + ft [* + ««) + y(s) - !^~- g(*)]. 

From (10) it follows that A(s) consists of the terms which tend to zero except 
/lA'-Si.e. 

\im A(s) = nXn~l. 

Then 
111-1 . 1 - 1 

and 

\\A(s)\-\nX'-i\\<^-

M(s)|>nA"-1-^- = n - i - ^ l 

for sufficiently large s. Then (9) gives 

| y(s) | § | 2P[A + «.»)] I 

and hence y(s)eL[0, oo), y(s) -*•() as s -»- oo. Consequently we obtain that the 
characteristic roots A,(s) of A0 + V(s) may be written as 
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(11) Xt(s) = Xi - l - ^ j . /(s) + l^LZ_Lg( s) + y i ( s ) j 

where A, are the roots of A" — (— l)m = 0, y^s) e L[0, oo) and ?;(*) -> 0 as s -> oo. 
From (11) it follows that Dtj(s) for all i,j = I, 2, ..., n may have the following 

forms 

a) Dij(s) = G(s), 
b) Dij(s) =- c + F(s) + G(s\ 
d) -D0(s) = ~c + F(s) + G(s\ 

where c > 0 is a number, F(s), G(s) are continuous functions on [0, oo), F(s) -> 0, 
(7(s) -> 0 as s -> oo and G(s) e L\0, oo). 

a) If G(s) e L\0, oo), then there exists a number K > 0 such that 
52 

1 
51 

fD^ds^ (s2 = s. = 0 ) 

and hence j 6 /2 . 
b) If F(s)->0 as s-*-oo, then there exists a number s'e[0, oo) such that 

c + F(s) + G(s) = ~ + G(s) for all s > s'. Then 

J Dy(s) ds = J [c + F(s) + G(s)] ds = oo 
o o 

and 
* 2 

j D ^ d s > - K (s2 £ st £ 0), K > 0 
51 

because of c + F(s) + G(s) -> c as s -> oo. Hence J e / j . 
c) From the condition F(s) -> 0 as s -> oo it yields that there exists a number 

s* > 0 such that 

- c + F(s) + G(s) < ~ y + G(*) 

for all s > s" and hence 
52 

jD4/s)ds < K (s2 ^ sA ^ 0), K > 0. 
51 

So jel2. 
Thus all assumptions of Theorem 8.1 of [1] are fulfiled. Therefore there exist n 

linearly independent solutions xt(s), i = 1, 2, ..., n of (4) such that 

Xi(s)expl-]xi(Z)d£]-+pi, 
50 

i.e. 
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(12) xts)exp(-] ^ - 1 ^ - / ( 0 + 4 . - ^ S(0 + V.(o]d^->p.. 

By substituting £ — co(x) in (12) and putting 
1 я - l 

Lf = ű[a(50)]2 » exp[-Jy((т)dт] 

we have 
1 - И 

LiWi(t)q(t)^ e-p{-A,J ą(ï)n - ( - 1 ) " 
Ѓ m 
n t 

í(т) 

* + l 
dтj-»p.. 

Since w, -= Tzf and the equation (2) is linear, we have the assertion of Theorem 1. 

Theorem 2. Let p(t) and q"(t) be continuous functions on [a, oo). Let 

9"(t) „_, P(0 (13) 

q(t) -
аnd » + i 

q(t) 

be in L(a, oo). Then there exists a fundamental system zt(t) of the equation (2) such 
that 

(14) 
JL^L Г ' JL 1 

Tziq(t) -« exp L—Я, J q(x) • dтj - p„ 

wAere A, are r^/s of'A* - (—1)" = 0 andp{ == [1, A,, ..., A"~1]r. 
Proof. In the notation of Theorem 8.1 in [1] we denote V(s) = A2g(s) and 

i?(5)-=-^1^(s)in(4). Then 

00 00 

J I g'(s) I ds < oo and J g2(s) ds < oo 
o o 

00 

by the same arguments used in the proof of Theorem 1. So J | V'(s) \ ds < oo 
o 

and V(s) -> 0 as s -> oo. Since 

Jl/(-)|d-«f M 

9(0 

dí < oo 

it holds that J | R(s) \ ds < oo. 
o 

The characteristic equation of A0 + K(s) is 

(15) Pws)] - - < - i r + ri [A - JL=^-«(*)1 - o. 
i=iL nJL J 

Similarly as in the proof of Theorem 1 we get that the characteristic roots of (15) 
may be expressed in the form 
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-i n i 

XІ(S) = A, + — — — g(s) + Уi(s)9 z n 

where yt(s) e L[0, oo) and yt(s) -> 0 as s -> oo. All the other assumptions of 
Theorem 8.1 in [ l ] are fulfiled, therefore there exists a fundamental system xt(s) 
of (4) such that 

Xi(s)expf-i h + 1 J L z l g ( 0 + ytf)]d«] - A-

If we put £ = CO(T) and consider yt(s) e L[0, oo) we get the assertion (14). 

4. Corollaries 

Corollary 1. Suppose the assumptions of Theorem 1 are fulfiled. Then the equation 
(1) has a fundamental system yj(t)9 i = 1, 2, ...,/* such that 

yYKO-Mdtf^x 

X ЄXp [Л| J «(o- -c-ir-f- ^ L l ^ . d + oa)), 

where j == 0, 1, ..., n — 1 a/id A, are fAe roots o/A" — (—l)m =* 0. 

Corollary 2. Suppose the assumptions of Theorem 2 are fulfiled. Then the equation 
(1) has a fundamental system yt(t), i = 1,2, ..., n such that 

(17) tfKt) = X{q(t)~I^rJL

 e x p (A, J q(xfi dt) . (1 + 0(1)). 
-0 

Proof of Corollary 2. If we put the matrix IT into (14) we have 

[ n-1 n-3 n-(2it-lV| 

g(0 2» ,g(f) 2n , ...,g(f) 2» J X 

xexp(-Aj^(T)dT) .[^, j ; ; , . . . ,^r n ] T ->[ l^ i ) . . .^r 1 ] T . 
'o 

From this equality evidently follows (17). 
If in the Corollary Z we put n = 2 and P(t) =-0we obtain 

Corollary 3. Let q(t) > 0 and q'(t) be continuous on \a9 oo). Let 

(18) q"(t)q(t)-3'2eL{0,co). 

Then the equation 
y' + q(t)y = o 

has the general solution 
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(19) X0 = 9(0"1/4[cos(J.2(t)1/2dT)(c. +o(l)) + sin(}c7(T)1'2dT)(c2 +0(1))] 
•0 (0 

and for y'(t) it yields 

(20) / ( 0 = ^(01/4[~sin(Jg(T)1/2dT)(c1 + o(l)) +cos( \ q(r)l,2dt)(c2 + o(l))l 
to t0 

A. Wintner [12] proved the assertions (19) and (20) under the conditions 

(21) J«-(t)1/2dí--co and f 
Шf "(t) 
Í6q(t)3 4ą(t)2 g ( 0 , / z d í < o o . 

To compare the assumptions (21) and (18) we easily verify that (18) implies (21), 
so Wintner theorem is a little general. However the Theorems 1 and 2 give other 
asymptotic formulae for differential equations of the second order. 

If in Theorems 1 and 2 we put n = 3, resp. n = 4 and k = 1 we obtain the results 
of the papers [8] and [9]. 
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