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ON PROPER OSCILLATORY SOLUTIONS
OF THE NONLINEAR DIFFERENTIAL
EQUATIONS OF THE N-TH ORDER

MIROSLAV BARTUSEK
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Abstract. There are given sufficient conditions for the existence of unbounded proper oscillatory
solutions or solutions tending to zero of the differential equation (1).
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I. Consider the differential equation

1) ¥y = fit,y, ., Y, n22.

In all the paper we shall suppose that f: D - R, D = R, - R" is continuous and
there exists a number « € {0, 1} such that

2) (=12 f(t, xy5 o0y X)X, 20 in D.

Let y be a solution of (1) defined on [0, b), b < co. Then y is called noncontinuable
n—1

Aif either & = o or b < o, lim sup Z F y(¢)| = 0. y is called properif b =
t—b i=0
and for large t sup | y(s)| > O holds. y is called singula: of the 1-st kind if
t<s<oo

b = © and y = 0 in some neighbourhood of ¢ = oo, it is called singular of the
2-nd kind if b < oo and lim sup | V()| = co. The solution y = 0 on R, is
t—b

called trivial.

The proper solution is called oscillatory if there exists a sequence of its zeros
tending to oo.

Denote n, the entire part of n/2.

In the two last decades a great effort is devoted to the study of solutions of (1),
(2) (see the monography [2] or [7], [11] and references there). One of the important
problems consists in the study of asymptotic behaviour of proper solutions. In
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contradistinction to the nonoscillatory solutions the asymptotic behaviour of the
oscillatory ones for n > 2 remains unexamined thoroughly (even for generalized
Emden — Fowler equation, see [7]). Some considerations concerning the proper -
solutions tending to zero for ¢ — oo are given in [2] and [8]. But (1) has under
certain assumptions the unbounded oscillatory solutions, too. Thus this paper
is likely to contribute to the elucidation of this problem.
The equation (1) is said to have the property A4 if each proper solution y of this
equation is oscillatory when 7 is even and it is either oscillatory or
lim [y~ Y(@)(lo, i=1,..,n,
t— o
when » is odd.
The equation (1) is said to have the property B* if each ptroper solution y of (1)
is either oscillatory or

€)] ’ ¥ ¥(t) > 0, i=0,1,...,n—-1

for large values of ¢ holds when 7 is odd and is either oscillatory o1 bounded or (3)
holds when # is even.

There are many conditions, under the validity of which (1) has the piroperty 4
or B*  With respect to our further considerations only the following are given here.

Lemma 1. ([6, 5, 1]). Let o = 1 and let one of the following assumptions hold:
1° Let for an arbitrary large positive number c there exist A, # 1 and a continuous
function a, : R, — R, such that

© *
[t~ Vre g (1) dt =
1

and .
|f(t’ xla ceey xn)' g ac(t) l xl Ilc

1 - —_—
holds  for —c—§|x1| St x| Selx "1, i=2,..,n where it =1,

@G =<1)incase 2, < 1 (A, > 1);
2° Let a continuous function a : R, — R, exist such that

lf(’:xli""xn)lga(’)lxll in D

holds and lim sup ¢ | 5"~ %a(s) ds > (n — 1)!;
t~ t
@
3° Let continuous functionsa : R, - Ry, g: R% - R, exist such that fa(t)dt =
0

= ®, g(sy, 53) > 0 for s, > 0, g is nondecreasing with respect to the 1-st argument

and | f(t, %y, ..., x,) | Z a(t) g(| X, |, | X, 1) in D hold. Then' the equation (1) has
the property A.
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ON UNBOUNDED OSCILLATORY SOLUTIONS

Lemma 2. ([8]). Let n =2 3, « = 0 and let continuous functions a: R, — R,

g: Ry = R, and a number A exist such that It”a(t) dt = o0, g(0) =0, g(x) >0
1

X —* 00

Jor x > 0, lim inf—g—(f—) >0, | f(t x;, .-er X,) | = a(t) g(| x |) in D hold where
X .
(C)) pu=1+m-2)4 for <1, u<n-1_ for A=1,
y=n—1+;—(1+(—1)")(l—1) for Ai>1.

Then the equation (1) has the property B*.
In [2] the conditions are given under which the oscillatory solutions of (1)
are unbounded if

®) either n is even, ny + a odd or nisodd.

From this and with respect to the existence theorems for oscillatory solutions
([8, 3]) the following theorem is valid.

Theorem 1. Let (5) be valid and let n = 4 in case o. = 0. Let the equation (1) have
the property A(B*) if o = 1(a = 0). Let there exist a constant M > 0 and continuous

Sunctions g: R, - R, g, : Ry = (0, ) such that j' _gfl(tﬁ = o0, g(x) > 0 for
o &
x >0, liminf g(x) > 0,

(n—=2n0)g(l x, ) S | f(t, x4 .. )| S tro-Tgy(Ixy])  in [M, 0)xR"
hold where
(6) c=1-(n— 2ny)

Then there exists the continuum of unbounded oscillatory solutions of (1).
Consider the generalized Emden — Fowler’s equation

@) YO =a(t)| yl|*signy, nz2,

where 4 >0, a: R, - R is continuous and there exists a e {0, 1} such that
(-D%a(t) 2 0, te R, holds.

Corollary 1. Let (5) be valid, n = 4 in case of « = 0 and let o, p be given by
(4), (6), respectively. Suppose that there exist positive constants K, Ky, M such that

noo
Ki(n — 2n,) < (—1)%a(t) < Ktmo-1 for te[M, )
holds. Let one of the following conditions be valid

a)a=0,1=51, [t*|a(t)|dt = o0;
[}
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b)a=1,4<1, [tV a@)|dt = o0;
(1]
)a=1,4=1limsupt[s" ?|a(s)|ds > (n — 1)!.
t- 0 t

Then there exists the continuum of unbounded oscillatory solutions of (7).

II. Next, we shall study the case when (5) is not valid for the special differential
equation (1):

(8 y™ =h(t,y), n=2 iseven.

We shall suppose that 4 : D, - R, D, = R, x Ris continuous, for any x € R, A(., x)
is absolutely continuous on each finite segment, % satisfies the local Carathéodory
conditions and theie exists « € {0, 1} such that « + n, is even,
()] (-1D)*h(t,x)x=0 in D,.
Let y be a proper solution of (8). Then denote

F(t, x) = (——1)‘jh(t, s)ds  in Dy,

no-l

265 = % (/"5 °0) + 5 H™OT
(10 - E(t; y) = F(t, (1)) + Z(¢; y),

Ju(t;v) = 6‘ 6‘ ...Oj v(ty)dty ...dt,,,  Jo(t; v) = v(t)

for v: R, — R continuous,

t t no—1
A1) wts ) =[.. [F;dt..di+ Y (=D edy (s VT,
(V] V] \-—':r;/ i=0
n—1-i n—1
IGR.;., Ci—( i >m>o.
From this it can'be easily seen that
(12) : E@, y(1) 2 0,
| ' OF(z,
(1) E(; ) = E(ros ) + | LY g,
. . to
Further in [2] the following statement is proved
(n-2 _ . :
(14 W () =E(t;y), teRy.

92



ON UNBOUNDED OSCILLATORY SOLUTIONS

Remark. The identity (13) is used by Kiguradze [8] in case n = 4.
With respect to (13) we have the following

6h(t x)

Lemma 3. Let y be a proper solution of (8) and let (—1)* x20=0)

in Dy. Then the function E(t; y) is nondecreasing (nonincreasing) wnh respect to the
first argument. B

Lemma 4. Let toe R, and y bp a proper solution of (8) such that E(ty; y) < 0.
Letn = 4,

(15) (~1)* ah(‘ X)2<0 inD,.
Then for arbitrary constants Ke R, , B € [0, 1) we have
(16) lim sup (| y™ V()| — Kt*) = oo,
| Sad- ]
an lim sup | y™(¢) | > 0.
t—

Proof. According to Lemma 3
E(t;y) £ E(to;5) <0,  te[to, o).

Thus, with respect to (14) there exists a number ¢; = ¢, such that

(18) w(t; y) < E(to; y) "%,  te[ty, ).
We prove (16) by the indirect proof. Thus suppose that
[y~ (@) - KtP < M < 0, te[ty, o).

;Thycn by virtue of (10), (11), (12) there exists a number ¢, > ¢, such that
no—2

w(t; y) 2 “Z e (s [y’(:'+1)]2) = _Mxtn_4+2ﬂ, te(ty, )
=0

holds with suitable positive constant M,. But this inequality contradicts to (18).
The inequality (17) may be proved similarly. The lemma is proved.

By Kiguradze [87] the conditions of the existence of oscillatory solutions of (1)
are given in case « = 0. We use the following consequence of his Lemmas 2.1
and 2.3. : :

Lemma 5. Suppose, that o = 0, the equation (8) has the property B* and the set
of singular solutions of the 2-nd kind of (8) is empty. Further, let &;: R, — R,
i=1,...,n — 2 be continuous functions and r be a number r e (0, ©) such that
D(x)x=20for|x|=r,i=1,2,...,n — 2. Then there exists a solution y of (8)
satisfying the conditions y(0) = 0, y~(0).= &,_,(" " V0), i =2,...,n—1
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such that y is either oscillatory or singular of the I-st kind or trivial or
(=)' YD) () >0,i =0, ...,n — 1 holds.

Theorem 2. Let n > 4 and let the equation (8) have the property B;'(A) in case
ofa = 0(x = 1). Let (15) be valid and there exist continuous functionb : R, — (0, o0)
and M e R, such that

19) Lh(t, x)| £ b(8)| x|  in Ry x((—0, —M]u [M, )

. holds. Then there exists the continuum of unbounded oscillatory solutions of (8)
with properties (16) and (17).

Proof. According to (19) and the generalized Wintner’s Theotem (see [6])
singular solutions of the 2-nd kind do not exist. .

Leta =0.Letd,: R, - Ri=2,....n—2,0; =0fori # 3,n — 3, P3(x) =

=x—1,P,(x) =4 — x*for =2 £ x £ 2, &,(x) = 0 for other x, J,_3(x) = x.
Then according to Lemma- 5 there exists a solution y of (8) with the following
initial conditions y?(0) =0, i =0,1,....,n =2, i #3, i #n -3, yV0) =
= &,()""1(0)), j = 1, 3, n — 3. By virtue of (10) E(Q0; y) = —K? < 0. From this
and according to Lemmas 3 and 5 y is oscillatory and the statement of the theorem
follows from Lemma 4. ‘

Further, let a =1 and let y be the noncontinuable solution of (8) with the
property E(0; y) < 0. Then with respect to Lemma 3 y is not singular of the 1-st
kind. Thus y is proper and as (8) has the property A it is oscillatory. The statement
follows from Lemma 4. The theorem is proved.

Remark. The conclusions of Theorem 2 are not valid for n = 2, 4 as it is seen
from linear equations -A(t, x) = (—1)*x. Moreover, the way used in Lemma 4
can not be applied for n = 2, 4. It is clear that for n = 2 the condition E(¢,; y) < 0
is never fulfilled. For n = 4 the situation is similar as it is shown in

Lemma 6. Let n =4, o =0 and y be oscillatory solution of (8) such that
3
Y 1 y(C) | # O holds for an arbitrary large C. Then there exists to€ R, such that
i=o .
Z(t;y) >0, E@t;9) >0  for te[t,, ).

Proof. In [4] the existence of numbers #, i =0,1,2,3, 2, k=12, ..1s
proved such that
YOy =0, yO() £#0  for te(th, tivn), i =0,1,2,
" Py 3
(20) Y'® =0 for te[,#], y'@W#0 for te(@, i),
t<tl<tl,, th<B<tv, i=02j=13
and
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ON UNBOUNDED OSCILLATORY SOLUTIONS

(21) YOV 1) <0, s=1,2, k=1,2,..
Put 7, = t . According to (21) for s = 2, Z(t; y) need not be positive only in the
intervals [ar,‘, 1,] where o, = min (£, t2), 7, = max (¢}, t2), k = 1, 2, ... But it is clear
that .
. L oaes o
(22) Z(ts y) = y ) >0, 2y = 5 () >0

and Z'(t; y) = —y¥(t) y'(t) do not change the sign on [a;, 7,] (see (20)). This fact
with (22) proves that Z(t; y) > 0, te [to, ©). The rest of the statement follows
from (10) and (12). Lemma is proved.

Corollary 2. Letn = 2ny, > 4,0 <A =1 and there exist an absolutely continuous
function a: R, - R such that a' is Iocally integrable. Let o€ {0, 1} be such that
n + « is even,

C(=Dfa(®) =0, (—1a@¢) <0 in D,

and one of the assumptions a, b, ¢ of Corollary 1 is valid.
Then there exists the continuum of unbounded oscillatory solutions of (7)
with the properties (16) and (17). :

Lemma 7. Let t, € R, , y be a proper solution of (8) with the property E(t,;y) > 0
and let

23) @ CLL

>0 inD,.

Further, let a continuous function hy : R, — R, exist such that

(24) , | A, x) | £ hy(|x])  in D,
holds. Then
(25) lim sup | y(1)| > O.
t— 00
Proof. We prove the lemma by the indirect proof. Thus suppose that lim y(f) =

g0
= 0. From this, (24) and Kolmogorov—Horny inequality (see [6, p.167])
limy?(t) =0,i=0,1,2,...,n — 1 follows and thus lim E(¢; y) = 0.

t— t—+o00

But this fact contradicts (13) and Lemma 3. The lemma is proved.

Theorem 3. Let the equation (8) have the property B*(A) in case of o. = 0 (x = 1).
Suppose that (23) is valid, there exist constans K€ R, , M € R, such that | h(t, x) | S

S K|x| in Ry x((—, —M] U [M, ©)). Then there exists the contmuum of
osczIIatory solutions of (8) with the property (25).

Proof. The statement can be proved in the similar way as Theorem 2.
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IIL. In the last part of the paper we shall deal with oscillatory solutions of (1)
tending to zero for ¢t — oo0.

Theorem 4. Let n + « be odd, n, even, let positive numbers e, M, M,, M,, M,
and continuous functions g : [0, €] - R, ., a: R, — R, exist such that one of the
following assumptions is valid:

1°a=1,s=ny -2, a(t)=—lt-forte[M, ), g(x) > 0,

for x > 0, g is nondecreasing;
A-1
2° s=ny—1, e[, o), g(x) = x% limt" 2 ey
t— 0

3°a=0,s=n-1,a(t) = M; for te R, g(x) > 0 forx > 0.
Further, suppose that

(t) = o0;

260 a@®glx ) =S xy,x) | S My Y Ixi|  on Ryx[—éel,

i=1
s+1

27 It xgy s Xy | S M, Y |x;]  on Ryx[—g ef"'x RN

i=1
Then there exists an oscillatory solution y of (1) defined in some neighbourhood of
such that

(28) ‘ limy®@) =0, i=0,1,...,n
| S o]
Proof. Let @ = 1. Let us define the continuous functions f: D-»Randg: R, -
>R, : 2 =xfor|x;| Se & =¢signx; for | x;| >¢ei=1,2,...,m;

29 Ft xyy ey x,) = f(t, 2y, ..., &) on R, X[—e, e] XR"™1;

if 1° is valid, then (29) holds on D and g(x) = g(&), xe R, ;
if 2° is valid, then

Tt xy, ooy x,) = a@®) (| x, |* = &) sign x; + f(¢, esign x;, F2, ., T,)

for | x, | > ¢, g(x) = x*, xe R,. From this and according to (26), (27) we have

in both cases
s+1

(B0) (& xS 1Ft x1s s ) S MY x| + a(®) [ x,|*  onD.

i=1

Thus, with respect to [10] there exists a non-trivial solution y: Ry < R of the
-differential equation

(€2)) _ y(n) = ](t’ Vs eees y(n_l)) '
satisfying . : '
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ON UNBOUNDED OSCILLATORY SOLUTIONS

(32) ftly™®]*dt <o  for 1°
[+]

(33) [ty dt < 0, j=0,1,...,n, for 2°
(V]

It can be easily seen that by virtue of (26), (29) y is proper. Further, with the respect
to (30), 1°, 2° and Lemma 1 the equation (31) has the property 4. Thus y is oscilla-
tory. By use of (32) and some results of [2] ((33) and [9]) the relation lim y*(f) = 0,

t=> o0
.i=0,1,...,5 holds in case 1° (2°). But from this and from (27), (29), (31)
lim y™(z) = 0 holds and the validity of (28) can be proved from Kolgomorov—

t—

Horny mequahty (see [6]); it is clear that y is the solution of (1), too.
For a = 0 the proof is similat. We must use the property B (see [6, 5, 1)
instead of 4 and [3] instead of [2]. The theorem is proved.

Theorem 5. Let n + & be odd, ny, even and let positive numbers e, M, M, p
and continuous functionsg : R, - R,,g, :R? - R,,a: R, - Ry,a, : Ry, - R,
exist such that p € (1, ), g, is nondecreasing with respect to the all arguments and
either the assumption 1° or 2° of Theorem 4 holds. Further, let

L1t %10 %) | < ax(t)iglxil on Ry x[~ &I
a(')g(l xl I) é If(ts xl’ ...,x,,)l §

n 2n—2no+l_ 2
éal(t)gl(lxll,--.,Ix...,l)(l+ P EA RS 12*-2»-1») on D.
i=no+1

Then there exists an oscillatory solution of (1) such that lim y(t) =0, i =

t=> 00
=0, 1, ..., s holds.
This theorem can be proved similarly to Theorem 4, only we use (1) instead of (31.).

Corollary 3. Let n + a be odd, n, even and Ae[1,®), ¢ > 0. Let a: R, - R

A-1
be continuous, (—1)°a(t) 2 0 and lim¢" 2 "*|a(t)| = 0. Then there exists

t=* o

an oscillatory solution of (7) such that lim y®(t) =0, i = 0,1, ...,ny — 1 holds.

t—+®
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