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Abstract. In this paper there are investigated an existence problem of bounded solutions and .
a stability of a trivial solution of non-linear differential equations of the 2nd order in Hilbert spaces.
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’

Let H be a Hilbert separable space with a norm || . || = (.;.)/? where (.;.) is inner
product. Let [H] denote the Banach algebra of bounded linear operators from H to H
with the operator norm | . |, which we refer to as the uniform operator topology.

Let L.(R., H) denote the space of locally Lebesgue integrable functions u:
R, — H with topology of convergence in the mean on every compact subinterval
of R, and let Cj,.(R, , H) mean the space of continuously differentiable functions u:
R, — H with the locally uniform convergence. Let T: C;,.(R,, H) = L,oc(R+ , H)
be a continuous operator of volierra type.

We shall consider a differential equation

) X'(0) + A(t) X' (0) + B() f(t, x(0) + T (1) = 0,
where A, B: R, — [H] are locally absolutely continuous (in the uniform operator
topology) and symetrical operators, f: R, xH - Hand — f are continuous furictions.

We assume further that for each € R, that B(¢f) is a umformly positive operator
(it guarantees the existence of an inverse operator B~'(7) and also that the least
eigenvalue of B(?) is positive —see [1] p. 50).

Let u(K) denote the eigenvalue of the operator K. Put M) = max p(B(t)), aof) =
= max u(B~'(f)) and w(r) = max p[(B~'(1)) — 2B~'() A(t)] Throughout the
paper we assume that A(¢) is a nondecreasing function on R; ...
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J. FUTAK
We define
xiq
F((t, xl, xz, ceoy x", ...) = I-fi(t’ xl, xz, ...,x,_l, s, xl+‘, .--) ds,
0

where f;, i = 1,2, ... are components of f(, x) and x = (x, X3, ..., X,, ...) € H.

[ ]
Assume that the series Z F(t, X1, X3, ... Xy, ...) is convergent and let
i=1 .

F(t, x) = Z Fi(i’ xl, x2, ...,x”, ...).
i=1

Next suppose everywhere that

0
‘;1%57'-=0 fork+i,k=1,2,..

Let [0, #*) be the interval of existence of a solution of (1). By solution of (1) we
understand any function x: [0, *) » H which is locally absolutely continuous
on [0, #*) together with its first derivative, it satisfies (1)-everywhere on [0, *) and
is maximally extended to the right.

Definition. (see [2] and [4]). Ler f(1,0) = 0, T(0) (/) = 0 and b: R, — (0, 06) be
some continuous function. The solution x = 0 of (1) is said to be b—stable if for any
¢ > 0 there exists 6 > 0 such that every solution x(f) of (1) for which

1x@ 11> + [| x(0) ||* < &
is defined on R, and
E10)E
X1 + 150

On boundedness of solutions and b — stability of a trivial solution of scalar second
order differential equations is dealt with in [4]. Boundedness of solutions and b—
stability of a trivial solution of nonlinear second order differential systems is investigat-
ed in [2]. In this paper the results from [2] and [4] are generalized.

Define for arbitrary function u: R, - H and te R,

<ée forteR,.

I fl; = max || u(s) |I.
0ss<t

Theorem 1. Let F,: R, — R, be a continuous function and o: R, = R, be
a measurable function such that

@ lim Fy(t) = o and Fl(t) [a(®) @(t) + v, ()] dt < oo,
0 .

t=* 0
where v, = max {, 0}.
Moreover let

@ F(t,8) 2 Fo(lull) for 1€ Ry, ue H,
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DIFFERENTIAL EQUATIONS IN HILBERT SPACES

6F(t u)

(i) ——=a®Fy(lul) forteR,,ueH,

(iii) || Tx I, S «(6) [AO + JAO Fo(Ix ) + | x" ]
for te R, ,xeCj(R,, H).

Then every solution of (1) exists on R, and is bounded.

Proof. Let x(¢f) be arbitrary solution of (1) with its interval ex1stence [0, t%).
Without loss of generality suppose that the function Fy(r) is nondecreasing.

If (1) is multiplied (from the left-hand side) by B~!(f) and the scalar function x’(¢)
and then integrated from 0 to ¢, t € [0, 7*), we obtain '

3) j(B Ix"s x)ds+j(B ‘Ax x)ds+j(f(s x),x)ds+j(B 1Tx;x")ds = 0.
As there holds
(B™'x"; x)-——(B ' %) ——([B ¥’

and
dF(t,x)  OF(t, x)

(f(t, x); x') =

dt ot -’
from (3) we hav;
t
() (B™'x";x") + 2F(t, x) = Co + [ (([B™'] — 2B '4)x’; x")ds +
(V]
t t
+ 2] _6_F_(ss,_x)_ds —2[(B™'Tx; x")ds,
(1]

where C, = (B~1(0) x'(0); x'(0)) + 2F(0, x(0)).

With regard to hypotheses (i), (ii) from (4) it follows
() (B3 5) + 2Pl x ) S Co +2 [a) Folll ) ds + W) Ix0) 1P ds +
+ 2§(B“Tx; x')ds, for t_e[O, t*).
From (5) with regard to (iii) we obtain estimates

(©) /1( ) Ix" B < Co +2I<x(3)1’o(|lxll.)ds + IV+(S) I 17 ds +

Ix"fs | 1 x"1s .
d’ 0’ "
+2jm(s)l(s)u>(s)[l+JF°(ll H)+m]J__) s; te[0, *)
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U 2Fy(ll x l) = Co + 2 fa(s) Fo(l| % lls)ds + IV+(S) "7 ds +

" lls

11, )
+2 j a(s) A(s) o(s) [1 +JF(x 1)+ NG} ] mds, tefO0, t*).
After addition of (6) and (7) we get

® 1(,) Ix" I + 2Fo(ll x 1)) < 2C, + 4 ;a(s)Fo(uxu,)de [va(s) I ¥ [2ds +
[E: u]uxu,d for te [0, 1.
+4f°‘(s)1(s)w(s)[1+~/Fo(ux||s)+ ol o i

According to the inequality 2(1 + a + b)b £ 1 + a* + 4b*>.and a(f) = () (1) w(?)
from (8) it follows

©) l!ic' I, 2F (I % Il) < C; + 8 § As) [(s) ox(s) + v4(s)] x
m A1) °
[" ;‘( § + 2F o] x u,)] ds,

where Cy = 2Cq + 2 [ A(s) a(s) w(s) ds.
0
By using of Gronwall inequality. ([3], p. 37) we have

ag L ')' +2F1x1) S Cy exp (8 [ AO [ 0(0) + v.(0]4) S C:,

te [0, t*).

With respect to (2) we have from (10) that t* = co and sup || x(¥) || < oo.
‘Thus the proof is complete. reR+

Remark. If v(f) < O for r€ R, , then the assertion of‘ Theorem 1 is true, just the
integral in (2) is the form ‘
o
J ) o(®) () dt < o0.
0, -

Example. Consider a differential equation on H = R = (— 0, + ), of the form
(1) X(1) + a() X' () + b S, x(B) + T() () =
where a,b: R, — R are locally absolutely continuous functlons, b(t) > 0 and non-
of(t, x)
ot

decreasmg on R,, f: Ry xR— R and —2"2 ~are contmuous functions and T:

Clo(R4, R) = Ly (R, R) is a continuous operator (see [4]) of volterra type.
Then

FG, x)—If(t 9ds, i) =b(1) and (1) (bw>' ) %E% '
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The integral in (2) is the form

) ’ a(t)
g [a(t) + b(t){( b(t)) 27(3};]& < .

Thus all assumptiohs of Theorem 1 for equation (1") be satisfied.
Ife.g.
b'(t)

a(t) 2 ~2b(1)

then v(1) £ 0 for teR, (see Remark).

Theorem 2. Let F,: [0,r] = R, , (r > 0) be a continuous function anda: R, — R,
be a measurable function such that

(11) Fy®)>0for 0<t<r and j?l(t) [a(®) (t) + v, ()] dt < 0.
0

Moreover let

@) F(t,u) 2 Fo(l u I) for teRy, [ull S,

(i) D) <atFollul),  for teRs, lul ST,

(i) I Tx 1l S o) [VAD FoT % 1) + 11 %' 1]
forteR,,xeCi.(R,, H), and || x ||, + "\/i% sr. S

Then the solution x = 0 of (1) is A-stable.
Proof. Without loss of generality suppose that Fy(?) is an increasing function.
Let ¢ > 0 be an arbitrary number. To ¢ take 0 < § < min {¢, A(0) ¢} such that

(12) BI1B~*(0) || 6 + 28 max {F(0, u), | u | £/} < min {—;—. 2F, (\/g)}

where B = 2exp (8 F).(t) [a(?) () + v.(1)] dt) holds.

Let x(7) be an argitraw solution of (1) fulfilling an inequality
(13) I x(0) 12 + 1| x(0) |1 < 6.
We show that this solution does exist on R, and that fulfils

N PO L%‘(_?)Ji <e  forteR,.

On the contrary suppose, that (14) does not holds. Then there exists #, € (0, o)
such that ‘

’ 2
I = 1* + —"—’:1—((:))—"— <e for te[0,1,),
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and

EXOTS
(s I x(t0) 17 + 55 =

Similarly as in the proof of Theorem 1 we obtain from (5) according to assump-
tions the following estimate

2 o
(16) I ;‘(t;" +2Fo(1% 1) S 2Co + 8 [ 1) [o(5) @) + v.(5)]
x[""'"f + 2F (1 x| )]ds
A(s) Ml

On applymg of Gronwall mequahty to (16) we get

}.(t) I x'@ 11> + 2Fo(l x(®) 1) < BLI B~'©) || || x'(0) |* + 2F(0,x(0))],
te[0, t,],
from which there holds that

I x'(t) 1> &
A(:(:,) <7

and simultaneously

| 3
2F (|| %(t0) n)sto(\/%) or  [x(to)ll < \/_;_.

From the last two inequalities then we have

]

2, I x'(2) |12
Il x(to) I + _A(_t)—

which-is a contradiction with (15). This proves that the solution x(¢) exists on R,
and (14) holds. Thus, the solution x = 0 of (1) is A-stable.
Next we shall consider a delay differential equation

(A7) X)) + AW X' @) + BO)fi(t, o(x; h©D)) + folt, o(x3 h(D), 6(x; h(D))) = O
.where A, B have the same meaning as above, f;: R, x H - H and —-f’— are continu-

ous functions, f,: R, x Hx H - H fulfils local Carathéodory condmons and o is
an operator defined by

o fu(t—h()  for t 2 k),
olu;t) = {0 for ¢ < h(t),

where h: R, = R, is a measurable fuﬁction locally bounded on R+;

Theorem 3. Let Fy: R, — R, be a continuous function and «,%€ : R, —» R, be
measurable functions such that
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DIFFERENTIAL EQUATIONS IN HILBERT SPACES

lim Fy(t) = oo, § 2(0) [o(®) () + v, ()] dt < oo, A § h(t) A1) p(t) dt < 0.
t— o0 (4] /]
Further let the function F(t,u) be defined by means of fi(t,u) as in the Theorem 1
and let fulfil conditions (i), (ii) of the Theorem 1.

Suppose that on R, x H there holds -

(13) IAtw) —fitD) | €@ u—7dal
andon R, x Hx H .
(19) I £2(t, u, 0) || < a()) [VA® + JAOFo(lu 1) + [0 11]-

Then any solution of (17) is defined on R, and is bounded.
Proof. If we put

St uw) = £t w)

and
T(x)(D =B [fl(f o(x; k(D) — f1(t, )] + f2(t, o(x; h(D)), o (x5 h(2)))

then (17) is transformed into (1).
According to assumptions (18) and (19) we obtain

I /1(t a(x; h(@)) — £t ) | = @(0) | o(x;3h(1) — x(D || < @) h(D) || X* ||,
' for x e Cj, (R4, H),
and

I Tx e £ A1) 0(®) h(®) | % Nl + 2@ [VA®) + VIO Foll x 1) + 1/ 1] S
< e VAW + JAD FoTx 1) + 1 %' 1],

-]
where o(t) = A(t) o(t) h(t) + «(t) and [o(t)dt < co0.
. 0
Thus, all assumptions of Theorem 1 are fulfilled. Therefore any solution of (')
exists on R, and is bounded.

Theorem 4. Let F, : [0,7] = R, (r > 0), be a continuous function;a, ¢ : R, = R
be measurable functions such that

Fo(t) >0 for 0<t=r, _F/I('t) [a(®) o(t) + v, ()] dt < o0,

}oh(t) A1) ¢(t) dt < oo.
V]

Let the function F(t,u) have the same meaning as in Theorem 3 and let for t € R, and
| ul| = rfulfil conditions (i), (ii') from Theorem 2.

Suppose that on the set{(t,u),te Ry, [lul = r} (18) holds and on the set
{uo)teR, Nul'Sr ol S7)
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I f2(t, u,0) || S a®) [JA@) Fo(llul) + 1o l]
holds.

Then the solution x = 0 of (17) is A-stable.

Proof can be carried out in the same way as the of Theorem 2 by using of
Theorem 3.
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