Bohdan Zelinka Neighbourhood digraphs

Archivum Mathematicum, Vol. 23 (1987), No. 2, 69--70

Persistent URL: http://dml.cz/dmlcz/107281

Terms of use:

© Masaryk University, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO) Vol. 23 No. 2 (1987), 69-70

NEIGHBOURHOOD DIGRAPHS

BOHDAN ZELINKA

(Received April 3, 1984)

Abstract. The symbol $N_G(v)$ denotes the subgraph of a directed graph G induced by the set of all terminal vertices of edges outgoing from the vertex v. The paper studies graphs H for which there exists G such that $N_G(v) \cong H$ for each vertex v of G.

Key words. Directed graph, neighbourhood, isomorphism.

MS Classification. 05 C 20.

At the Symposium on Graph Theory in Smolenice in 1963 A. A. Zykov [1] has proposed a problem concerning neighbourhood graphs in undirected graphs. Here we shall consider an analogous problem for directed graphs.

Let G be a digraph, let v be its vertex. By the symbol $N_G(v)$ we denote the subgraph of G induced by the set of all terminal vertices of edges outgoing from v in G; this graph will be called the neighbourhood of v in G. The problem analogous to that of Zykov is to characterize the digraph H with the property that there exists a digraph G such that $N_G(v) \cong H$ for each vertex v of G. We shall not solve this problem in general, but we shall show some classes of graphs which have the mentioned property.

Theorem 1. Let H be a digraph whose vertex set V(H) is the union of two disjoint sets A, B and whose edge set is the set of all edges with initial vertices in A and terminal vertices in B. Then there exists a digraph G with the property that $N_G(v) \cong H$ for each vertex v of G.

Proof. Denote a = |A|, b = |B|. Let k be an integer, k > b/a. Consider six pairwise disjoint sets $A_1, A'_1, A_2, A'_2, A_3, A'_3$ of the cardinality ak. In the set A_1 choose a subset B_3 , in the set A_2 choose a subset B_1 , in the set A_3 choose a subset B_2 in such a way that $|B_1| = |B_2| = |B_3| = b$. The set $V(G) = A_1 \cup A'_1 \cup U \cup A_2 \cup A'_2 \cup A_3 \cup A'_3$ will be the vertex set of the graph G. In G all vertices of A_i with all vertices of A'_i will be joined by pairs of oppositely directed edges for each $i \in \{1, 2, 3\}$. Further G will contain all edges going from a vertex of $A_i \cup A'_i$ into

B. ZELINKA

a vertex of B_i for each $i \in \{1, 2, 3\}$. No other edges than those described ones will be in G. The digraph G thus obtained has the required property.

In the case when a = b the required graph G can be more simple. Take four pairwise distinct sets A_1, A_2, A_3, A_4 of the cardinality a. All vertices of A_1 with all vertices of A_4 will be joined by pairs of oppositely directed edges. Further G will contain all edges going from a vertex of A_i into each vertex of A_{i+1} for each $i \in \{1, 2, 3, 4\}$, the subscript i + 1 being taken modulo 4.

Theorem 2. Let H_0 be a digraph with the property that there exists a digraph G_0 such that $N_{G_0}(v) \cong H_0$ for each vertex v of G_0 . Let H be the digraph obtained from H_0 by adding a new vertex w and all edges going from vertices of H_0 into w. Then there exists a digraph G such that $N_G(v) \cong H$ for each vertex v of G.

Proof. Let G_1 , G_2 , G_3 be three pairwise disjoint digraphs which are all isomorphic to G_0 . In G_1 choose a vertex w_3 , in G_2 choose a vertex w_1 , in G_3 choose a vertex w_2 . The vertex set V(G) of G is the union of the vertex sets of G_1 , G_2 , G_3 ; its edge set consists of all edges of these graphs and more over of all edges going from a vertex of G_i into w_i for each $i \in \{1, 2, 3\}$. The graph G has evidently the required property.

Theorem 3. Let H_0 be a digraph with the property that there exists a digraph G_0 such that $N_{G_0}(v) \cong H_0$ for each vertex v of G. Let H be the digraph obtained from H_0 by adding a new vertex w and all edges going from w into vertices of H_0 . Then there exists a digraph G such that $N_G(v) \cong H$ for each vertex v of G.

Proof. Consider the vertex set $V = V(G_0)$ and a set V' such that |V'| = |V|, $V' \cap V = \emptyset$. Let φ be a bijection of V onto V'. The vertex set of G will be $V(G) = V \cup V'$. If u, v are two vertices of G_0 such that there exists the edge from u into v in G_0 , then G will contain the edge from u into v and the edge from $\varphi(u)$ into v. Further for each $v \in V$ the vertices v and $\varphi(v)$ will be joined in G by a pair of oppositely directed edges. No other edges than those described ones will be contained in G. The graph G has evidently the required property.

REFERENCE

[1] Theory of Graphs and Its Applications, Proc. Symp. Smolenice 1963 (ed. M. Fiedler), Praha 1964.

B. Zelinka Department of Metal Forming and Plastics Institute of Mechanical and Textile Technology Studentská 1292 461 17 Liberec 1 Czechoslovakia