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OF THE NONLINEAR DIFFERENTIAL 

EQUATIONS OF THE N-TH ORDER 
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Abstract There are given sufficient conditions for the existence of unbounded proper oscillatory 
solutions or solutions tending to zero of the differential equation (1). 
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I. Consider the differential equation 

(1) y(/l)=/(^y, ...,y( n-1 }), " = 2, 

In all the paper we shall suppose that/: D -> R, D = R+-+R" is continuous and 
there exists a number ae{0, 1} such that 

(2) (-iyf(t,xl9...9xJXl£0 inD. 

Let y be a solution of (1) defined on [0, b), b ^ oo. Then y is called noncontinuable 
n - l 

if either b = oo or b < oo, lim sup £ [ y(0(01 = oo. y is called proper if b = co 
f->& » = o 

and for large t sup | y(s) \ > 0 holds, y is called singulai of the 1-st kind if 
f<;S<CO 

b = oo and y = 0 in some neighbourhood of / = oo, it is called singular of the 
2-nd kind if b < oo and lim sup | j>(n~1)(f) | = oo. The solution y = 0 on R+ is 

t^b 

called trivial. 
The proper solution is called oscillatory if there exists a sequence of its zeros 

tending to oo. 
Denote n0 the entire part of n/2. 
In the two last decades a great effort is devoted to the study of solutions of (1), 

(2) (see the monography [2] or [7], [11] and references there).. One of the important 
problems consists in the study of asymptotic behaviour of proper solutions. In 
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contradistinction to the nonoscillatory solutions the asymptotic behaviour of the 
oscillatory ones for n > 2 remains unexamined thoroughly (even for generalized 
Emden — Fowler equation, see [7]). Some considerations concerning the proper 
solutions tending to zero for t -* oo are given in [2] and [8]. But (1) has under 
certain assumptions the unbounded oscillatory solutions, too. Thus this paper 
is likely to contribute to the elucidation of this problem. 

The equation (1) is said to have the property A if each proper solution y of this 
equation is oscillatory when n is even and it is either oscillatory or 

l imiy'-^OlJO, i = l, . . . , n, 
f->oo 

when n is odd. 
The equation (1) is said to have the property B* if each pioper solution y of (1) 

is either oscillatory or 

(3) y0)(Oy(0>0, i = 0,1, . . . , n - l 

for large values of t holds when n is odd and is either oscillatory oi bounded or (3) 
holds when n is even. 

There are many conditions, under the validity of which (1) has the pioperty A 
or B*. With respect to our further considerations only the following are given here. 

Lemma 1. ([6, 5, 1]). Let a = 1 and let one of the following assumptions hold: 
1 ° Let for an arbitrary large positive number c there exist Xc # 1 and a continuous 

function ac : R+ -> R+ such that 

Jtin-X)X*ac(t)dt = oo 
I 

and 
\f(t,xi9...9x„)\Z:ac(t)\x1\

x< 

1 ""' 
holds for — ^\xt\ <> ctn"1

9 \ xt | ^ c | xt \»~l, i = 2, ..:, n9 where X* = Xc c 
(Xc =- 1) in case Xc < 1 (Xc > 1); 

2° Let a continuous function a : R+ -> R+ exist such that 

\f(t9xl9 . . . , * n ) | Z <t)\xl | inD 
00 

holds and lim sup / J sn"2a(s) ds > (n - 1)!; 
f-*ao t 

00 

3° Let continuous functions a : R+ -• R+9g : R\ -> R+ exist such that f a(t) dt = 
o 

= °o, ^ 1 ^ 2 ) > Ofor st > 0, g is nondecreasing with respect to the 1st argument 
**d \f(*,xl9...9 xn) \ ^ a(t) g(\ xt |, | xn |) in D hold. Then the equation (1) has 
the property A. 
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ON UNBOUNDED OSCILLATORY SOLUTIONS 

Lemma 2. ([8]). Let n ^ 3, a = 0 and let continuous functions a: R+ -+ R+9 
00 

g : R+ -» R+ and a number k exist such that J f"a(t)dt = oo, g(0) = 0, g(x) > 0 
I 

for x>09 lim inf - ^ - > 09 \ f(t9 xl9 ...9 xn) \ = a(t)g(\ xi \) in D hold where 
x-*co X « 

(4) \i = 1 + (n - 2) A for X<\9 \i < n - 1 /or A = 1, 

Ai = n - 1 4- y (1 + ( - l ) n )a - 1) > r A > 1. 

Then the equation (1) Aas the property B*. 
In [2] the conditions are given under which the oscillatory solutions of (1) 

are unbounded if 

(5) either n is even, n0 + a odd or n is odd. 

From this and with respect to the existence theorems for oscillatory Solutions 
([8, 3]) the following theorem is valid. 

Theorem 1. Let (5) be valid and let n}>4 in case a = 0. Let the equation (1) have 
the property A(B*) if on = l(a = 0). Let there exist a constant M > 0 and continuous 

' °° dt 
functions g: R, -> R., gi : R+ -• (0, oo) such that J —-— = oo, g(x) > 0 for 

o giO) 
x > 0, lim inf g(x) > 0, 

(n - 2n0)g(\ x,\)^\ f(t9 xt, ..., xn) | = t»o-igl(\ Xi |) in [M, oo) x Rn 

hold where 

(6) a = 1 - (n - 2/z0) 
7%e/i there exists the continuum of unbounded oscillatory solutions of (I). 

Consider the generalized Emden — Fowler's equation 

(7) y(n) = *(OlylAsign>>, H = 2, 

where A > 0, a : R+ -+ R is continuous and there exists ae {0, 1} such that 
( - l ) a a ( 0 ^ 0, teR+ holds. 

Corollary 1. Let (5) be valid, n ^ 4 in case of oc = 0 and let o9 \i be given by 
(4), (6), respectively. Suppose that there exist positive constants K9 Ki9 M such that 

npa 

Kt(n - 2n0) £(-i)"a(t) = Kt^^ for 16[M, oo) 

holds. Let one of the following conditions be valid 

a) a = 0,A = l, f.M |a(0!d* = oo; 
o 
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b ) a - x l , i < l , f*("-1)A|a(0|dí = oo; 
o 

00 

c) a = 1, X = 1, lim sup t J sn~2 \ a(s) \ ás > (n - 1)!. 

o 
00 

t-*oo t 

Then there exists the continuum of unbounded oscillatory solutions of (1). 

II. Next, we shall study the case when (5) is not valid for the special differential 
equation (1): 

(8) y(n) = h(t, y), n ^ 2 is even. 

We shall suppose that h : Dx-> R, Dx = R+ x R is continuous, for any xeR, h(., x) 

is absolutely continuous on each finite segment, ---— satisfies the local Caratheodory 
ot 

conditions and theie exists a e {0, 1} such that a + n0 is even, 

(9) (-l)*h(t,x)x^ 0 i n / V 

Let y be a proper solution of (8). Then denote 

F(t, x) = (-1)* J h(t, s)ds in Dl, 
o 

Z(t; y)=Z ( - l ) i + a /"-°(0/°(0 + 4-[/"o)(0]2-

(10) E(t;y) = F(t,y(t)) + Z(t;y), 
t rm x2 

Jm(t;v)=$ J...ft;(T1)dT1...dTm, J0(t;v) = v(t) 
o o o 

for v : R+ -+ R continuous, 
t t no-l 

(11) w(t;y)=l...lF(t;y)dt...dt+ £ ( - l )" + i + V2.O ; [>(i+1)]2), 
0 0 * v ' i = 0 

»-2 

/n — 1 — i\ n ~ 1 _ 
teR+' C> = { i )2(n-l-i)>0-

From this it can be easily seen that 

(12) F(t,y(t)) = 0, 

(13) E(t;y)^E(t0;y) + ] ^ & - 6 r . 
to °l 

Further in [2j the following statement is proved 

(14) SG.3-"*"»• "V. 
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Remark. The identity (13) is used by Kiguradze [8] in case n =- 4. 
With respect to (13) we have the following 

Lemma 3. Let y be a proper solution of (8) and let ( — l ) a — ' x _ 0(g 0) 

in Dt. Then the function E(t; y) is nondecreasing (nonincreasing) with respect to the 
first argument. \ 

Lemma 4, Let t0e R+ and y bp a proper solution of (8) such that E(t0;y) < 0. 
Let n = 4, • 

(15) ( - l ) g g y > X ) ^ = 0 inDx. 
ot 

Then for arbitrary constants Ke R+, fi e [0, 1) we have 

(16) lim sup (| y("°-1)(0 | - Ktfi) = oo, 
r-*oo 

(17) lim sup | y»>(01 > 0. 
f->00 

Proof. According to Lemma 3 

E(t;y) i E(t0;y) < 0, te\t0, oo). 

Thus, with respect to (14) there exists a number tx }£ t0 such that 

(18) w(t;y) £E(t0;y)tn-2, ife|>lf oo). 

We prove (16) by the indirect proof. Thus suppose that 

| / n ° - 1 ) (0 | - Ktfi ^ M < oo, t e [to, oo). 

Then by virtue of (10), (11), (12) there exists a number t2 > to such that 
n o - 2 

w(t; y) £ - E c,J2lt\ [ /+ 1 )]2) ^ -MS-**2', te(t2, oo) 
*=-0 

holds with suitable positive constant Mt. But this inequality contradicts to (18). 
The inequality (17) may be proved similarly. The lemma is proved. 

By Kiguradze [8] the conditions of the existence of oscillatory solutions of (1) 
are given in case a = 0. We use the following consequence of his Lemmas 2.1 
and 2.3. 

Lemma 5. Suppose, that a = 0, the equation (8) has the property B* and the set 
of singular solutions of the 2~nd kind of (8) is empty. Further, let $f: JR+ -> R, 
i = \, ...,n — 2 be continuous functions and r be a number re (0, oo) such that 
<Pi(x) x^0for\x\^r,i= 1, 2, ..., n - 2. Then there exists a solution y of (8) 
satisfying the conditions y(0) = 0, y(l'"1}(0).= ^^^"^(O)), i = 2, ...,/i - 1 

93 



M. BARTUSEK 

such that y is either oscillatory or singular of the 1st kind or trivial or 
(-l)ly{i)(t)y(t) > 0, i = 0, ..., n - 1 holds. 

Theorem 2. Let n > 4 and let the equation (8) have the property B*(A) in case 
of a -= 0(a = 1). Let (15) be valid and there exist continuous function b : R+ -+ (0, oo) 
and Me R+ such that 

(19) I h{t, x) | rg bit) \x\ in R+ x((-oo, - M ] u [M, oo)) 

holds. Then there exists the continuum of unbounded oscillatory solutions of (8) 
with properties (16) and (17). 

Proof. According to (19) and the generalized Wintnei's Theoiem (see [6]) 
singular solutions of the 2-nd kind 4o not exist. 

Let a = 0. Let ${ : R+ -» R9 i = 2, ..., n - 2, #f = 0 for i ^ 3, n - 3, #3(;c) = 
= x - 1, #i(x) = 4 - x2 for - 2 ^ x ^ 2, ^ ( x ) = 0 for other x, <Pn-3ix) = x. 
Then according to Lemma 5 there exists a solution y of (8) with the following 
initial conditions y{i\0) = 0, i = 0, 1, . . . , « - 2, i # 3, i # n - 3, ya)(0) = 
= ^//"""(O))-./ = 1, 3, H - 3. By virtue of (10) Ei0;y) = -K 2 < 0. From this 
and according to Lemmas 3 and 5 y is oscillatory and the statement of the theorem 
follows from Lemma 4. 

Further, let a = 1 and let y be the noncontinuable solution of (8) with the 
property £(0; y) < 0. Then with respect to Lemma 3 y is not singular of the 1-st 
kind. Thus y is proper and as (8) has the property A it is oscillatory. The statement 
follows from Lemma 4. The theorem is proved. 

Remark. The conclusions of Theorem 2 are not valid foi n = 2, 4 as it is seen 
from linear equations A(f, JC) = (— l)ax. Moreover, the way used in Lemma 4 
can not be applied for n = 2, 4. It is clear that for n = 2 the condition Eit0; y) < 0 
is never fulfilled. For n = 4 the situation is similar as it is shown in 

Lemma 6. Let n = 4, a = 0 and y be oscillatory solution of (8) such that 
3 

Z I y(0(O I ^ 0 holds for an arbitrary large C. Then there exists t0 e R+ such that 

Z(f; y) > 0, Eit; y) > 0 for te [/<>, oo). 

Proof. In [4] the existence of numbers tl
k9 i = 0, 1, 2, 3, f*, k = 1, 2, ... is 

proved such that 

y(0(*J) = 0, y(0(0 ^ 0 for ie(li, *i+i)> ' = <U. 2> 
(20) /"(r) =, o for te[tl ill y'"(0 * 0 for teifl t>+1)9 

tl<tl<tl+u t*<il<tU, 1 - 0 . 2 ^ - 1 . 3 
and 
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ON UNBOUNDED OSCILLATORY SOLUTIONS 

(21) / ' - 1 ) (©/ - + 1 ) ( lD < 0, s = 1, 2, k = 1, 2, ... 

Put t0 = t£. According to (21) for s = 2, Z(t; .y) need not be positive only in the 
intervals \ak, tk] where ak = min (t\, t\), xk = max (tk, tk), k = 1, 2,... But it is clear 
that 

(22) Z(f *; y) = y /2(fJ) > 0, Z(r3; y) = 1 /2(f3) > 0 

and Z'(f; >>) = -y (4 )(t)y'(0 do not change the sign on \ak, TJ (see (20)). This fact 
with (22) proves that Z(t;y) > 0, te \j0, oo). The rest of the statement follows 
from (10) and (12). Lemma is proved. 

Corollary 2. Let n = 2n0 > 4, 0 < A ̂  1 and there exist an absolutely continuous 
function a : R+ -+ R such that a! is locally integrable. Let a e {0, 1} be such that 
n + a is even, 

(-l)aa(t) = 0, ( - l )V( t ) ^ 0 in Z>! 

and one of the assumptions a, b, c of Corollary 1 is valid. 
Then there exists the continuum of unbounded oscillatoiy solutions of (7) 

with the properties (16) and (17). 

Lemma 7. Let t0 e R+,y be a proper solution of($) with the property E(t0;y) > 0 
and let 

(23) ( „ i ) « g / t ( ^ x )
x = o inDlm 

Further, let a continuous function ht : R+ -+ R+ exist such that 

(24) f | h(t, x) | ^ ht(\ x |) in Dx 

holds. Then 

(25) lim sup j y(t) \ > 0. 
f-*oo 

Proof. We prove the lemma by the indirect proof. Thus suppose that lim y(t) = 
f->00 

= 0. From this, (24) and Kolmogorov - Horny inequality (see [6, p. 167]) 
lim ̂ ( f ) = 0, i = 0, 1, 2, ..., n - 1 follows and thus lim^ t; y) = 0. 
f->co f->oo 

But this fact contradicts (13) and Lemma 3. The lemma is proved. 

Theorem 3. Let the equation (8) have the property B*(A) in case of a. = 0 (a = 1). 
Suppose that (23) is valid, there exist constans Ke R+, Me R+ such that \ h(t, x) \ tz 
^ K\x\ in R+x((-co, -M7] u [M, oo)). Then there exists the continuum of 
oscillatory solutions of(%) with the property (25). 

Proof. The statement can be proved in the similar way as Theorem 2. 
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III. In the last part of the paper we shall deal with oscillatory solutions of (1) 
tending to zero for t -> oo. 

Theorem 4. Let n + a be odd, n0 even, let positive numbers e, M, M1, M2, M3 

and continuous functions g : [0, e] -> R+, a : R+ -> R+ exist such that one of the 
following assumptions is valid: 

1° a = 1, s = n0 — 2, a(f) = —/or f e [M, OO), g(x) > 0, 

for x > 0, g is nondecreasing; 

2° s = n0 - 1, A e [1, oo), g(x) = x \ lim f "~~T~ (1 +E)a(0 = oo; 
f-*oo 

3° a = 0, s = n - 1, a(t) = M3 /or fe R+, g(x) > Oforjc > 0. 

Further, suppose that 

(26) a(t) g(\ Xl |) = /(/, Xl, ..., xn) | = M, f \Xi | on i? + x [-e, e]w, 
i = l 

(27) | / « , * „ . . . , x , | s S A f 2 ' i : | x l | on R + x [ - M f ' x R " " 5 - ' . 
i = l 

Then there exists an oscillatory solution yof(\) defined in some neighbourhood of co 
such that 

(28) lim}>(,)(0 = 0, i = 0,1, ...,n. 
f-*ao 

Proof. Let a = 1. Let us define the continuous functions/:./)-»R and g : R+ -> 
-» jR+ : £,- = x̂  for | xt \ ^ e, zt = e sign x{ for | xt \ > e, i = 1, 2, ..., n; 

(29) / ( t , x 1 , . . . , j c n ) = / ( t 5 ^ 1 , . . . , ^ ) on R+X^e,s']XRn-1; 

if 1° is valid, then (29) holds on D and g(x) = g(x), xeR+; 
if 2° is valid, then 

/( / , Xt, ..., xn) = a(t) (| Xj |A - eA) sign xx + f(t, e sign xl9z2>—,*n) 

for | JCJ | > e, g(x) = x \ x e R+. From this and according to (26), (27) we have 
in both cases 

(30) a(t)g(\ *i I) ^ \f(U xi , ..., *„) | = M 2 £ | xf | + a(01 *i |A on D. 
i = l 

Thus, with respect to [10] there exists a non-trivial solution y : -R+ -» R of the 
differential equation 

(31) y(n)=/(t,^...,y(n-1)) 
satisfying . 
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(32) Jt[yM(t)fdt<oo for 1° 
0 

(33) K V W d' < oo, j = 0,1, . . . , n0 for 2°. 
0 

It can be easily seen that by virtue of (26), (29) y is proper. Further, with the respect 
to (30), 1 °, 2° and Lemma 1 the equation (31) has the pioperty A. Thus y is oscilla­
tory. By use of (32) and some results of [2] ((33) and [9]) the relation lim y(i)(t) = 0, 

r-*oo 

i = 0, 1, ...,s holds in case 1° (2°). But from this and from (27), (29), (31) 
lim yin)(t) = 0 holds and the validity of (28) can be proved from Kolgomorov -
*->oo 

Horny inequality (see [6]); it is clear that y is the solution of (1), too. 
For a = 0 the proof is similar. We must use the property B (see [6, 5, 1]) 

instead of A and [3] instead of [2"|. The theorem is proved. 

Theorem 5. Let n + & be odd, n0 even and let positive numbers e, M, Mi9p 
and continuous functions g : R+ -+ R+, gx : R+° -+ R+, a : R+ -+ R+, at : R+ -+ R+ 
exist such that p e ( l , oo), gx is nondecreasing with respect to the all arguments and 
either the assumption 1° or 2° of Theorem 4 holds. Further, let 

n 

j f(t, xj , . . . , x„) | *S fll(0 £ | x, | on R+ x [ - e, e]", 

"(OgQxtUi \At,Xl,...,xH)\ % 

( n 2n-2np + l 2 \ 

1 + Z |;C||-'--»<>-1~<-'--»°-1>') onD. 
i-no + 1 

Then there exists an oscillatory solution of (1) such that lim yil)(t) = 0, i = 
f->oo 

= 0, 1, ..., s holds. 
This theorem can be proved similarly to Theorem 4, only we use (1) instead of (31.). 

Corollary 3. Let n + a be odd, n0 even and X e [1, oo), e > 0. Let a : R+ -+ R 

be continuous, (-l)'a(t) ^ 0 and limt" -r"(1+*)|fl(0l = °°- Then there exists 
f-*oo 

an oscillatory solution of (7) such that l im^ty) = 0, i = 0, 1, ..., n0 — 1 holds. 

REFERENCES 

[1] M. BartuSek, On Oscillatory Solutions of the System of Differential Equations with Deviating 
Arguments, Czech. Math. J., 35 (110), 1985, 529-532. 

[2] M. BartuSek, On Oscillatory Solution of the Differential Equation of the n-th Order, Arch. 
Math., XXn, No. 3 (1986), 145-156. 

97 



M. BARTUŠEK 

[3] M. BartuŠek, On Properties of Oscillatory Soìutions of Non-linear Differential Eguations 
of the n-th Order, Diffeгential Equations and Theiг Application, Equadiff 6, Pгoc. бth Int. 
Conf. Brno, Czech. 1985, Lecture Notes Math., 1192, 107-113. 

[4] M. Бapтyшeк, O cвoйcmвax кoлeблющuxcя peшeнuй oбыкнoвeнныx дuффepeнцuaльныx 
нepaвeнcmв u ypaвнeнuй, Дифф. ypaв., 23, Ms2 (1987), 187—191. 

[5] Г. A. Чaнтypияi 06 ocцuллaцuoнныx cвoйcmвax cucmeм нeлuнeйныx oбыкнoвeнныx дuф-
фepeнцuaльныx ypaвнeнuй, Tpyды Инcтитyтa пpиклaднoй мaтeмaтики (Tбилиcи) 14 (1983), 
163—204. 

[6] И. T. Kигypaдзe, Heкomopыe cuнгyляpныe кpaeвыe эaдaчu для oбыкнoвeнныx дuффepeн-
цuaльныx ypaвнeнuй, Изд. Tбилиccкoгo y-тa, Tбилиcи, 1975. 

[7] I. T. Kiguradze, On the Oscillatory and Monotone Solutions of Ordinary Differential 
Equations, Arch. Math., XIV, No. 1 (1978), 21 -44 . 

[8] I. T. Kiguгadze, On Asymptotic Behaviour of Solutions of Nonlinear Non-autonomous 
Ordinary Differential Equations. Colloquia Math. Soc. J. Bolyai, 30, Qualitative Theoгy of 
Differential Equations, Szeged, 1979, 507-554. 

[9] I. T. Kiguгadze, On Vanishing at Infinity of Solutions of Ordinary Differential Equations, 
Czech. Math. J., 33 (108), 1983, 613-646. 

[10] И. T. Kигypaдзe, Oб oднoй кpaeвoй эaдaчe c ycлoвueм нa бecкoнeчнocmu для oбыкнoвeнныx 
дuффepeнцuaльныx ypaвнeнuй выcшux nopядкoв, Диффepeнциaльньie ypaвнeния в чacтныx 
пpoизвoдныx и иx пpилoжeния, Tpyды вcecoюзнoгo cимпoзиyмa, Изд. Tбилиccкoгo y-тa, 
Tбилиcи 1986. 

[11] J. S. Wong, On the Generalized Emden-Fowler Equation, SIAM Review, 17, No. 2 (1975), 
339-360. 

Miroslav Bartušek 
Department of Mathematics 
Facuity of Science, J. E. Purkyn University, 
Janáčkovo nám. 2a, 
662 95 Brno, 
Czechoslovakia 

98 


		webmaster@dml.cz
	2012-05-09T19:59:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




