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QUASI-UNIFORMISATION OF CLOSURE SPACES 

JlRI SVOBODA 

(Received Jure 3, 1986) 

Abstracters shown that the set of all quasi-uniformities (in the sense of Isbell) inducing a weakly 
regular closure structure forms a complete lattice. A variant of precompactness and completness is 
given. 
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NOTATION 

Let X be a set,-exp X = {A/A c X}. The complement of A e exp X is denoted 
by A\ 
For s49 & c exp X, C c X, x e X we define sf < St o Q/A e s4) 
(3Be ®) (A c B) and put s/A a = {A n B/Ae s49 Be &}9 

St(C, s4) = \]{A e s4\C n A # 0}, 
St(x, s4) = St({jc}, s4). 
If A c: exp exp X, we write 
St(*, A) = {St(x, st)\s4 e A.} 
s4 e Cov X means 0 ^ s/ a exp X and IJ^ = X. 
Finally ^ e Filt X means that ^ is a proper filter on X. 

PRELIMINARY REMARKS 

Let us recall some definitions and known facts. 
PI. We write U e QnXand call U a quasi-uniformity on X and (X, U) a quasi-

unifoim space iff 0 # U = Cov X and 

t ^ ^ e U - ^ ^ A ^ e U ; 

f e U , f < r c e x p Z = > r e U . 
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Let U e QnX, V is a u-base for U iff 

U = {% c exp X/(3 1T e V) (r < 

W is a u-subbase for U iff 

{1T-.A ...Airnlirl9...,WneW,n = 1,2,...} 

is a u-base for U. We also say that W generates U. It follows easily that (QnX, c=) 
is a complete lattice and if {U ;̂ a e A} is a non-void family in QnX, then u {Ua; 
a 6 A} is a u-sub-base for sup Ua in (QnX, c ) . [2] 

a 

P2. A closure space will be given in the form (X, 9t) where 9t(x) denotes the 
neighbourhood-filter at xeX. By A~(Al) we denote the closureg^ujterior) of 
A c X in (X, 9t). 9t itself will be termed as a closure structure (althLofgri "n-hood 
structure" would be more adequate). 

A closure space (X, 9t) is compact iff one of the two equivalent conditions is 
fulfilled: 

(a) F e Filt X => & clusters in (X, 9t); 
(b) si c exp X, {A11A e s4} e Cov X => 

(3n)(lAl9...9Anes/)({Al9...9An}eCovX). [1] 

RESULTS 

1. Proposition and definition. Let (X, 9t) be a closure space. Then 
(1) Q/x,yeX)(ye{x}-=>xe{y}-); 
(2) (V x e X) ({x} ~ = n {N/N e 9t(x)}) 

are equivalent conditions and (X, 9t) is a/i S ̂ closure space (weakly regular) iff (\) 
holds. 

Proof. (1) => (2): Let y e {x}~, so that xe {y}~. If Ne9t(x) is arbitrary, we 
get N n {y} # 0, so that >> e N. It follows {x}~ c f) {N/Ne 9t(x)}. If conversely 
j> £ {x} ", then x $ {y}", so that for some N0 e 9t(x) we have N0 r\ {y} = 0, >> £ N0. 
Hence equality holds. 

(2) => (1): Let y e {x}~. By (2) N n {y} * 0 for all Ne 9t(x), so that x e {y}'. 

2. Proposition and definition. Let (X, U) be a quasiuniform space. For xe X 
put 9l(x) = St (x, U). Then (X, 9t) is a/i Srclosure space. We write 9t = St ( - , U) 
and call St (—, U) a closure structure induced by U. 

Proof. Clearly Xe9t(x), Ne9i(x) => xe N and Nt, N2 e9t(x) => Nx n N2 e 
e 9t(x). (Since St (x, <JU1 A <%2) = St (x, <ttt) n St (x, <#2)). 

Let # e U and St (x, <%) c A c X. Put <W = * u {A}, so that ^r -< <%', f e U 
and St (x, <%') = A. 

Since >> e St (x, ^ <=> x e St (>>, #) we get {x}" = f] St (x, W)9 so that (X, 9t) 
is an Srclosure space. 
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3. Definition. Let (X, 9t) be a closure space and U e QnX. U is continuous on 
(X,9t) i^T" id^: (X,9t) -+(X, S t ( - , U ) is continuous, or-equivalently Vxe 
e X : St (x, U) c 9t(x). 

4. Proposition. Let U e QnX be continuous on a closure space (X, 91). Then U 
induces 9t iff the following condition is satisfied: If {x(<%); * e U } is an arbitrary 
net in X (defined on the down-ward directed set (U, <)) and x e f) {St (*(#), <%)\<%e 
e U}, then x(<%) -+ x in (X, 9t). 

Proof.=>:Letxef| {St (x(#), # ) / # e U}. LetNe9l(x). Since9t(x) = St(x,U), 
N = St (x, * 0 ) for some <%0eU and we have <% e U, ^ -< <%0 => x e St (x(#), <#) => 
=> x(#) e St (x, r̂) c St (x, °U0) = N, so that x(#) -> x in (X, 9t). Assume 
conversely that St(;c, ^) ^ 9t(x) for some xeX. There is Ne9t(x) such that 
V % e U: St (x, °U) * N and for each ^ e U w e can select *(#) with x(<%) e St (x, ty) 
and JC(*) £ N. It follows x e (~) {St (x(<%), <W)\(JUeU} and x(^) -+-> x. 

5. Proposition and definition. Let (X, 9t) be an Srclosure space. Put 
W = {{{x}c, N}/NG 9t(x), X 6 X}. 

//* U0 6 QnX /s generated by W, fhen U0 induces 9t a,nd /s ea//ed the coarse Quasi-
uniformity on (X, 9t). 

Proof, a) Let ifr = {{x}c, N} e W and yeX be arbitrary. If y = x, then 
St (y, -yT) = N. If y e N and y # x, then St (y, iT) = X. If finally y e Nc, then 
St (y,iV) = {x}c and since y${x}~-on account of Sx —ye{x}ci. It follows 
St (y, HT) e 9t(y) for all yeX. 

b) Let *U e U0, so that iTx A ... A iTn < *U9 for some n and TT- , ..., HT% e W.. 
It follows St(y,iTi)A . . .A St (y, iTn) <= St (y, <%), so that St (y, W) e 9t(j) for 
each y e X on account of a). Hence U0 is continuous on (X, 91). 

c) If x e X and N e 9t(x), then <% = {{x}c, N} e U0 and St (x, W) = N, so that U0 

induces 9t. 

6. Proposition and definition. Let (X, 9t) be an Sx-closure space and for % c 
c exp X dejwe. W e Vl <=> (V x e X) (St (x, <W) e 9t(x)). 77ze« Ux is a quasi-
uniformity on X. that induces 9t. UA /s ca//ed the ./zwe quasi-uniformity on (X, 91). 

Proof. Clearly {X} e Ul9 0 ^ Ux c CovX, and it follows easily that Uj is 
a quasi-uniformity on X. By its construction it is continuous on (X, 91), and since 
it contains the coarse quasi-uniformity, it induces 91 as well. 

7. Theorem. Let (X, 91) be an Srclosure space. Then the set Qn(X, 91) of all 
quasi-uniformities on X inducing 91, and ordered by inclusion is a complete lattice. 
The minimal (maximal) element of this lattice is the coarse (fine) quasi-uniformity 
on (X, 91). 

Proof, a) Let U0 and \Jt be the coarse and the fine quasi-uniformities on (X, 91). 
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Assume U e Qn(X, 91). If Ne9l(x)9 then St (x, U) = 9t(*), so that N = St (x9 *U) 
foi some ®6U. It follows ^i < {{x}c

9 N}9 and-with the notation from 5-we 
get W <= U, so that U0 c: U. The relation U c U t is obvious. 

b) Let {Ua; a e A} be a non-void family in Qn (X, 91). Put U = sup {Ua; a e A}9 

where the supremum is taken in (QnX, c ) (see PI). Let % e U, x e X. For some n 
and al9 ...9<xneA and « k 6 U a (k = 1, ...,«) we have < ^ A . . .A # „ - < # . It 
follows St (x9 Ux) n ... n St (x, <#„) c St (x, ^ ) , and since St (x, <#*) e 9t(x) for 
k = 1, . . . ,«, we get St (x, #) e 9l(x)9 so that U is continuous on (X, 91). Fix a e A. 
Since Ua c U, we have for xeX: 9t(x) = St(x, Ua) c St(x, U), so that U e 
eQn(X,9t). 

8. Remark. Let 91 be the closure structure induced by U e QnX. Recall that U 
is a nearness on X iff {{U'/U e <%} \ <% e U} is a u-base for U. [3] It follows easily 
that in this case (X, 9i) is a topological St-space and the following theoiem can be 
similarly proved: 

9. Theorem. Let (X, 91) be a topological St-space. Then the set Nr (X, 91) of all 
nearnesses on X inducing 91 and ordered by inclusion is a complete lattice. The 
minimal element in Nr (X, 91) is generated by all covers of the form {{x}~c, G} where 
G is 9l-open and xeG. The maximal element in Ni (X, 91) has the set of all 9l-open 
covers of X as u-base. 

10. Remark. It is known that the notions of precompactness and completness 
of uniform spaces can be extended on quasi-uniform spaces in many (non-
equivalent) manners [4]. We give here a certain generalisation that preserves the 
required relation to compactness. 

11. Definitions. Let (X, U) be a quasi-uniform space. 
(a) F e Filt X is c-V-filter iff 

(V^eU)(3jceI) (St (x, %) e &)\ 

(b) (X, U) is precompact iff' 

(V*€U)(3n) (3x l 5 . . . , x w eX ) (X= (J {St (xk9 *)/Jfc = 1, ...,»} 

(c) (X, U) is complete iff each c-V-filter clusters in 

(X ,St(- ,U)) . 

Note. If (X, U) is a uniform space, then just introduced notions coincide with 
the usual ones, as can be easily proved. 

12. Theorem. Let (X, U) be a quasi-uniform space. Then (X, St ( —, U)) rs compact 
iff(X9 U) is precompact and complete. 
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Proof. Put 91 = St ( - , U) and assume first that (X, 91) is compact. Since each 
^ e F i l t X clusters in (X,9t), (X, U) is complete. Let # e U . Since X = 
= (J {St (x, <%y/x G X}, X = U{St(jt*,<20/A: = 1, ...,/i} for somen and x 1 ? . . . , xne 
G X, so that (X, U) is precompact. 

Assume conversely that (X, U) is precompact and complete without (X, 91) 
being compact. There is s/ c exp X with \J {AljA e s/} = X and -s^ c: s/, 
^--finite => (J ̂ ! # X. Put ^ = {AcIAetf}. It follows that # is centered, 
so that & c .F for some ultra-filter ^ on X9 and it follows easily that & is c - U. 
By completness xGf) {F"/Fe^} for some X G X But *G.A* for some Aes/ 
and _4C G ^ c: /F, so that x e Ac~ and we get a contradiction >4C~C n .Ac~" # 0. 

13. Definition. A quasi-uniform space (X, U) is fine iff U w the fine quasi-uniformity 
>rSt(-,U). 

14. Theorem. Let (X, U), (Y, V) be quasi-uniform spaces, (X, U) fine. Iff: (X, 
St ( - , U)) -+ (Y, St ( - , V) is continuous, then f: (X, U) -* (7, V) to uniformly 
continuous. 

Proof. Let f e V . Since 

/-'[St </(*), *0] c StOc/^OO) 

and / is continuous, it follows 

St ( * , / - \ r ) ) e St (*, U) for all x G X, 

sothat/ _ 1(ir)G^by 6. 
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