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Abstract. A solution of two classical Halphen’s problems of equivalence and classification of
OLDE is given. Transformation theory of the n-th order OLDE is constructed on algebraic base
using the method of factorization of differential operators. Invariants of OLDE are obtained as consis-
tent conditions of overdetermined system of nonlinear algebraic differential equations. The differential
Euclidean algorithm and differential resultant are introduced and used. Representations for iterative
equations are given by means of factorization of self-adjoints OLDE. The one-to-one correspondence
of the canonical Halphen and Forsyth forms is found. There is pointed a connection between
problems of equivalence and classification of OLDE and those of integrating linear and associated
nonlinear equations.
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INTRODUCTION

Acad. O. Boruvka has drawn attention of modern mathematicians to a classical
problem of Kummer (1834) of reducing second order ordinary linear differential
equations (OLDE) to a given form [9, 10]. A natural generalization of the Kummer
problem is two problems of Halphen (1884) of local equivalence and classification
of the n-th order OLDE [16]. Putting the problems is associated with investigations
of Laguerre [20] and Brioshi [12] on invariants of OLDE. Halphen studied only
the cases n = 3 [16] and n = 4 [17] himself. Special role was assigned in his works
to equations which arelocally equivalent to the simplest differential equation 2(¢) =
= 0. Such equations are also called iterative (Husty [18]) and are self-adjoint and
reducible (Berkovich [2]). Forsyth (1894) [13] constructed a canonical form different
from the Halphen’s ones. The classical stage in development of the transformation
theory of OLDE has been reflected in Wilczynski’s book [29].
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L. M. BERKOVICH

Defects of the stage are the following. A relationéhip “between Halphen’s and
Forsyth’s forms was not considered. There was much of artificial in techniques for
finding invariants; the studies had local character. It was not completely taken into
account importance of semi-invariants with Yespect to dependent and independent
variables; they were studied in parallel and regardless of developing the invariant
theory. Notice that semi-invariants with respect to dependent variable transformation
was constructed by Bohl [8] and with respect to independent one — by Peyovitch [25].

During the recent decades O. Boriivka has caused and deeply developed the global
transformation theory of the second order OLDE. He applied algebraic and, parti-
cularly, group-theoretic approach himself [11]. Geometric and -algebraic methods
were used in the global transformation theory of the n-th order OLDE by Neuman
[22, 23]. Husty, employing iterative equations, has obtained constructive results
on classification and invariants of OLDE. Canonical forms were used by Husty,
Gregus [15], Seda [26] and others to study osc111atory properties of OLDE solu-
tions.

For transformatigns of higher order OLDE see (Berkovich [1] Seda [27],
Suchomel [28]).

1. THE KUMMER PROBLEM

1.1. Statement of the problem. The equations

(l;_l) Y+ 2a,(x) Y + ax(x)y =0,
(1.2) £42b()z + b()z =0,

where a, € C'(i), a, € C(i) and b, € C'(j), b, € C(j) are real-valued functions of x
and ¢ respectively, i/ and j are open (finite or not) intervals. It is to find the set of all
transformations T = (f(f), ¢(f)), where

f:j=R, feC%j), f(t)v #0, tej,

™ o:j=R, o()=1i, @eC¥j), de/dt#0, Vtej,

so that solutions y(J‘c) and z(f) of (1.1), (1.2) are related by the ratio
(1.3) , z(6) = f(1) y(p(1)).

Equations (1.1) and (1.2) are globally transformed into each other by the trans-
formation T if (1.3) holds on the whole intervals i and j. Otherwise, (1. 1) and (1.2)
are transformed into each other locally.

For the purpose of the work a local transformability is sufficient. And instead
of (T) we shall consider the inverse to that X = (v(x), #(x)), where
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v:i->R, veC%(i), ov(x)#0, x€i,

&) t:i— R, HOENA teC¥i), u(x)=dtfdx#0, xei

and y(x) = v(x) z([ u(x) dx) is satisfied. The transformation X corresponds to the
variable change

(1.9 y=o0v(x)z, dt=u(x)dx;

we shall call (X) (as well as (7)) Kummer —Liouville (KL) transformation and the
functions v(x), #(x) and u(x)— the multiplier, the transformer (parametrization) and
kernel of the transformation (X) respectively. The global and local transformabilities
have an equivalence relation. In addition, (1.1) is locally equivalent to any given
equation (1.2), i.e., an oscillatory equation can be transformed, e. g., into a non-
oscillatory one, and inversely. For local transformability the coefficients of (1.2)
are permitted to be complex-valued functions.

1.2. Solving the problem. An effective solving of the local Kummer problem has
been given in (Berkovich [4, 5]) on the base of factorization of (1.1) and (1.2):

Ly=[D-vlv—dlu—ru][D—-vlv—-r@®uly=0, D=ddx, "
Mz =[D, — ry(0][D, — ry(H]z=0, D, =d/dt,
where r, and r, satisfy the Riccati equations _-
Py + 13+ 2byry + b, =0,  Fy —r) —2byr, + 25, - b2‘= 0.

Theorem 1.1. The set of all the transformations (X), giving solution of the local
Kummer problem, is described by formulae of the form

v(x) = |1 |- exp (- [ a,; dx + [ b, di),

where t = 1(x) is the general solution of so called Kummer—Schwartz third order
equation (KS-3)
(1.5) {t, x} + B,(1) 1'* = A,(x),
{t, x} = 31"t - (t”/t )? is the Schwartz derivative, A,(x) = a, — aj — aj,
By(t) = b, - b1 - bl' |

‘The general solution of (1.5) can be expressed in implicit form W(f) =
= (Cy + Cowo(x)/(C3 + Cywo(x)), C,Cy — C,C;3 # 0, where wy(f) = t is a solu-

tion of the equation {t, t} = B,(f), and wy(x) is a solution of {£, x} = A,(x), fe.
in the form

Ci+ C, j'exp (=2 [ a,dx) y;?dx
Cs+ C,fexp(=2[a,dx)y;dx

jexp( —2 [ bydt) z7¥(t) dt

here y,(x) and z,(t) are some particular solutions of (1.1) and (1.2) respectively.
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2. TWO PROBLEMS OF HALPHEN

Thus, as one sees, e.g., from § 1, under sufficiently general assumptions every
second order OLDE can be reduced to a given form by the KL transformation.
However, for equations of order n = 3

@.1n y™ + 2 ( )a,y ==h_ 0, a, € C"(i)

the result is not valid.
In the following, instead of (2.1), we consider semi-canonical form

2.2) ¥y 4+ kzz (Z) A(x)y" 0 =0, A e CK3)

to which it is easy to come substituting y = exp (— | a, dx) z and then replace z by y.
Together with (2.2) we consider the equations

23 () + Z ( )Bk(t)Z""')(t) = BeC"H(i),

J is an open interval of ¢ axis.
On the set of equations (2.2) let us determine an equivalence relation with the
transformation group G

24 G:@x),Ju(x)dx), v(x)eC'(), ux)eC'@), u#0, v#0, Vxei

We need subgroups of G as well:

Gy: (v(x),id);  Gp: (id., J u(x) dx).

We call the equations (2.2) and (2.3) equivalent if a transformation g € G exists
such that (2.2) > (2.3).

We call a mapping of coefficients of (2.2), constant on the equivalence classes
of OLDE by (2.4), an invariant of (2.2).

More concretely, such a rational differential function I(4, 4,...), where
A=(0,A4,,..), that

1A, 4,..)=2wIB,B,..) (with t = [u(x)dx)

is called an invariant of the equation (2.2) in respect of G.

If A(u) = 1then Iis an absolute invariant, and if A(u) # const then Iis a relative one.

Similarly, notions of absolute and relative invariants are introduced for subgroups
G, and G,. For instance, the coefficients A4, are absolute invariants of (2.1) regarding
the subgroup G,, i.e. A,(a, d,...) = B\(b, b, ...).

The equations of order n = 2 have no invariants but only semiinvariants. The
equations of order » = 3 have only one invariant (relative).

For equations of order n = 4, moreover, it is to introduce notions of pseudo-
invariants and conditional invariants.

.
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We call such a rational differential function J(4, 4', ...) that
J(A,4,..) = Au,u) 14, 4, ...) + pw) J(B, B, ..)

a pseudoinvariant of equation (2.2).
A limitation of J(4, 4’ ...), fulfilled for I,(4, 4’,...) = 0, i.e.

L4, 4,..) = J A, Ay . ) peor  Li(d, 4, ..) = p(u) I,(B, B, ...)

is called a conditional invariant of (2.2).
There are two problems associated with Halphen’s name.

Problem 1. To find the necessary and sufficient conditions of equivalence of
equations (2.2) and (2.3). '

Problem 2. To give a classification of the equations of the form (2.2).

3. FACTORIZATION AND EQUIVALENCE CRITERION

We use the method of factorization of differential operators to find conditions
of equivalence of equations (2.2) and (2.3) under the KL transformation [1]. One
distinguishes two basic forms of factorization: complex-valued and real-valued.

Proposition 3.1. (Mammana [21]). Let the OLDE
(3.1)  L=D"+Y <Z> AD"Y a.e CH)
k=2

be given corresponding to (2.2). It is always possible and moreover by means of infinite
number of ways, to present (3.1) as a factorization with first order operators

1
(3.2 L= kI;[ (D —-o)=(D —a)... D — o) (D — &y),

‘where a,(x) are, perhaps complex-valued, functions of x.

Proposition 3.2. (Mammana [21]). The necessary and sufficient condition for
.operator (3.1) is to be decomposable into a product of real first order factors, is that
-every integral of equation (2.1) vanishes in the interval i not more that n — 1 times.

Similarly to (3.1), the operator M corresponding to (2.2) permits the factorization

M= kl;l (D¢ — B) = (D — By) ... (D, — B2) (D, — ﬂl)’

‘where B,(f) are complex-or real-valued functions, depending on the form of the
factorization.
The following statement presents a criterion of equivalence of (2.1) and (2.2).

Theorem 3.1 [6]. For equivalence of (2.1) and (2.2) it is necessary and sufficient
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that a factorization

1 .
L= kI;[ [D=v'/v—(k—1u'lu— B(t(x)u] -
is fulfilled. ‘

Proposition 3.3 (A differential analogue of Viete's formulas).
. There are the following relations between the “roots” o, of factorization (3.2) and
the coefficients A, :

(3.3) 0=-2o, k= W
N, = T a@ o) — 3 (1 - Do
‘ 2 Y] k=1

(other relations are more cumbersome).
Note that (3.3) coincides with the corresponding relation f_or algebraic polynomials.
For all o, = const Viete’s differential formulae coincide with the algebraic ones.

Proposition 3.4. The multiplier v(x) and the kernel u(x) of -the transformation (1.4)
are coupled with equation
viv+ (n— 1)2u/u=0
and finite relations as well:

G4 o(x) = |u(x) |="=D2,  u(x) = p=2/-D),

Proposition 3.5. In order to reduce (2.2) to (2.3) by means of transformation of
type (1.4), it is necessary and sufficient for (1.4) to have the form

(3.5) @--02, [ u(x)dx),
where t(x) = [u(xj dx satisfies the KS-3

L, ,
{t, x} + 31 B0 1=

3
n+1 A2(%)-

4. ASSOCIATED NONLINEAR EQUATIONS
AND EQUIVALENCE CONDITIONS

Applying transformation (3.5) we obtain the transformed form of equation .2):
@) z() + <;) (A’“_z S “'2“_4) 2700 + ('?:)x

’ n+1

x| Ad;u~2 = 34,u'u"* — 3 u"u"* + ESE-;—lld’u”u" - %(n + l)u""u"]x
x2073(1) + (Z) [A4u 4 —64u'u”S + ég'—;-——1—1-)-14214’2u'6 -
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3m+1)(n+59) Wiy m+1D)(n+359) 5, -7

” —5
(n+5)A,u"u T3 : 2 u“u'u” " +

(n + 1 (n + 23)
12

10
n-1
~(m+1)/2] ¢, = (1=1)/2y(m) n -(n=1)/2\(n~k) |2=0,
wtu [(u ) +k;2<k).4,‘(u ) ]

Note that by the connection (3.4) equation (4.1) can have differential expression
of v as its coefficients.
In virtue of (4 1) reduction of (2.2) to (2.3) leads to associated nonlinear equations.

uZ -6 + 3(" + 1) u"u'u -6 _ 3(" + 1) qu-S] (n—‘)(t) + ...

Lemma 4:1. For equivalence of (2.2) to (2.3) it is necessary and sufficient that the
Jfollowing overdetermined system of nonlinear equations in t(x);

’ 3 2 3
4.2) {t,x} + —ry 1JB,: =71 Ay,

” v nomy, 12 ni,n3 12 Mgt 4 3 4 .
42" Y1y - 6tt/t +§(t/t)+n 1Azt/t+n+133t —n+1A3,
@2 o =10yt 20 ey g SOED s

5(" + 59) NigNG 5(" + 11) UTPLY lo(n + 5) m

20 10 . 10
T A gy B = gy A

4.2 [(z) 2 ](") 3 ()Ak [(t) 2 ](H) ,(t’)""_;{=0

is consistent.

Lemma 4.2. For equivalence of (2.2) and (2.3) it is necessary and sufficient that the
Jollowing overdetermined system of nonlinear equations in v(x)

] A ” n-—2 /2 1 _3("“"1) %:_—!;‘_ .
(4.3) v —] /+3 +1AU '—n—I—l——BzU‘ —0,
" 3 .., 2(n - 2)(n — , 12 , 2(n-1
T n——l) Vi (n(n_)(lr;z 2o + EE 3 i fz+1)A’”"
” ) n—-17
@4.3) R ICECS V.=
n+1 ’

(0 \ n—4 I —22(?1 4) ”2 2 (49"—125)("—4) 02 -
“4.3)" v 4—n—:—1—vv v ——————9( ) /v+ 1) v"fv?
@9 — 125)(n — 2)(n — 4) a4, 5 10(n—-4)(n+7) "

- v o7 - Av"%fv +
o — 1 P Bm=Dm+D

[}
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10 n+s ., 20 . S(n—1), &2 A
t3 T 2""'n+1‘43”+3(n+1)B“v t=9

. n n-3
.31 o™+ ¥ (") 4w - BT =0
= \k n
is consistent.

Equation (4.3"-'), generalizing the Ermakov equation, was studied in Berko-
vich [3].

Theorem 4.1. (2.2) is equivalent to (2.3) (the systems (4.2) and (4.3) are compatible),

if and only if n — 2 relations between invariants

4.4 Io(A) = 1*Iy(B), *

TnA(4) = 6= Io(4) + u*J, (B),

’

. 2 ' .
hAM=—w<%)kMHJW%LAM+JhA&

...................................................

u n—3 n—4 ur n—3-k
Inn-3(4) = ao (T) I(4) +k;1ak (T) Jn(4) +

+u*Jy 5 3(B), depending on n—3 parameters aq, oy, ..., &, _4,

where
3 .,
4.5) I(4) = A5 = 5 43,
, 6 , 56n+7)
J,,.I(A) = A, — 245 + —B‘Az - T(ﬁ-i)— §,
5 , 15 , 5 ., 10(7n + 13)
J,2(4) = As — -2-144 + —7—‘1‘13 -4z - —WAzIo(A)

are fulfilled.

If I,(A) = 0 then systems (4.2) and (4.3) can be shortened since in the case equa-
tions (4.2") and (4.3") are consequences of (4.2") and (4.3') respectively and, hence,
they can be omitted.

If Io(A) = 0 then the pseudoinvariant J,,1(4) becomes the conditional invariant
In.l(A) =Ju1 |1.,=o-' . .

If I(4) = I, ;(4) = 0 then equations (4.2") and (4.3") can be omitted from
systems (4.2) and (4.3) as well. If I,(4) = J»,1(4) = 0 then pseudoinvariant J, ,(4)
becomes the conditional invariant J, ; lry=1n1=0 = In,2, and we have

9 3 5n+7

" 2
Ly =A,— 542~ 51 42

"

5 ., 5
Ly(4) = As — 7 4a + 7 42,
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5. REDUCED AND CANONICAL FORMS OF OLDE

In this sectidn Halphen’s (H) and Forsyth’s (F) canonical forms are constructed.
They belong to the reduced form (R) which occurred before. Schematically it can
be represented as follows

()

®- -
- (F)
5.1. The reduced form. The transformed form (4.1) can be presented as follows:
(R) 2 + Y (:) nz" Y1) =0,
k=2
where :
r,=r=Au"?—- " Z 1 wu e 2T : 1 uu 4

r4-—.__r+_3_(_§2_12r2

-5, -4
B R 6u™"u'Io(A) + I, y(A)u™*,

Theorem 5.1. (cIassiﬁcational). The set of equations (2.2) can be divided into n — 1
classes according to the table 1.

Table 1
. Transformation Halphen’s canonical
Cl t
ass Inyariants @172, f u dx) forms
Yo Ib#0 Uo = 3/ Z, H, is the principal one,
it depends on n — 2
parameters
Y, Lh=Jpyy=.. = w="*¥n, H,is a degenerate one,
k= 1,n-3 "= Jak-1=0, itdependsonn—k—2
Ly=J,x#0 . parameters
Yooz o=J,i=..= |1/ 3 [\ _ | Haos is the simplest
= Jou3 =0 2 a\u degenerateone: Z2™(f) =
. = o
. A
= n+1 2
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The coefficients of the canonical forms are absolute invariants (Halphen’s).

5.2. Halphen’s canonical forms. For those we have

(Ho) z(n)'(t) +k22 (Z) hyoz® M(t) = 0,
where
3 9 .. 35n + 7
h20 = r'u=uo = ho, h3° = E—ho + 1, h40 - ?ho + g(n +—17) (2) -

— 6ugug + I, jug®, ...
(Hl) Z(")(t) +,£Zz (Z) hklz("-k)(t) =0,
where

3 : 9 . 3 5n + 7 | -
th =r|..=.,,=hu h3l =7h1, h41 =—5—h1 +~3(—(—m)—h§+1n,1u14,...
(Hz) z(")(t) +kzz <Z> hkzz("-k)(t) = 0’

where

9.  3Gn+7)

3.
h22 = Ply=uy = h2, b3y = '2—’12, haz = < hs + "'5—(;1—;_——1—)—’1% +1,...

5

Theorem 5.2. Equations (2.2) and (2.3) belong to the same class (not being equivalent)
if and only if

(Yo) - Io(d) = w’Iy(B), I, # 0,

(Y) . Ly(4) = u*l, (B), I,=0, "I ,#0,

(Y2) I, 2(4) = v’L, 5(B), ILy=1,=0, L # 0,

Yoo Dopes) = @l s®),  To=hy= o= by =0, Ly £0,
(Yn—z) ' I, = In,l = e Fdgp-3 = 0.

" In case of belonging to classes Y,_; and Y,_, equations (2.2) and (2.3) are
~ equivalent.

5.3. Forsyth’s canonical forms.

Theorem 5.3. (classificational). The set of equations (2.2) can be divided into n — 1
classes according to. the table 2:
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Table 2
. Transformation Forsyth’s canonical
Class Invariants
u-"-v2 {ydx) forms
Yo In #0 1w 3 (w2 _ | Fois the principal one,
24 4 \w) T |it depends on n—2
3 ) parameters
= 1 Az
Ys Ip=Jy,=..= n+ .| Fyis a degenerate one,
k= 1,n—§ = Jox-1=0 itdependsonn—k —2
Loy=li#0 parameters
Y,.2 ILy=Jy;=..= F,_, is the simplest
=Juon-3=0 degenerate one: F,_,=
=IHy_2.

Here we have:

(Fo) 20) + 3 (Z) fio2® P = 0
k=3
where ’
Sfro=To(Du=>,  fio= —6u=wl(4) + I, u~*,

F) ) + ¥ (Z) fuz" ) = 0
k=4

where fy; = I, yu~
Thus, the one— to —one correspondence is estabhshed between the main and
degenerate forms of Halphen and Forsyth.

6. ITERATIVE EQUATIONS

6.1. Iterative (formally antiself —adjoint and reducible) operator of the odd order
2n + 1 can be presented as the factorization

n — \ n
L=H<D+_'i_1_"_“ DH(,)__"_LI:_"_,,),
k=1 n J  k=h n

Theorem 6.1. The operator L can be expressed in the form of (2n + 1)—multiple
iteration of the first order operator

exp(zn +1 fa dx) . [exp (% jcxdx) (D - a)]znﬂ,
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where o satisfies the Riccati equation

) 1 2 3n _
et 4 =0,

moreover, the corresponding second order equation

3

y +2”+2A2y=0

and the equation Ly = 0 are reduced to the simplest ones 7z = 0 and 22*+3)(f) = 0
by means of the transformations

(exp (Tln_ j'adx), [exp(—%jadx)dx),
(cxp(j'adx), j'exp(——:l—jadx)dx),
respectively.

6.2. Iterative (formally self-adjoint and reducible) operator of the even order 2n
can be presented as the factorization

" 2n +1 -2k ! 2n +1 -2k
L_kl;]i (D+——2_n_-:l_—a>,,l;[,, (D—-——Z—Fl——a>.

Theorem 6.2. The operator L can be expressed in the form of 2n-multiple iteration
of the first order operator

exp (Tnj—i—l— fa dx) L= [exp (—2n—2:——1— fa dx) (D - a)]zu.

where a satisfies the Riccati equation

, 1, 3@n-—1)
T Y1

A 2= 0
moreover, the corresponding second order equation

y” +

3
In 1 A2y =0

. and the equation Ly = O are reduced to the simplest ones z =0 and 22ty — ¢ py
means of the transfomnations )

(exp(—zn—‘!jjadx);. | IexP(—_ﬁ—z——T jadx)dx),
(exp(j adx), fexp (_—i—ﬁi—_l— ) adx) dx)

respectively.
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7. THE EUCLIDEAN DIFFERENTIAL ALGORITHM
AND ITS APPLICATION TO FINDING INVARIANT I,

The relative invariant I, can be also obtained on the basis of using and developing
the known analogy between algebraic polynomials and OLDO (see Berkovich [4]).

7.1. Differential operator ring. Let us consider the set K[D] of operators of the
form L = Y a,D"-* of an arbitrary order n with the coefficients from a differential
field K. The addition operation is introduced in K[D] in the natural way, and the
multiplication operation is characterized by the following Leibniz formula

Dsb — Z (i) b‘s-k)Dk_
k=0

It is easy to find out that K[D]'is an associative ring but it is not a commutative
one. It contains the unity and has no zero divisors.

Propositon 7.1. The ring K[D] is Euclidean. :

It means existence of the Euclidean algorithm of division with remainder (let us -
consider the right-definite case) in K[D], i.e., for any two operators L and M,
ord L = ord M, the equality L = QM + S, where Q is a right quotient and S is
a right remainder, is valid. Then the division with remainder is single-valued.

7.2, Fictorization of OLDO in the f)rincipal differential field.

Definition 7.1. (Frobenius [14].) We call the equation Ly = 0 undecomposable
in K if it has not a common integral with any other OLDE of less order with coefﬁ-
cients from K.

Otherwise, the equation Ly = 0 is called decomposable in K.

Proposition 7.2. The necessary and sufficient condition for decomposability of
Ly = 0 is the factorization L = QP, (ord L = ord Q + ord P).

Propesition 7.3. The system of two equations
7.1 Ly =0, My =20

is nontrivially consistent, if and only if such an operator N (ord N = 1) exists which
is the right greatest common divisor (RGCD) of the operators L and M, i.c.,

(7.2) N = RGCD(L’ M), (L= Q,N,M = Q,N).
7.3. The right diﬂ'eréntial remainder theorem.

Proposition 7.4. The remainder of division on the right of the n-th order operdtor L,
on the first order operator D-o has the form S = exp (— | a dx) L, exp (J a dx).
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Consequence 7.1. If the equation L,y = 0 has a solution y = y(x) then the factoriza-
tion .

L,=L,_,(D—)/ly)« L, =0mod (D — y'ly)) holds.
7.4. Generalization of the notion of undecomposabilisy of OLDE.

In the next we need the following, practically forgotten, generalization of the
notion of undecomposability of OLDE going back to Koenigsberger [19].

Definition 7.2. The equation Ly = 0 is called undecomposable in K if either

a) it is not decomposable according to the definition 7.1, or

b) it has not a common solution with any nonlinear algebraic differential equation
of less order having coefficients from K.

Otherwise, the equation Ly = 0 is called decomposable in K in the generalized
‘sense.

Remark 7.1. The main reason for the idea of undecomposability in the sense
of the definition 7.2 was not applied, is evidently that the theory of OLDO divisibility
has not been expanded on nonlinear algebraic differential equations. To make such
an expansion possible, it is necessary associate the nonlinear equation

Y alx, 3,9 s y®) =0

. k=0

with the OLDO

-

L =k20ak(x’ Y, ,V', (RN y(k)) D"—k

and develop a theory analogous to that for OLDE.

7.5. Finding /,. Let us find I, combining the differential Euclidean algorithm with
the differential remainder theorem (we omit the adjective “right” for brevity): we
shall find I, as a condition of compatibility of the overdetermined system (4.3")
and (4.3"). To simplify calculations, but without less generality, let us consider the
system

-2 n—-1 3(n-1)
.2 n_n 2 _ 2 =
(7.2) v e /v+3n+1sz T B,u“v =0,

w_ =3 .,  2-D(n-3) 5 . 12 ,
7.3 A . An— o) —J)
73 v 1 v'v"fv + 1) "% +n+1sz+
2n — 1) 2An—1) . ,
+ ] Ajv — —— Biu’v,= 0,

the compatibility -condition of which is at the same time the hecessary condition
for equivalence of the equations (2.2) and (2.3) under the transformations of type
(2.4), (3.9).
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We associate the equations (7.2) and (7.3) with the OLDO

n—l n—l 2
Az = 37 Bav',

_ 2__”“2 r=1
L,=D n_lvv D+3n+l

- -2)(n — -
Ly=D*— =3 v'o™ID? + 2n )(nz 3) vl + 12 A,D +
n—1 (n-1 n+1
2(n—1
+ =1 (4; — By).
n+1

Theorem 7.1. (2.2) and (2.3) are equivalent, if (and only if for n = 3) the following
equivalent conditions are fulfilled:

a) N = RGCD(L, M) = D — v'[v;

b) the right remainder in the Euclidean algorithm applied to L and M vanishes:

S=0=4, —%A; - (33 - %Bz>u3.

Now the formula for I, follows from Th. 7.1 as a consequence.

8. DIFFERENTIAL RESULTANT AND ITS APPLICATION
TO FINDING I,

The compatibility condition of the system (7.1) can be obtained using the differential
resultant (Ore [24], Berkovich and Tzirulik [7]) as well, which can be given in the
form of a determinant, similarly to Sylvester’s construction of resultant of two
algebraic polynomials.

Let L and M be two OLDO of the orders n and m respectively. We shall “multiply”
the operator L on the left by I, D, D?, ..., D™-!, and the operator M—by I, D, D?, ...,
D*-1, Obviously, if the system (7.1) is compatible then the generated over-
determined system

n+1 n+m—1
Ly =0, DLy =Y a; D'=0,...,D" 'Ly = ¥ a,_, D=0,
k=0 k=0
(8°1) m+1 m+n—1
My=0, DMy=Y b,,D'=0,...D"'My= Y b,_1:D% =0,
k=0 k=0
where '
min (r,k) r -
8.2) a, = Y ( )a;:::), k=0,n+r
s=max (0,k—n) \S ’

and b, i is calculated using the similar formula, is compatible as well

(L =’§oa,D", M= i b D").

k=0
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Proposition 8.1. The homogeneous system is compatible if and only if the rank of the
right resultant matrice R(a, b) formed from the coefficients of (8.1) is less than its order

8.3) rank R < n + m,
where
a,,,_l',,.,.,,,_l am—l,n+m—2 aes o . . “ee am_l'o

0 Ope mtm=2 oor = - N I

0 ' 0 ... a, a . @
8.4 ) n n—1 M 0 —_ R.
®4) bo-tmim-1 D=t mim-2 - o . . e baigo

0 b"_l‘"+m_2 .o . . . o b”_z’o

0 0 b, bn_: b,

Inequality (8.3) is easy to obtain by straight replacing the system (8.1) by the
corresponding system of linear algebraic equationsiny, = y®,k =0, 1,...,n + m—
— 1. Inequality (8.3) is a consequence of the Kroneker —Kapelli differential theorem
as well. \

Definition 8.1. We call det R, where R is constructed according to (8.4), (8.2),

the right differential resultant (R Res) of the operators L and M.

Proposition 8.2. The system (7.1) is compatible if and only if RRes (L, M) =0
(a, # 0, b,, # 0). .

Theorem 8.1. (2.2) and (2.3) belong to the same class Y, (the system (7.2), (1.3)
is consistent) if and only if (4 4), (4.5) hold.

CONCLUSIONS

The obtained results display fruitfulness of the developed approach using factoriza -
tion and transformations of differential equations and structure and properties
of the associated ones as well. It is a good basis for general theory of OLDE having
constructive character. For instance, it gives unified and regular techniques to solve
in a natural way problems of integrability and finding exact solutions of differential
equations.

Acknowledgements. The author wishes to thank Dr. F. Neuman for a discussion
and M. L. Nechaewsky CSc. for discussion and a help when making up the
manuscript. :
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