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CANONICAL FORMS OF ORDINARY LINEAR 
DIFFERENTIAL EQUATIONS 

Dedicated to Otakar Boruvka 

L. M. B E R K O V I C H 

(Received September 30, 1985) 

Abstract. A solution of two classical Halphen's problems of equivalence and classification of 
OLDE is given. Transformation theory of the n-th order OLDE is constructed on algebraic base 
using the method of factorization of differential operators. Invariants of OLDE are Obtained as consis
tent conditions of overdetermined system of nonlinear algebraic differential equations. The differential 
Euclidean algorithm and differential resultant are introduced and used. Representations for iterative 
equations are given by means of factorization of self-adjoints OLDE. The one-to-one correspondence 
of the canonical Halphen and Forsyth forms is found. There is pointed a connection between 
problems of equivalence and classification of OLDE and those of integrating linear and associated 
nonlinear equations. 

Key words. Ordinary linear differential equations, transformation, factorization, invariant, 
equivalence, classification, canonical form. 
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INTRODUCTION 

Acad. O. Boruvka has drawn attention of modern mathematicians to a classical 
problem of Kummer (1834) of reducing second order ordinary linear differential 
equations (OLDE) to a given form [9,10]. A natural generalization of the Kummer 
problem is two problems of Halphen (1884) of local equivalence and classification 
of the w-th order OLDE [16]. Putting the problems is associated with investigations 
of Laguerre [20] and Brioshi [12] on invariants of OLDE. Halphen studied only 
the cases n = 3 [16] and n = 4 [17] himself. Special role was assigned in his works 
to equations which are locally equivalent to the simplest differential equation z(n)(f) = 
= 0. Such equations are also called iterative (Husty [18]) and are self-adjoint and 
reducible (Berkovich [2]). Forsyth (1894) [13] constructed a canonical form different 
from the Halphen's ones. The classical stage in development of the transformation 
theory of OLDE has been reflected in Wilczynski's book [29]. 
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Defects of the stage are the following. A relationship between Halphen's and 
Forsyth's forms was not considered. There was much of artificial in techniques for 
finding invariants; the studies had local character. It was not completely taken into 
account importance of semi-invariants with Respect to dependent and independent 
variables; they were studied in parallel and regardless of developing the invariant 
theory. Notice that semi-invariants with respect to dependent variable transformation 
was constructed by Bohl [8] and with respect to independent one-by Peyovitch [25]. 

During the recent decades O. Boruvka has caused and deeply developed the global 
transformation theory of the second order OLDE. He applied algebraic and, parti
cularly, group-theoretic approach himself [11]. Geometric and 'algebraic methods 
were used in the global transformation theory of the w-th order OLDE by Neuman 
[22, 23]. Husty, employing iterative equations, has obtained constructive results 
on classification and invariants of OLDE. Canonical forms were used by Husty, 
Gregu§ [15], Seda [26] and others to study oscillatory properties of OLDE solu
tions. 

For transformations of higher order OLDE see (Berkovich [1], Seda [27], 
Suchomel [28]). 

1. THE KUMMER PROBLEM 

1.1. Statement of the problem. The equations 

(1.1) y" + 2al(x)y' + a2(x)y^09 

(1.2) z + 2bt(t)z + b2(t)z = 09 

where ax e Cx(i)> a2 e C(i) and bt e C1(j)9 b2 e C(j) are real-valued functions of x 
and t respectively, i andj are open (finite or not) intervals. It is to find the set of all 
transformations T = (/"(/), <p(f)), where 

f:j-+R, fєC2(J), Л0*-0, íєj, 
: j->Ä, <j9(j) = i, <ІPЄC20'), dęldtфO, Vtєj, 

so that solutions y(x) and z(t) of (1.1), (1.2) are related by the ratio 

(1.3) z(t)=f(t)y(cp(t)). 

Equations (1.1) and (1.2) are globally transformed into each other by the trans
formation T if (1.3) holds on the whole intervals i andf Otherwise, (1.1) and (1.2) 
are transformed into each other locally. 

For the purpose of the work a local transformability is sufficient. And instead 
of (71) we shall consider the inverse to that X = (v(x\ t(x)\ where 
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( . v:i->R, VEC2(0, v(x) ̂  0, x ei , 
K } t:i-+R, *(/)=J, teC3(i\ u(x) = dt/dx ± 0, x e / 

and >>(x) = v(x) z(j w(x) dx) is satisfied. The transformation X corresponds to the 
variable change 

(1.4) y = v(x) z, dt = u(x) dx; 

we shall call (X) (as well as (T)) Kummer-Liouville (KL) transformation and the 
functions v(x\ t(x) and u(x) — the multiplier, the transformer (parametrization) and 
kernel of the transformation (X) respectively. The global and local transformabilities 
have an equivalence relation. In addition, (1.1) is locally equivalent to any given 
equation (1.2), i.e., an oscillatory equation can be transformed, e.g., into a non-
oscillatory one, and inversely. For local transformability the coefficients of (1.2) 
are permitted to be complex-valued functions. 

1.2. Solving the problem. An effective solving of the local Kummer problem has 
been given in (Berkovich [4, 5]) on the base of factorization of (1.1) and (1.2): 

Ly = [D - v'/v - u'/u - r2(t) u] [D - v'/v - rt(t) u] y = 0, D = d/dx, 

Mz = [Dt - r2(t)] [Dt - rt(t)] z = 0, Dt = d/df, 

where r1 and r2 satisfy the Riccati equations 

rt + r\ + 2 6 ^ + b2 = 0, r2 - /•* - 2b j 2 + 2fix - b2 = 0. 

Theorem 1.1. The set of all the transformations (X), giving solution of the local 
Kummer problem, is described by formulae of the form 

v(x) = | f I - 1 ' 2 exp ( - J a, dx + f 6 t df), 

where f = ."(x) £y /he general solution of so called Kummer—Schwartz third order 
equation (KS-3) 

(1.5) {t, x} + B2(t) t'
2 = A2(x), 

3 
{t, x} = \t'"/t' - — (fit')2 is the Schwartz derivative, A2(x) = a2 - a\ - a't, 

^ ( 0 = ^ 2 - ^ 1 - 5 i . 
7%e general solution of (1.5) can fe expressed in implicit form W0(t) = 

= (Cx + C2w0(x))/(C3 + C4w0(x)), CtC^ - C2C3 ^ 0, where w0(t) = % is a solu
tion of the equation {T, i) = B2(t\ and w0(x) is a solution of {£, x} = -42(x), i.e. 
in the form 

jexp(-2f bldt)Z;2(t)dt CJ+ Cj\^-\\'*fy±tet 
C3 + C4 J exp ( - 2 J axdx) yt

 2 dx 

here yt(x) and zx(t) are some particular solutions of(\.\) and (1.2) respectively. 
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2. TWO PROBLEMS OF HALPHEN 

Thus, as one sees, e.g., from § 1, under sufficiently general assumptions every 
second order OLDE can be reduced to a given form by the KL transformation. 

However, for equations of order n ^ 3 

(2.1) /"> + £ Q aky <"-*>= 0, ak e C"\l) 

the result is not valid. 
In the following, instead of (2.1), we consider semi-canonical form 

(2.2) /B)+ t2QAk(x)/"-"> = 0, AkeC"~\i) 

to which it is easy to come substituting y = exp (—J a± dx) z and then replace z by y. 
Together with (2.2) we consider the equations 

(2.3) z<">(0 + t QB k( t ) z<"-*>(0 = 0, BkeCn-k(j), 

j is an open interval of t axis. 
On the set of equations (2.2) let us determine an equivalence relation with the 

transformation group G 

(2.4) G : (v(x)9 J u(x) dx)9 v(x) e Cn(i)9 u(x) e Cn(i)9 u ^ 0, v *- 0, V x e i. 

We need subgroups of G as well: 

Gt: (v(x)9id.); G2: (id., J u(x) dx). 

We call the equations (2.2) and (2.3) equivalent if a transformation g e G exists 
such that (2.2) -U (2.3). 

We call a mapping of coefficients of (2.2), constant on the equivalence classes 
of OLDE by (2.4), an invariant of (2.2). 

More concretely, such a rational differential function I(A9A'9...)9 where 
A = (0,,42,...), that 

I(A9 A'9...) = X(u) I(B9 &9...) (with t = J u(x) dx) 

is called an invariant of the equation (2.2) in respect of G. 
If X(u) = 1 then lis an absolute invariant, and if X(u) ^ const then /is a relative one. 
Similarly, notions of absolute and relative invariants are introduced for subgroups 

Gt and G2. For instance, the coefficients Ak are absolute invariants of (2.1) regarding 
the subgroup Gl9 i.e. Ak(a9 d9...) = Bk(b9 5,...). 

The equations of order n = 2 have no invariants but only semiinvariants. The 
equations of order w = 3 have only one invariant (relative). 

For equations of order n = 4, moreover, it is to introduce notions of pseudo-
invariants and conditional invariants. 

* 
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We call such a rational differential function J(A9 A'9...) that 

J(A9 A\ ...) = X(u9 u') I0(A9 A'9 ...) + \i(u) J(B9 69...) 

a pseudoinvariant of equation (2.2). 

A limitation of J(A9 A'9 ...), fulfilled for 10(A9 A'9 ...) = 0, i.e. 

It(A9 A\ ...) = J(A9 A'9 ...) | / 0 . 0 , h(A9 A'9 ...) = fi(u) h(B9 69 ...) 

is called a conditional invariant of (2.2). 
There are two problems associated with Halphen's name. 
Problem 1. To find the necessary and sufficient conditions of equivalence of 

equations (2.2) and (2.3). 

Problem 2. To give a classification of the equations of the form (2.2). 

3. FACTORIZATION AND EQUIVALENCE CRITERION 

We use the method of factorization of differential operators to find conditions 
of equivalence of equations (2.2) and (2.3) under the KL transformation [1]. One 
distinguishes two basic forms of factorization: complex-valued and real-valued. 

Proposition 3.1. (Mammana [21]). Let the OLDE 

(3.1) L = D" + tj^AkD
n-\ akeC-k(i) 

be given corresponding to (2.2). It is always possible and moreover by means of infinite 
number of ways9 to present (3.1) as a factorization with first order operators 

(3.2) L = n ( D - a t ) = ( D - a„) ... (D - a2) (D - ax), 
* = n 

where ak(x) are9 perhaps complex-valued, functions of x. 

Proposition 3.2. (Mammana [21]). The necessary and sufficient condition for 
operator (3.1) is to be decomposable into a product of real first order factors, is that 
every integral of equation (2.1) vanishes in the interval i not more that n — 1 times. 

Similarly to (3.1), the operator M corresponding to (2.2) permits the factorization 

M - ft (Dt - A) = (Dt - pn)... (Dt - p2) (Dt - pt)9 
fc=-n 

where pk(t) are complex-or real-valued functions, depending on the form of the 
factorization. 

The following statement presents a criterion of equivalence of (2.1) and (2.2). 

Theorem 3.1 [6]. For equivalence of (2.1) and (2.2) it is necessary and sufficient 
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that a factorization 

L = n [D - v'/v - (fc - 1) ti'/u - pk(t(x)) II] 

isfulfilled. 

Proposition 3.3 (A differential analogue of Viete's formulas). 
There are the following relations between the "roots" ctk of factorization (3.2) and 

the coefficients Ak: 
(3.3) 0 = -Z<xk9 k = T~n~9 

n % .. » - i 

( - ) 
Л2 = "" af(x) a/x) - "" (n - fc) ďk 

iфj * = 1 

(other relations are more cumbersome). 
Note that (3.3) coincides with the corresponding relation for algebraic polynomials. 

For all ak = const Viete's differential formulae coincide with the algebraic ones. 

Proposition 3.4. The multiplier v(x) and the kernel u(x) of the transformation (1.4) 
are coupled with equation 

v'/v + (n - l)/2u'/u =- 0 
and finite relations as well: 

(3.4) v(x) =- | u(x) I-*"-1)/2, u(x) = tr2'<"-->. 

Proposition 3.5. In order to reduce (2.2) to (2.3) by means of transformation of 
type (1.4), ft is necessary and sufficient for (1.4) to have the form 

(3.5) (w-<n-1)/2, J«(x)dx), 

where t(x) = J«(x) dx satisfies the KS-3 

h-> + TrTT">»'?-TlT-*>-

4. ASSOCIATED NONLINEAR EQUATIONS 
AND EQUIVALENCE CONDITIONS 

Applying transformation (3.5) we obtain the transformed form of equation (2.2) r 

(4.1) -<">(.) + (;)(-4a«-* " J L f L « " « " 3 + ^-i t t 'V*)-<'->>(.) + Q x 

xF.43tt-3 - 3A2u'u"* - H±LU"U-* + 3 ( " 2

+ 1 } u'u'u'9 - y ( n + l)«'3u-6]>c 

xz<«"3>(0 + ( j )[^4«" 4 " 6^3«'«-5 + 3 ( " \ U ) i l-u'V 6 -

30 



CANONICAL FORMS OF OLDE 

/ _̂ _ , -5., 3(n + l)(n + 59) ,4 -8 (n + l)(n + 59) ,2 n -7 . - (n + 5)_42M u
 3 + — 77 - M 4 « 8 - - ~ Lu'*unu + 

16 4 

+ (n + l)fr + 23) ̂ 2 ^ 6 + ̂  + ̂ ^ ^^t^^u^'^ + -

... + u-c+D/^ra-c-D/^w + n| 1 Q_4,(u-(l,-1)/2)(B-k)lZS3°-

Note that by the connection (3.4) equation (4.1) can have differential expression 
of v as its coefficients. 

In virtue of (4.1) reduction of (2.2) to (2.3) leads to associated nonlinear equations. 

Lemma 4*1. For equivalence of (2.2) to (2.3) it is necessary and sufficient that the 
following overdetermined system of nonlinear equations in t{x); 

(4.2') {t, x} + - J - - B2t'
2 = — L - A2, 

n + lj n + l 

(4.2") tlv/t' - 6t"t'"lt'2 + 6(t"lt')3 + - J _ L ___.•/,' + —L-B3t'
3 - -4rrA3' 

n + l n + l n + l 

(4.2'") t'/t' - mivt"it'2 - 5 ( " t 2 3 ) o"/o2 + s ( " _"59) t'2r/«" -
18 o 

_ __ + » W - i£±ii> „,(,•/,',= + *.%g$<-r+ 
• 20 + 10 10 

n + 1 л ' 3(n + l) 4 W 3(n + l) 
n-Э 

' )" - = 0 
r _»-n(») » /„\ r _»-n(»-») 

(4.2-') [(O — J +_S^J-l_l(ť)~J -B„(ť) 

í$ consistent. 
Lemma 4.2. For equivalence of (2.2) and (2.3) // is necessary and sufficient that the 

following overdetermined system of nonlinear equations in v(x) 

(4.3') f-*Z^j*iv + 3*^jilO-X!^B2v
!3r-0l ' 

n — 1 n + l n + l 
„, 3(n - 3) , „, 2(n - 2)(n - 3) ,3. 2 12 . , , 2(n - 1) . v- - -\—~Lv'v"lv + M W + -_____»' + . / A3v -n — 1 ( - _ _ ) - n + l n + l 

(4.3") _ 2(n - 1) 
n + l 

n - 7 
Язyn-i = 0 , 

(4.3)'" t," - 4^±v'v'"/v - 2^-^v"2lv + | ( 4 9 n - 1 2 S ) ( n - 4 ) t > , _ _ _ 
n - 1 ' 9 ( n - l ) 9 ( n - 1 ) 2 ' 

_ ( 4 9 n - 1 2 5 ) ( n - 2 ) ( n - 4 ) ,4 3 _ 10(n-4)(n + 7) a 

9 ( n - l ) 3 ' 3 ( n - l ) ( n + l) ЛгV IV + 
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10 n 4- 5 A „ 20 S(n - 1) •— 
+ -TT+TA" + 7 T T ^ ' + 3&Tr7B^B"1 = 0 ' 

(4.3*-1) t><"> + t2 ( j ) 4 * - B„t^T = 0 

is consistent. 
Equation (4.3"-1), generalizing the Ermakov equation, was studied in Berko-

vich [3]. 

Theorem 4.1. (2.2) is equivalent to (2.3) (the systems (4.2) and (4.3) are compatible), 
if and only ifn — 2 relations between invariants 

(4.4) I0(A) = u3I0(B), 

Jntl(A) = 6-^Io(A) + u*Jnil(B), 

Jn>2(A) = -3o(^pj210(A) + 10-£-/.. ,.'(.4) + M5JB(2(B), 

/ < \« -3 n-4 / U ' Y " 3 " * 

J„,„-3(A) = «o (—J Io(A) +£«_ ^—J J..-0-) + 
+M"/,,(-_3(i9)( depending onn—3 parameters a0, at,..., an_4, 

(4.5) /0(.4) = .43-yi42, 

^(^ = ̂ - 2 ^ + 4 ^ - ^ ^ ^ , 

/,2(A) = A5 - \A'4 + *-A; - 4-4,- - ^±f.AlI0(A) 
are fulfilled. 

If /0(_4) = 0 then systems (4.2) and (4.3) can be shortened since in the case equa
tions (4.2") and (4.3") are consequences of (4.2') and (4.3') respectively and, hence, 
they can be omitted. 

If I0(A) = 0 then the pseudoinvariant Jn,\(A) becomes the conditional invariant 
h>i(A) = Jn,i l/o*-o• 

If I0(A) = Intl(A) = 0 then equations (4.2'") and (4.3"') can be omitted from 
systems (4.2) and (4.3) as well. If I0(A) = h.M) = 0 then pseudoinvariant Jn,2(A) 
becomes the conditional invariant Jnt2 \i0*in.i=o = hti»

 a°d we have 
9 „ 3 5n + 7 A2 

Inti(A) = A.- -JA2 - y - ^ T T A>> 

^ A ' i ^ A"' 
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5. R E D U C E D AND CANONICAL FORMS OF OLDE 

In this section Halphen's (H) and Forsyth's (F) canonical forms are a>mtructed. 
They belong to the reduced form (R) which occurred before. Schematically it can 
be represented as follows 

(H) 
(R)-

(F) 

5.1. The reduced form. The transformed form (4.1) can be presented as follows: 

(R) 

where 

zM(t) + Í(^rk^-%) = 0, 

- _ . „ _ _ _ ! f J " 2 П + * .."„-З , П + * л.'2..-t 
Г2 = Г == A2U т w u • 1 И м 9 

3 
t3=y! + W « " . 

r4 = y ? + f("+^r2 - 6u-5u'I0(A) + /...(A) iT4. 

Theorem 5.1. (classificational). The set of equations (2.2) can be divided into n - 1 
classes according to the table I. 

Table 1 

Class Invariantt Transformation 
(«<"-.^, f и dx) 

Halpheд's caдoдical 
foгms 

Yo / o # 0 w0 *• v /o Я 0 is the pгincipal one, 
it depeдds oд n — 2 
paгameteгs 

ï» /o « Л.i -* ... * 
** J»,k_l-0» 

л._«л._*o 

Æ+з/т— Я* is a degeneгate one, 
i tdependsonn-k-2 
parameters 

_=• l , я - 3 

/o « Л.i -* ... * 
** J»,k_l-0» 

л._«л._*o 

Æ+з/т— Я* is a degeneгate one, 
i tdependsonn-k-2 
parameters 

K.-í 
• 

/o « Л.i — ... m 

« Л . » - з » 0 
lu* 3 ' / ^ \ a _ _ 
2« 4 \ T / 

- ! , * 
и + 1 

Я„__ is the simplest 

<iegeдeiъteoдо:.ť^O» 
* 0 
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The coefficients of the canonical forms are absolute invariants (Halphen's). 

5.2. Halphen's canonical forms. For those we have 

(H0) -<"><.) + tz ( j ) hk0z
("-kXt) = 0, 

where 

h - r \ -h h - 3 K 4 . r h _ 9 •; 3(5« + 7) 2 

" 2 o — rlii-Mo ~" no> "30 — ~2~"o •+• -*> "40 — ~5~"o "•—sTfTX'Tr "" 

- 6 u 0 w 0
2 + / W | 1 u 0

4 , ... 

(Hi) ^ ( 0 + tQft f c iZ ( n- f c>(0 = 0, 
where 

i 3 ,• , 9 v 3(5n + 7) , 2 r _4 

ft2i = ^l«-M1 = hi, hsi^Y"19 41 =T x + " 1 O T T 1 T , lWl ' " 

(H2) z^(0 + Z2Qftk2z<"-*>(0 = 0, 

where 

L , L „ 3 I* / 9 V 3 ( 5 n + 7 ) 1.2 , 

«22 = n«-tt2 = "2> "32 = Y 2* 42 = 1" 2 + 5(n + 1) 2 + '" 

Theorem 5.2. Equations (2.2) and (2.3) belong to the same class (not being equivalent) 
if and only if 

(Y0) 10(A) = w3/0(/?), I0 * 0, 

(Yi) . /..i(-4) = A ( i W , / 0 = 0, • /Bi l * 0, 

(Y2) /„,2(v4) = t/5/„,2(iO, /0 = lnA = 0, /B>2 * 0, 

(Y„_3) /w,n.3(-4) = ifIntn-z{B\ / 0 = /„,i = . - = I„,„-4 = 0, /„,rt_3 # 0, 

(Y.-a) /o = /. . i = .. = /»,*-3 = 0. 

In case of belonging to classes YB-3 and Y„_2 equations (2.2) and (2.3) are 
equivalent. 

5.3. Forsyth's canonical forms. 

Theorem 5.3. (classificational). The set of equations (2.2) can be divided into n — 1 
classes according to, the table 2: 
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Table 2 

Class Invariants Tгansformation 
(„-<»-->/-, Јиd*) 

Forsytlťs canonical 
forms 

Y0 Io7-0 \ď 3 /u'\2 

Tu 4~ \u~) ~~ 
3 

A2 n + \ 

Fo is the principal one, 
it depends on n — 2 
parameters 

n IO = Jя, 1 = ••• = 

= J»,*-i = o 
I»,» = J»,» Ф o 

\ď 3 /u'\2 

Tu 4~ \u~) ~~ 
3 

A2 n + \ F* is a degenerate one, 
it depends onn — k — 2 
parameters 

1 k= l . i i - З 

IO = Jя, 1 = ••• = 

= J»,*-i = o 
I»,» = J»,» Ф o 

\ď 3 /u'\2 

Tu 4~ \u~) ~~ 
3 

A2 n + \ F* is a degenerate one, 
it depends onn — k — 2 
parameters 

YП-2 Io = J», 1 = • • • = 

= J».n-3 = 0 

\ď 3 /u'\2 

Tu 4~ \u~) ~~ 
3 

A2 n + \ 

F»-2 is the simplest 
degenerate one: F„_ 2 = 
= Hn-2^ 

Here we have: 

(F0) 

where 

-w(0 + tз(j)лo-(-å)(0 = o, 

f30 = I0(A) ur\ ho = -6u-5w70(A) + I4flw-4,..., 

(Fi) z ( n > W + J 4 ( f c ) / * l 2 ( ' , " / C ) W = ()' 
wheref41 = I4>1t/-

4,.... 
Thus, the one—to —one correspondence is established between the main and 

degenerate forms of Halphen and Forsyth. 

6. ITERATIVE EQUATIONS 

6.1. Iterative (formally antiself-adjoint and reducible) operator of the odd order 
2n + 1 can be presented as the factorization 

r A / ^ n + l - f c ^ i (^ n + l»-fc \ L=Y\[D + a DT\[D —a . 

Theorem 6.1. The operator L can be expressed in the form of(2n + 1)—multiple 
iteration of the first order operator: 

exp 1-2-— j a d x j L == expI— j adx j (D - a) 
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where a satisfies the Riccati equation 

a ' + ^ - a 2 + - ^ T A 2 = 0, 
2n n + 1 

moreover, the corresponding second order equation 

and the equation Ly = 0 Are reduced to the simplest ones z = 0 and z<2*+1)(0 = 0 
by means of the transformations 

( e x P (-y~ J a dx ), J exp ( J a dx ) dx ), 

(exp(Jadx), Jexp( Jadx)dx), 

respectively. 
6.2. Iterative (formally self-adjoint and reducible) operator of the even order 2n 

can be presented as the factorization 

Theorem 6.2. The operator L can be expressed in the form of 2n-multiple iteration 

of the first order operator 

e x p L ^ JadxJL= e x p L _ t Jadxj(D-a) . 

where a satisfies the Riccati equation 

I 2 3(2n - 1) 
2n - 1 a + 2n + 1 a' + - . - ^ a 2 + T . :'AЛ = 0 

moreover, the corresponding second order equation 

and the equation Ly = 0 are reduced to the simplest ones z = 0 and z+lnKt) = 0 by 
/niaaf of /A* transformations 

{?x*(jjhrladx)\ >xp(-2^Ja d*)d*)« 

(exp ( | a dx), J exp f - 2 n _ t J a dx j dx J 

respectively. 
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7. THE EUCLIDEAN D I F F E R E N T I A L ALGORITHM 
AND ITS APPLICATION TO F I N D I N G INVARIANT 70 

The relative invariant I0 can be also obtained on the basis of using and developing 
the known analogy between algebraic polynomials and OLDO (see Berkovich [4]). 

7.1. Differential operator ring. Let us consider the set K[D] of operators of the 
form L = Yak^~k °f a n arbitrary order n with the coefficients from a differential 
field K. The addition operation is introduced in K[D] in the natural way, and the 
multiplication operation is characterized by the following Leibniz formula 

D ' Ò - . Ш Ь " " vDk 

It is easy to find out that K[£>]'is an associative ring but it is not a commutative 
one. It contains the unity and has no zero divisors. 

Propositon 7.1. The ring K\D\ is Euclidean. 
It means existence of the Euclidean algorithm of division with remainder (let us 

consider the right-definite case) in K[D], i.e., for any two operators L and My 

ord L ;> ord M, the equality L = QM + 5, where Q is a right quotient and S is 
a right remainder, is valid. Then the division with remainder is single-valued. 

7.2. Factorization of OLDO in the principal differential field. 

Definition 7.1. (Frobenius [14].) We call the equation Ly = 0 undecomposable 
in K if it has not a common integral with any other OLDE of less order with coeffi
cients from K. 

Otherwise, the equation Ly = 0 is called decomposable in K. 

Proposition 7.2. The necessary and sufficient condition for decomposability of 
Ly = 0 is the factorization L = QP, (ordL = ord Q + ordP). 

Proposition 7.3. The system of two equations 

(7.1) Ly = 0, My = 0 

is nontrivially consistent, if and only if such an operator N (ord N ^ 1) exists which 
is the right greatest common divisor (RGCD) of the operators L and M, i.e., 

(7.2) N = RGCD(L, M), (L = QtN, M = Q2N). 

7.3. The right differential remainder theorem. 

Proposition 7.4. The remainder of division on the right of the n-th order operdtor Ln 

on the first order operator D-OL has the form S = exp (—J a dx)Ln exp (J a dx). 
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Consequence 7.1. If the equation Lny = 0 has a solution y = y(x) then the factoriza
tion 

Ln = Ln-t(D - y'ly)<>Ln = 0(mod (D - y'ly)) holds. 

7.4. Generalization of the notion of undecomposabilisy of OLDE. 

In the next we need the following, practically forgotten, generalization of the 
notion of undecomposability of OLDE going back to Koenigsberger [19]. 

Definition 7.2. The equation Ly = 0 is called undecomposable in K if either 
a) it is not decomposable according to the definition 7.1, or 
b) it has not a common solution with any nonlinear algebraic differential equation 

of less order having coefficients from K. 
Otherwise, the equation Ly = 0 is called decomposable in K in the generalized 

*sense. 

Remark 7.1. The main reason for the idea of undecomposability in the sense 
of the definition 7.2 was not applied, is evidently that the theory of OLDO divisibility 
has not been expanded on nonlinear algebraic differential equations. To make such 
an expansion possible, it is necessary associate the nonlinear equation 

iak(x,y,y',...,/k)) = 0 
. *=o 

with the OLDO 

L=iak(x,y,y',...,y™)Dn-k 

*=o 

and develop a theory analogous to that for OLDE. 

7.5. Finding 70. Let us find I0 combining the differential Euclidean algorithm with 
the differential remainder theorem (we omit the adjective "right" for brevity): we 
shall find I0 as a condition of compatibility of the overdetermined system (4.3') 
and (4.3"). To simplify calculations, but without less generality, let us consider the 
system 

,n<%\ » n-2 ,2. . -j n - 1 3(n - 1) 2 r. 
(7.2) v - - - t ; v + 3 A2v- B2u v = 0, 

n — l n + 1 tt + l 
(7.3) „'" - 3 (" - 3 ) v'v"lv + . - < " - - ) ( " - 3 ) v,3v-2 + U + 

* - 1 (« - 1) n + l 

2(«-l) A 2(«-l) „ j 
+ T r r ^ - - 7 T T - B A ^ 

the compatibility condition of which is at the same time the necessary condition 
for equivalence of the equations (2.2) and (2.3) under the transformations of type 
(2.4), (3.4). 
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We associate the equations (7.2) and (7.3) with the OLDO 

-.2 B — 2 , _._ „ n — 1 . _ n — 1 _, j 
L2 = D2 -vv D + 3 r - ^ 2 - 3 r-*2« > 

2 n - 1 n + 1 2 n + 1 2 ' 
_,3 3 ( n - 3 ) , _. , 2 ( n - 2 ) ( n - 3 ) ,2 _2 12 . _ 

L3 = D ~~ir^rvv D + („.!)- ^ +
 I T T T ^ D + 

+ ______i)(A3-B3„3). 
n + 1 

Theorem 7.1. (2.2) a«d (2.3) are equivalent, if (and only if for n = 3) the following 
equivalent conditions are fulfilled: 

a) N = RGCD(L, M) = D - t//v; 
b) /he right remainder in the Euclidean algorithm applied to L and M vanishes: 

S = 0 = A3 - y Ai - (_-3 - y V)u3. 

Now the formula for I0 follows from Th. 7.1 as a consequence. 

8. D I F F E R E N T I A L RESULTANT AND ITS APPLICATION 
TO F I N D I N G I0 

The compatibility condition of the system (7.1) can be obtained using the differential 
resultant (Ore [24], Berkovich and Tzirulik [7]) as well, which can be given in the 
form of a determinant, similarly to Sylvester's construction of resultant of two 
algebraic polynomials. 

Let L and M be two OLDO of the orders n and m respectively. We shall "multiply" 
the operator L on the left by 7, D, D2,..., D"1-1, and the operator M-by /, D, D2, ..., 
D"- 1. Obviously, if the system (7.1) is compatible then the generated over-
determined system 

(8.1) 
Ly = 0, DLy = "_T aUkD

ky = 0, .... Dm~lLy = _T aM__,.D*y = 0, 
fc=0 fc=0 
m+1 m + и - 1 

V » - l , My = 0, DMy = £ bltkD
ky = 0, ..., Dn~lMy = £ bй_ЬfcD^ = 0, 

fc=0 fc=0 

where 
min (r,fc) / \ 

(8.2) __,_. X 4,-7'. fc = 0,n + r 
s-=max(0,fc-») \ s / 

and b5k is calculated using the similar formula, is compatible as well 

(L = £„_£>*, M=__M)*) . 
*=o „»o 
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Proposition 8.1. The homogeneous system is compatible if and only if the rank of the 
right resultant matrice R(a, b) formed from the coefficients of(8A) is less than its order 

(8.3) 

where 

rank R < n + m, 

(8,4) 

ö m - l , n + m-
0 

1 ö m - l , и + m-2 
öm-2,и + m-2 

0 0 

fyi-l,и + m-l ^л-l,и + m-2 

0 fcл_lfИ + m _ 2 

«и ^n-í 

"m-1,0 

^m-2,0 

"и-1,0 

Ьn-2,0 

0 0 bm bt m - 1 Ьo 

= Ä. 

Inequality (8.3) is easy to obtain by straight replacing the system (8.1) by the 
corresponding system of linear algebraic equations in yk = y(k\k =-=0,1,.,.,/i-f-m-
— 1. Inequality (8.3) is a consequence of the Kroneker—Kapelli differential theorem 
as well. 

\ 
Definition 8.1. We call det R, where R is constructed according to (8.4), (8.2), 

the right differential resultant (R Res) of the operators L and M. 

Proposition 8.2. The system (7.1) is compatible if and only if R Res (L, M) = 0 
(an # 0, bm * 0). 

Theorem 8.1. (2.2) and (2.3) belong to the same class Y0 (the system (7.2), (7.3) 
is consistent) if and only if (4.4), (4.5) hold. 

CONCLUSIONS 

The obtained results display fruitfulness of the developed approach using factoriza
tion and transformations of differential equations and structure and properties 
of the associated ones as well. It is a good basis for general theory of OLDE having 
constructive character. For instance, it gives unified and regular techniques to solve 
in a natural way problems of integrability and finding exact solutions of differential 
equations. 

Acknowledgements. The author wishes to thank Dr. F. Neuman for a discussion 
and M. L. Nechaewsky CSc. for discussion and a help when making up the 
manuscript. 
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