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ON SOME INTEGRODIFFERENTIAL INEQUALITIES 
IN ONE VARIABLE DEFINED ON AN INFINITE 

INTERVAL* 

F. MEGAHED, G. H A M A D and SH. SALEM 

(Received September 2, 1985) 

Abstract This article deals with some new linear and nonlinear integrodifferential inequalities 
in1 one variable defined on an infinite interval. The upper bounds of the unknown function and its 
higher derivatives will be explicitly obtained. 
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INTRODUCTION 

Gronwall in [3] studied his famous integral inequality 
t 

(1) *(t) ^ h(t) + J fc(s)x(s)ds; t0 £ t < T g oo, 

where x(t), h(t) and k(t) are real-valued, non-negative and continuous functions 
defined on [f0» -0- He obtained an explicit upper bound for x(t). 

Various generalizations of this inequality in the form of integrodifferential 
inequalities have been thoroughly investigated, see [1, 2,4,5, 8-10] for example. 

Motivated by certain applications in the theory of integral equations, Pachpatte 
[6] studied the following integral inequality 

(2) x(t) ^ Kt) + g(t) J k(s)x(s)ds, re/, 
r 

where x(t)9 A(/), g(t) and k(t) are real-valued, nonnegative and continuous functions 
defined on / = [0, oo). He proved that 

(3) *(t)^h(t) + g(t)]h(s)k(s)exi>()g(T)k(T)dT)ds; tel. 
t t 

In this paper, we investigate some linear and nonlinear integrodifferential 

* Presented to the Conference EQUAD1FF 6, Brno, August 26-30, 1985. 
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inequalities in which the independent variable is defined on the interval I = [0, oo). 
Throughout this paper, we will assume that x(m\t); m > 0, p(t), q(t\ gk(t) 

(k =- 0 , 1 , 2, ..., m) and gj(t) (j = 1, . . . ,m) are real-valued, non-negative, and 
continuous functions defined on 7 s [0, oo). 

Theorem 1. Consider the following linear integrodifferential inequality 

(4) x ( m )(0^jK0 + $ ( 0 l hk(s)xik\s)ds; m > 0. 
k«-0 t 

Then, xim\t) satisfies the inequality 

(5) x(m\t) £ p(t) + q(t) Jcp^s) exp (J <p2(x) dx) ds, 
t t 

where 

(6) <M0 = g»(0iK0+"l &<0y?o(0 + (m I n , / ( t -s)"-*- 'p(s)dsl . 
*-»o ( im — /c — i; : 0 J 

(7) 9,(0 = 8-(0«(0 + Z g»(0 (m k n , J 0 - s)"-*"1 «(»)d», 
4 = 0 V"» — K — 1)1 o 

end 

/« ^ V1 *w(0)r"'* 

Proof 
Let 

(9) M . ( 0 - I Jg»(s)x(4)(s)dS, 
A--0 r 

then, 

(10) * ( m ) (0£ /> (0 + q(t)Mx(t). 

Integrating (10), (m - k) times from 0 to /, we get 

(11) x(k\t) £ q>0(t) + ( m _ * _ j (f - s)m-k-' (P(J) + «(s) M,(5)} d*. 
# 

Differentiating (9) and then using (10) and (11), we have 

(12) MHO £ - ^ ( 0 - tp2(t) Mx(t); Mt(oo) =-= 0, 

where <pt(i) and <p2(i) are defined by (6) and (7) respectively. On integrating (12) 
from t to oo and substituting for Mx(t) in (10), we obtain the required result. 

Theorem 2. Consider the nonlinear integrodifferential inequality 

(13) x(m)(0 ^ M [1 + £ J g*(s) x(m)(s) *(k)(s) ds], m > 0. 
**-o I 

Zn addition to the assumptions mentioned earlier, we will assume that p(t) is a non-
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decreasing function for all tel.lf 

(14) k(t) - f cp4(x) exp (J <p3(s) ds) dx < 1, 
t X 

then, 

(15) *(m)(0 -S P(0 cxp (J cp3(s) dj)/[l - A(0], 

(16) »3(0-"Z&(OP(09o(0, 
4 = 0 

(17) <*>.,(.) = g„(0p2(0 + " l ft(0Pit) (tn I n , }(* - s)""*"1 Pis)ds 

and <p0(t) is defined as in (8). 
Proof. Let 

(18) M2(t) = 1 + 1 ]gk(s)xim\s)x«\s)ds, 
* = 0 t 

then, 

(19) x™(t)*p(t)M2(t). 

Following the same steps as in theorem (1), we get 
(20) M'2(t) = -<p3(0 M2(t) - <pA(t) M\(t); Af2(oo) = 1. 

On integrating (20) from / to co and substituting the obtained value of M2(t) 
into (19) inequality (15) follows. 

In the following theorem, we assume that W is a positive, continuous, non-
decreasing and submultiplicative function such that for any constant n > 0 

(21) Gn(u)=] - ^ - . 
o Wn(s) 

Theorem 3. Consider the following nonlinear inequality 

(22) x(w>(0 g K0 + £ qj(0 Jg/s) W\ £ x<k)(s))ds; m > 0, 
>«o t *--o 

where p(t) is a real valued, non-negative, continuous and nondecreasing function on L 
Then, 

(23) x(->(0 £ K0fl«/0C; 1{G I I (1) + J<p5(s)ds}, 
J~Q t 

as long as 

(24) GH(l) + ]<p5(s) ds 6 Dom G; \ 
t 
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where 
m ,t} m m - 1 

</>*(» = I 4f r r ^ W ) n «/0 + I (<?>o(t) + 
y=o P\!) i = o fc=o 

(25) + ^ . j ^ , , i(t-sr-'-KS)n^)ds], 

tf/fd <p0(/) is defined in (8). 
Proof. Since p(t) is positive non-decreasing then (22) can be rewritten as 

(26) • x n 0 ^ K 0 f l q / 0 M 3 ( 0 , 
1=o 

where 

(27) M3(0 = l + i ]^-W\t^k\s))ds. 
;=o t P\s) *=o 

Integrating (26) (m — k) times from 0 to t9 we have 

(28) *<*>(.) = <p0(.) + * j (* - a ) - * " ' {/,(*) ft «/-) M3(s)} ds. 

Differentiating (27) then on using (26) and (27) and according to the non-decreasing 
and submultiplicative nature of W9 we get 

(29) M3(0^ -<p5(t)W
n(M3(t)). 

Integrating the above inequality from / to oo and substituting the value of M3(0 
in (26) we easily get inequality (23). 

Assuming the same conditions of theorem (3) one can easily prove the following. 

Theorem 4. Consider the nonlinear integrodifferential inequality 

x{m\t) g p(t) + £ qj(t) J gj(s) Wn>(x™(s)) Wn\ £ x(k)(s)) ds, 
j=0 t *=o 

(30) R l 9 l l 2 - > 0 . 

Then9 

(31) x<m\t) g p(t) ft «X0G-l
+.a{Glli+.a(l) + ]<p6(s)ds}9 

j**o t 

as long as 

where 

26 

G»,+,.(1) + J <f>6(s) ds 6 Dom G~l
+Ut; 

t 

tát) = Í ^éjr W'W> fl í/0) w{p(t) fl «3/0 
j*0 P\l) j = 0 \ j*0 



+ 
k 
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and <p0(t) is defined by (8). 
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