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Abstract. In this paper there are investigated an existence problem of bounded solutions and 
a stability of a trivial solution of non-linear differential equations of the 2nd order in Hilbert spaces. 
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Let H be a Hilbert separable space with a norm || . || = (.;.)1/2 where (.;.) is inner 
product. Let [H] denote the Banach algebra of bounded linear operators from H to H 
with the operator norm | . |, which we refer to as the uniform operator topology. 

Let LXoc(R+,H) denote the space of locally Lebesgue integrable functions u: 
R+ -+ H with topology of convergence in the mean on every compact subinterval 
of R+ and let C[0C(R+ , H) mean the space of continuously differentiable functions u: 
R+ -> H with the locally uniform convergence. Let T: C[0C(R+, H) -* Lloc(_R+, H) 
be a continuous operator of Volterra type. 

We shall consider a differential equation 

(1) *"(/) + A(t) x\t) + B(t)f(t9 x(t)) + T(x) (t) = 0, 

where A, B: R+ -> [H] are locally absolutely continuous (in the uniform operator 

topology) and symetrical operators, f: R+xH -> H and -^- are continuous functions. 

We assume further that for each t e R+ that B(t) is a uniformly positive operator 
(it guarantees the existence of an inverse operator B~\t) and also that the least 
eigenvalue of B(t) is positive-see [ l ] p. 50). 

Let ju(K) denote the eigenvalue of the operator K. Put k(t) = max ii(B(t))> co(t) = 
= max ii(B-\t)) and v(t) = max fi[(B'l(t)y - 2B~\t) A(i)\. Throughout the 
paper we assume that k(t) is a nondecreasing function on-Jt+..'*, ' * 
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We define 

•MU> xi9 X29 ..., xn9...) == J ft(t9 xl9 x2>..., Xj-i, 5, xi+l9...) ds, 
0 

where fi9 i = 1,2,... are components of f(t9 x) and x = (x t, x2 , . . . , xn9 ...) e i/. 
00 

Assume that the series £ Ft(t9 xl9 x29..., *„,...) is convergent and let 
*=-i 

00 

^0,*) = E^iO,*! ,^ •••.*,»> ••)• 
< = - l 

Next suppose everywhere that 
00 /5f 
5] - p - = 0 for * + *,* = 1,2,... 

Let [0, /*) be the interval of existence of a solution of (1). By solution of (1) we 
understand any function x: \09t*)-+H which is locally absolutely continuous 
on [0, t*) together with its first derivative, it satisfies (1)-everywhere on [0, t*) and 
is maximally extended to the right. 

Definition, (see [2] and [4]). Let f(t9 0) = 0, T(0) (t) = 0 and b: R+ -> (0, oo) be 
some continuous function. The solution x = 0of(l) is said to be b—stable if for any 
e > 0 there exists S > 0 such that every solution x(t) of (1) for which 

\\x(0)\\2 + \\x\0)\\2<S 

is defined on R+ and 

M ( 0 l l 2 + " X f f )
l | 2 < e forte*.,.. 

On boundedness of solutions and 6—stability of a trivial solution of scalar second 
order differential equations is dealt with in [4]. Boundedness of solutions and in­
stability of a trivial solution of nonlinear second order differential systems is investigat­
ed in [2]. In this paper the results from [2] and [4] are generalized. 

Define for arbitrary function u: R+ -» H and t e R+ 

|| u ||r = max || u(s) ||. 
0£s£t 

Theorem 1. Let F0: R+ -+ R+ be a continuous function and a: R+ -• R+ be 
a measurable function such that 

00 

(2) lim Fo(0 =oo and J Jit) \a(t) co(t) + v+(0] dt < oo, 
f-*oo 0 

where v+ = max {v, 0}. 
Moreover let 

(i) F(t9u)£ F0(\\u\\) forteR+,ueH, 
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(ii) ^^-ѓ<t)F0(\\u\\) fortєR+,uєH, 

(iio ii TX i < a(o [VA(O + y/mm x lit) + II x' | f] 
for teR+9xeC{oc(R+9H). 

Then every solution of(l) exists on R+ and is bounded. 
Proof. Let x(t) be arbitrary solution of (1) with its interval existence [0, t*). 

Without loss of generality suppose that the function F0(t) is nondecreasing. 
If (1) is multiplied (from the left-hand side) by B~\t) and the scalar function x\t) 

and then integrated from 0 to t91 e [0, t*)9 we obtain 

(3) J(B"V;x')ds + J(B~1ALx';x')ds + J(/(s,x); x')ds + {(B^TxjxOds == 0. 
o o o o 

As there holds 

( B - V ; x') = 1 (B~V; x'Y - ^B^Jx'; x') 

and 

dF(t,x) dF(t,x) 
(/(ť,x);x') = 

dr dt ' 

from (3) we have 

(4) (B" V ; x') + 2F(t, x) = C0 + J* (([B"»]' - 2B" ̂ ) x'; x') ds + 
0 

+ 2 \ dF^'x) ds - 2 J{JT •T*; x')ds, 
o 0s o 

where C0 = (B^OMO); x'(0)) + 2F(0,x(0)). 

With regard to hypotheses (i), (ii) from (4) it follows 

(5) (B"V; x') + 2F0(|| x |) g C0 + 2 /a(s)F0(|| x-||)ds + J v(s) || x'(s) ||2 ds + 
o o 

+ 2 J (B~J Tx; x') ds, for I € [0, I*), 
o 

From (5) with regard to (iii) we obtain estimates 

(6) - ^ II *' I? S C0 + 2 J a(s) Fo(|| * | J ds + J v+(s) || x' ||2 ds + 

+2j«(s)A(S)OKJ)[i+v-?o(iuy+-*|=?]-j|=-ds. <e[o;**), 
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t 

(7) 2F0(|| x ||,) g Co + 21 a(s) F0(|| X II,) ds + J v+(*) II *' II.2 ds + 

r * II*'11,1 l l* 'L W r , e r n ,*, 

+ 2f«(s)A(s)e>(s)[l +V^o(ll*ll,) + ^ g = J - y ^ ^ <eC°'< >• 

After addition of (6) and (7) we get 
(8) ^ || x' ||2 + 2F0(|| x y g 2c0 + 4 J o(s) F0(|| x ||.) ds + 2 Г v+(s) || x' ||2 ds + 

Я(0 
I I*'І IЛ ii*'iľ l Г ||JC'||S || x' 

+ 4.|a(s)Я(s)û,(s)[l+VF0(l|x||s) + : 7 = J ^ ds foг řє[0, í*). 
(S) 

According to the inequality 2(1 + a + b) b £ 1 + a2 + 4fc2 and a(r) ^ a(r) A(f) <»(0 
from (8) it follows 

(9) i - ^ L + 2F0(|| x II.) g d + 8 J A(s) [a(s) <»(s) + v+(s)] x 

x r i ^ ! j I + 2Fo(ll*L)]ds, 

00 

where Cx = 2C0 + 2 J X(s) a(s) G)(S) ds. 
o 

By using of Gronwall inequality ([3], p. 37) we have 

(10) 1 ^ | L + 2F0(|| x |f) = Ct exp (8 \k(t) [a(0 a>(0 + v+(0] df) :_ C2, 
><W o 

te[0,t*). 
With respect to (2) we have from (10) that /* = oo and sup || x(t) \\ < oo. 

Thus the proof is complete. teR+ 

Remark. If v(t) _; 0 for t e R+, then the assertion of Theorem 1 is true, just the 
integral in (2) is the form 

00 

jA(0a(0<tf(0df < oo. 
o. 

Example. Consider a differential equation on/ / = # = (—oo, +oo), of the form 

(V) x°(t) + a(t) x'(t) + b(t)f(ty x(t)) + It*) (0 = 0, 

where a, b: R+ -» R are locally absolutely continuous functions, b(t) > 0 and non-

decreasing on R+, f: R+xR-+ R and -^~~-Z- are continuous functions and T: 
ot 

Cie(R+, R) -> LiQC(R+, R) is a continuous operator (see [4]) of volterra type. 
Then 

JPG. *) = J / ( ' , *) <k, A(0 -* b(0 and v(0 4 4 K ) - 2 T £ T • 
o \ 6 ( 0 / 0(0 
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The integral in (2) is the form 

. . . f / 1 V - a(A) 1 . 
< oo. JK*>{(w)'-^}> 

Thus all assumptions of Theorem 1 for equation (l r) be satisfied. 
If e.g. 

U'(*\ 

a(t) ^ - -2T7T t h e n v ( 0 -S 0 for teR+ (see Remark). 

Theorem 2. Let F0: [0 , r] ->• R+, (r > 0) be a continuous function and a: R+ -• JR+ 

fee a measurable function such that 
00 

(11) F0(t) > 0 / o r 0 < t ^ r and J X(t) [ a ( 0 co(t) + v + ( 0 ] At < oo. 
o 

Moreover let 

CO F(t, ti) £ F0(|| u ||) / o r 16 K + , || u || g r, 

(HO ^ - ^ ^ a ( 0 F0(|| » ||), / o r f e J? + , || 1.1| g r, 

forteR+,xeC'loc(R+,H), and || x ||, + l ï - f c g r. 

(iii') II Tx ||, £ a(0 [ . j^O Fo(ll * II,) + II *' l/J 

l|xj_ 
4A(0 

77te« //ie solution x = 0 of (1) is k-stable. 
Proof . Without loss of generality suppose that F o ( 0 is an increasing function. 

Let e > 0 be an arbitrary number. To e take 0 < 5 < min {e, A(0) e} such that 

(12) p || B-\0) \\8 + 2p max {F(0, u)9 \\u\\£ J5} < min | ± , 2F0 ( £ ) } , 

where /? -= 2 exp (8 J X(t) [ a (0 co(t) + v + ( 0 ] cU) holds, 
o 

Let x(t) be an arbitrary solution of (1) fulfilling an inequality 

(13) II x(0) ||2 + || x\0) ||2 < 5. 

We show that this solution does exist on R+ and that fulfils 

(14) l | x ( 0 l l 2 + l | X ^ )
) "

2 < e forf 6 * + . 

On the contrary suppose, that (14) does not holds. Then there exists t0 e (0, oo) 
such that 

l|X(0l|2+l1 IS"2 <C for'e-°''o), 
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and 

(15) l l ^ o ) l [ 2 + " ^ j " 2 = ^ 

Similarly as in the proof of Theorem 1 we obtain from (5) according to assump­
tions the following estimate 

(16) l i l { L + 2F0(II x \\t) £ 2C0 + 8 f A(s) [a(s) co(s) + v+(s)] x 
A(í) 0 

x[^ i |^ - + 2F0(||xyJd5. 

On applying of Gronwall inequality to (16) we get 

- ^ || x'(t) ||2 + 2F0(|| x(t) ||) g Pl\\ B~\0) || || x'(0) ||2 + 2F(0,x(0))], 

fe[0,*0 ] , 

from which there holds that 

jK(to)JlL * 
X(t0)

 < 2 

and simultaneously * 

2 F 0 ( | | x ( f 0 ) | | ) ^ 2 F 0 ^ I ) or \\x(t0)\\ < J-^-. 

From the last two inequalities then we have 

«*>«'+^Г< 
2 

6 

which is a contradiction with (15). This proves that the solution x(t) exists on R+ 

and (14) holds. Thus, the solution x = 0 of (1) is A-stable. 
Next we shall consider a delay differential equation 

(17) x"(t) + A(t) x\t) + B(t)Mt, a(x>9 h(t))) + /2(/, <T(X; A(0), * ( * ' ; h(t))) = 0, 

where A, B have the same meaning as above,/: R+xH-> H and —p- are continu­
ed 

ous functions, f2: R+ x/J x I/ -• j j fulfils local Carath6odory conditions and o* is 
an operator defined by 

a ( w ^ _ M ' - * ( < ) ) for r^h(r ) , <»;<>-{? for t < h(t), 

where h: R+ -* .R+ is a measurable function locally bounded on .R+. 

Theorem 3. Let F0: R+ -+ R+ be a continuous function and a, <# : .R+ -* iR+ fee 
measurable functions such that 
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00 00 

lim Fo(0 = oo, f A(0 [a(0 co(t) + v+(0] dt < oo, J h(t) X(t) <p(t) dt < oo. 
t->oo 0 0 

Further let the function F(t9 u) be defined by means offi(t9 u) as in the Theorem 1 
and let fulfil conditions (i), (ii) of the Theorem 1. 

Suppose that on R+xH there holds • 

(18) ll/ifrn)-/i(',fi)ll 5S«(OI|H-fi!l 

and on R+ xHxH 

(19) || f2(U u, v) || ^ a(0 Mm + V^O^odl u ||) + || v | | ] . 

Then any solution of (17) is defined on R+ and is bounded. 
Proof. If we put 

/ ( ' , " ) = / i ( ' , w ) 

and 
T(x) (t) = B(t) [f(t9 o(x\ h(t))) - /i(f, *)] + f2(t9 <x(x; h(t))9 a(x'; h(t))) 

then (17) is transformed into (1). 
According to assumptions (18) and (19) we obtain 

\\fx(t,°{x\h(t))) -A(t9x) || i <p(t) || o(x;h(t)) - x(t) || g <p(0>*(0 ||V ||f 
forxeC/oc(fl+,H), 

and 

|| Tx ||, f* A(0 9(0 *(0 II aJL + a(0[V^(0 + V^(0 ̂ odl * llr) + II *' IIJ ^ 
^ C(0 ly/Mt) + V^(0 Fodl * \\t) + || x' | | ,] , 

CO 

where g(t) = X(t)q>(t)h(t) + a(0 and $g(t)dt < oo. 
o 

Thus, all assumptions of Theorem 1 are fulfilled. Therefore any solution of (17) 
exists on R+ and is bounded. 

Theorem 4. Let F0 : [0, r] -• R+ (r > 0), be a continuous functiont a, <p : R+ -• R+ 
be measurable functions such that 

00 

*o(0 > 0 for 0 < t ̂  r, J A(0 [a(0 <w(0 + v+(0] dt < <*>, 
o 

jh(t)l(t)<p(t)dt<oo. 
o 

Let the function F(t9 u) have the same meaning as in Theorem 3 and let for t e R+ and 
|| u || < r fulfil conditions (i'), (ii') from Theorem 2. 

Suppose that on the set {(t9 u)91 e R+, || u \\ ^ r} (18) /wtay and on the set 
{(Uu9v)9teR+9\\u\\^r9\\v\\ S r} 
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|| f2(t, u, v) || ^ a(ř) [.VA(0-Fo(ll«ll) + II » II] 
holds. 

Then the solution x = 0 of (17) is k-stable. 
Proof can be carried out in the same way as the of Theorem 2 by using of 

Theorem 3. 
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