Archivum Mathematicum

František Neuman

On iteration groups of certain functions

Archivum Mathematicum, Vol. 25 (1989), No. 4, 185--194
Persistent URL: http://dml.cz/dmlcz/107356

Terms of use:

© Masaryk University, 1989
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Vol. 25, No. 4 (1989), 185-194

ON ITERATION GROUPS OF CERTAIN FUNCTIONS

FRANTIŠEK NEUMAN

(Received December 27, 1987)

In honour of the 60th birthday anniversary of Prof. M. Ráb

Abstract

This paper contains a characterization of iteration groups formed, up to conjugacy, by certain functions of the form $$
\operatorname{Arctan} \frac{a \tan x+b}{c \tan x+d}, \quad|a d-b c|=1
$$ under the condition that graphs of different elements of such a group do not intersect each other.

Key words. Iteration groups, Linear differential equations.
MS Classification. Primary 39 B 10, secondary 34 A 30, 34 C 20.

I. INTRODUCTION

For description of global transformations of linear differential equations, it is important to characterize all groups of those transformations that keep a given equation unchanged, see [5] and [6]. This characterization requires the following result concerning iteration groups of certain functions.

II. NOTATION, DEFINITIONS AND SOME BASIC FACTS

In accordance with O. Borůvka [2], the fundamental groups \mathscr{F}_{1} is defined as the group of all functions $f: \mathbf{R} \rightarrow \mathbf{R}$ given by the formula

$$
f(t)=\operatorname{Arctan} \frac{a \tan t+b}{c \tan t+d}
$$

$a, b, c, d \in \mathbf{R},|a d-b c|=1$, where Arctan denotes this branch of $\arctan x+k \pi$ that makes function f continuous on \mathbf{R}. Then the elements of the fundamental
group \mathscr{F}_{1} are real analytic bijections of \mathbf{R} onto \mathbf{R}, they are increasing exactly when $a d-b c=1$. The group operation " O " is the composition of functions; for brevity the symbol o is sometimes omitted.

Consider the following groups, whose elements are some functions of the fundamental group \mathscr{F}_{1}, restricted to an open interval $I \subset \mathbf{R}$.

$$
\begin{aligned}
& \mathscr{F}_{2}: f:(0, \infty) \rightarrow(0, \infty), \\
& f(t)=\operatorname{Arctan} \frac{a \tan t}{b \tan t+1 / a}, \quad a \in(0, \infty), b \in \mathbf{R} .
\end{aligned}
$$

$\mathscr{F}_{3 m}$: for each positive integer m

$$
f:(0, m \pi) \rightarrow(0, m \pi)
$$

$$
f(t)=\operatorname{Arctan} \frac{a \tan t}{b \tan t+1 / a}, \quad a \in(0, \infty), b \in \mathbf{R}
$$

$\mathscr{F F}_{4 m}$: for each positive integer m
$f:(0, m \pi-\pi / 2) \rightarrow(0, m \pi-\pi / 2)$,
$f(t)=\operatorname{Arctan}(a \tan t), a \in(0, \infty)$.
Let the topology on \mathscr{F}_{1} be the relative topology on

$$
\left\{(a, b, c, d) \in \mathbf{R}^{4} ;|a d-b c|=1\right\}
$$

where \mathbf{R}^{4} is considered with the usual topology.
Let \mathscr{G}_{1} and \mathscr{G}_{2} be two groups whose elements are (some) bijections of intervals I_{1} and I_{2} onto themselves, respectively. We say that the groups \mathscr{G}_{1} and \mathscr{G}_{2} are C^{k}-conjugate (with respect to φ) for some positive integer k if there is a C^{k}-diffeomorphism φ of interval I_{1} onto interval I_{2}, i.e. $\varphi\left(I_{1}\right)=I_{2}, \varphi \in C^{k}\left(I_{1}\right), \mathrm{d} \varphi(x) / \mathrm{d} x \neq$ $\neq 0$ on I_{1},
such that

$$
\mathscr{G}_{2}=\varphi \circ \mathscr{G}_{1} \circ \varphi^{-1}:=\left\{\varphi \circ f \circ \varphi^{-1} ; f \in \mathscr{G}_{1}\right\} .
$$

If \mathscr{G}_{1} is a topological group the topology on \mathscr{G}_{2} is induced by the conjugacy.
Let α be an element of a group. For any integer k define the element $\alpha^{[k]}$ as follows:
$\alpha^{[0]}$ is the unit element of the group,
$\alpha^{[k]}=\alpha^{[k-1]} \circ \alpha$ for positive k,
$\alpha^{[k]}=\left(\alpha^{-1}\right)^{[-k]}$ for negative k,
α^{-1} being the inverse to α. Element $\alpha^{[k]}$ is called the k th iterate of α.
A group is said to be partially (linearly) ordered if the set of its elements is partially (linearly) ordered and, for each its elements α, β and γ, the relation $\alpha \leqq \beta$ implies both $\alpha \circ \gamma \leqq \beta \circ \gamma$ and $\gamma \circ \alpha \leqq \gamma \circ \beta$.

A partially ordered group is called archimedean if the following implication holds:
if $\alpha^{[n]} \leqq \beta$ is satisfied for some elements α and β and for all integers n, then α is the unit element of the group.

The following theorem is due to O. Hölder [3]: There exists an order preserving isomorphism of any linearly ordered archimedean group into a subgroup of the additive group of real numbers \mathbf{R}.

For proof see also for example A. I. Kokorin and V. M. Kopytov [4].
A group is said to be a cyclic group if there exists an element α of it such that all elements are iterates of α. Element α of this property is called a generator of the cyclic group. If, in addition,

$$
\alpha^{[m]} \neq \alpha^{[n]}
$$

for generator α and different integers m and n, then the group is an infinite cyclic group.

Now, consider an open interval $I \subset \mathbf{R}$. Let $n \geqq 1$ be an integer and \mathscr{G} denote a group of some C^{n}-diffeomorphisms of I into I. Moreover, suppose that graphs of different elements of \mathscr{G} do not intersect each other (on I).

III. THEOREM

If \mathscr{G} is C^{n}-conjugate to a closed subgroup of increasing elements of the group \mathscr{F}_{1}, or \mathscr{F}_{2}, or $\mathscr{F}_{3 m}$, or $\mathscr{F}_{4 m}$,
then either \mathscr{G} is trivial,
or \mathscr{G} is an infinite cyclic group with a generator $h_{e} \in C^{n}(I), \mathrm{d} h_{e}(x) / \mathrm{d} x>0$ and $h_{e}(x) \neq x$ on I,
or \mathscr{G} is C^{n}-conjugate to the group of all translations $\left\{h_{c} ; c \in \mathbf{R}\right\}$,

$$
h_{c}: \mathbf{R} \rightarrow \mathbf{R}, \quad h_{c}(x)=x+c
$$

Proof
Since different elements of the group \mathscr{G} do not intersect each other on I, \mathscr{G} can be linearly ordered in the following manner:
for $h_{1}, h_{2} \in \mathscr{G}$ we write $h_{1} \leqq h_{2}$,
if either $h_{1}\left(x_{0}\right)<h_{2}\left(x_{0}\right)$ for some (then any) number $x_{0} \in I$, or $h_{1}=h_{2}$.
Moreover, \mathscr{G} is archimedean, because for $h \neq \mathrm{id}_{I}$ there holds $h(x) \neq x$ on I an the sequences

$$
\left\{h^{[i]}\left(x_{0}\right)\right\}_{i=1}^{\infty} \quad \text { and } \quad\left\{h^{[i]}\left(x_{0}\right)\right\}_{i=-1}^{-\infty}
$$

converge to both ends of interval I for any $x_{0} \in I$. Due to the Hölder Theorem there exists an order preserving isomorphism of \mathscr{G} onto a subgroup $\tilde{\mathscr{F}}$ of the additive group \mathbf{R}.

If \mathscr{G} is trivial then $\mathscr{G}=\left\{\operatorname{id}_{I}\right\}$ and $\tilde{\mathscr{G}}=\{0\}$.
Let \mathscr{G} be not trivial and $\tilde{\mathscr{G}}=\{i e ; i \in \mathbf{Z}, 0 \neq e \in \mathbf{R}\}$ be an infinite cyclic group generated by a nonzero number e. Denote by h_{e} this element of group \mathscr{G} that corresponds to the number e. Evidently $h_{e} \in C^{n}(I), \mathrm{d} h_{e}(x) / \mathrm{d} x>0$ and $h_{e}(x) \neq x$ on I. Moreover,

$$
\mathscr{G}=\left\{h_{e}^{[i]} ; i \in \mathbf{Z}\right\}
$$

h_{e} being a generator of the infinite cyclic group \mathscr{G}.
From now, let \mathscr{G} be not trivial, neither it be an infinite cyclic group.

1. Consider first the case when \mathscr{G} is C^{n}-conjugate to a closed subgroup of the fundamental group $\mathscr{F F}_{1}$ with respect to a C^{n}-diffeomorphism φ of \mathbf{R} onto I. Let $h \in \mathscr{G}, h \neq \mathrm{id}_{I}$. Then

$$
\varphi^{-1} h \varphi(t)=\operatorname{Arctan} \frac{a_{11} \tan x+a_{12}}{a_{21} \tan x+a_{22}} \in \mathscr{F}_{1}
$$

and $a_{11} a_{22}-a_{12} a_{21}=1$ because $\mathrm{d} h(x) / \mathrm{d} x>0$ on I.
Case 1a. Let

$$
C^{-1}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) C=\left(\begin{array}{ll}
b & 0 \\
0 & 1 / b
\end{array}\right),
$$

$b \in \mathbf{R}$, for a non-singular 2 by 2 matrix $C=\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)$. Without loss of generality, let $\operatorname{det} C=1$. Denote by ψ one of the continuous functions, element of the group \mathscr{F}_{1}, given by the formula

$$
\psi(t)=\operatorname{Arctan} \frac{c_{11} \tan t+c_{12}}{c_{21} \tan t+c_{22}} .
$$

It can be verified that

$$
\psi^{-1} \varphi^{-1} h \varphi \psi(t)=\operatorname{Arctan}\left(b^{2} \tan t\right) \in \mathscr{F}_{1}
$$

Since $h(x) \neq x$ on I, we have

$$
\psi^{-1} \varphi^{-1} h \varphi \psi(0)=k \pi
$$

for some integer $k \neq 0$.
Case 1b. Let

$$
C^{-1}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) C=\left(\begin{array}{rr}
\pm 1 & 1 \\
0 & \pm 1
\end{array}\right),
$$

$\operatorname{det} C=1$ and $\psi \in F_{1}$ be defined as in case 1a. Then

$$
\begin{gathered}
\psi^{-1} \varphi^{-1} h \varphi \psi(t)=\operatorname{Arctan}(\tan t \pm 1) \in \mathscr{F}_{1} \\
\psi^{-1} \varphi^{-1} h \varphi \psi(\pi / 2)=\pi / 2+k \pi
\end{gathered}
$$

for some $k \in \mathbf{Z} \backslash\{0\}$, otherwize h intersects id $_{I}$.
Case 1c. Let

$$
C^{-1}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) C=\left(\begin{array}{rr}
\cos \omega \pi & \sin \omega \pi \\
-\sin \omega \pi & \cos \omega \pi
\end{array}\right)
$$

$\omega \in \mathbf{R} \backslash \mathbf{Z}, \operatorname{det} C=1$ and ψ be defined as above. Then

$$
\psi^{-1} \varphi^{-1} h \varphi \psi(\mathrm{t})=t+\omega \pi \in \mathscr{F}_{1}
$$

Now, let h and g be two different elements of the group \mathscr{G} that do not belong to the same infinite cyclic group. Denote

$$
h_{1}:=\varphi^{-1} h \varphi \in \mathscr{F}_{1} \quad \text { and } \quad g_{1}:=\varphi^{-1} g \varphi \in \mathscr{F}_{1}
$$

Suppose first that

$$
\psi_{1}^{-1} h_{1} \psi_{1}(t)=\operatorname{Arctan}\left(b_{1}^{2} \tan t\right), \quad \text { case } 1 \mathrm{a} \text { for } h
$$

and

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=\operatorname{Arctan}\left(b_{2}^{2} \tan t\right), \quad \text { case } 1 \mathrm{a} \text { for } g
$$

hold for suitable elements ψ_{1} and ψ_{2} of the fundamental group \mathscr{F}_{1}. Due to the initial values of $\psi_{1}^{-1} h_{1} \psi_{1}$ and $\psi_{2}^{-1} g_{1} \psi_{2}$ at 0 , and with respect to the fact that the relation

$$
\psi(t+n \pi)=\psi(t)+n \pi
$$

holds for every increasing element ψ of \mathscr{F}_{1}, there exist integers n_{1} and n_{2} such that either $h_{1}^{\left[n_{1}\right]}$ and $g_{1}^{\left[n_{2}\right]}$ coincide and then h and g belong to the some infinite cyclic group, or $h_{1}^{\left[n_{1}\right]}$ and $g_{1}^{\left[n_{2}\right]}$ intersect each other, the same being true for $h^{\left[n_{1}\right]}$ and $g^{\left[n_{2}\right]}$. However both cases were excluded from our considerations.

The same argument shows that neither the situation when

$$
\psi_{1}^{-1} h_{1} \psi_{1}(t)=\operatorname{Arctan}(\tan t+1), \quad \text { case } 1 \mathrm{~b} \quad \text { for } h,
$$

and

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=\operatorname{Arctan}(\tan t+1), \quad \text { case } 1 \mathrm{~b} \quad \text { for } g
$$

nor the case when

$$
\psi_{1}^{-1} h_{1} \psi_{1}(t)=\operatorname{Arctan}\left(b^{2} \tan t\right), \quad \text { case } 1 \mathrm{a} \quad \text { for } h
$$

and

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=\operatorname{Arctan}(\tan t+1), \quad \text { case } 1 \mathrm{~b} \quad \text { for } g
$$

can occur.
If one of the functions, say h, is of the form described in case le, i.e.

$$
\psi_{1}^{-1} h_{1} \psi_{1}(t)=t+\omega \pi, \quad \omega \in \mathbf{R} \backslash \mathbf{Z}
$$

t

hen g cannot be of the form in case 1a

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=\operatorname{Arctan}\left(b^{2} \tan t\right) \quad \text { for } k \neq 1
$$

or of the form of the case 1 b

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=\operatorname{Arctan}(\tan t+1)
$$

because then there again exist integers n_{1} and n_{2} such that $h^{\left[n_{1}\right]}$ and $g^{\left[n_{2}\right]}$ intersect each other.

Hence in this case 1 when the group \mathscr{G} is C^{n}-conjugate to a closed subgroup of the whole fundamental group \mathscr{F}, it remains to consider only the situation when
and either

$$
\psi_{1}^{-1} h_{1} \psi_{1}(t)=t+\omega_{1} \pi, \quad \omega_{1} \in \mathbf{R} \backslash \mathbf{Z}
$$

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=\operatorname{Arctan}(\tan t)
$$

or

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=t+\omega_{2} \pi, \quad \omega_{2} \in \mathbf{R} \backslash \mathbf{Z}
$$

In the first of these cases

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=t+k_{1} \pi \quad \text { for some } k_{1} \in \mathbf{Z} \backslash\{0\}
$$

due to the initial value of this function at 0 . Since

$$
\psi_{1}^{-1} g_{1} \psi_{1}(t)=\left(\psi_{2} \psi_{1}\right)^{-1} \psi_{2} g_{1} \psi_{2}^{-1}\left(\psi_{2} \psi_{1}\right)(t)
$$

and $\psi_{2} \psi_{1}$ is again an increasing element of the fundamental group \mathscr{F}_{1}, i.e. $\psi_{2} \psi_{1}(t+k \pi)=\psi_{2} \psi_{1}(t)+k \pi$, we have

$$
\psi_{1}^{-1} g_{1} \psi_{1}(t)=\left(\psi_{2} \psi_{1}\right)^{-1}\left(\psi_{2} \psi_{1}(t)+k \pi\right)=t+k \pi, \quad k \in \mathbf{Z}
$$

Hence ω_{1} is an irrational number, otherwise h_{1} and g_{1} belong to the same infinite cyclic group and the same is true for the functions h and g, that was already excluded. However, when ω_{1} is irrational, then the union of graphs of functions $h_{1}^{\left[n_{1}\right]}$ and $g_{1}^{\left[n_{2}\right]}$ for all n_{1} and n_{2} from Z is a dense set in \mathbf{R}^{2}. Now we have

$$
h=\psi_{1} \varphi\left(\mathrm{id}+\omega_{1} \pi\right) \varphi^{-1} \psi_{1}^{-1} \quad \text { and } \quad g=\psi_{1} \varphi(\mathrm{id}+k \pi) \varphi^{-1} \psi_{1}^{-1}
$$

where $\psi_{1} \varphi$ is a C^{n}-diffeomorphism of \mathbf{R} onto I. Since the group \mathscr{G} is closed, we conclude that it is C^{n}-conjugate to the group of all translations

$$
t \mapsto t+c, \quad \text { for all } c \in \mathbf{R} \text {. }
$$

Now, let

$$
\psi_{1}^{-1} h_{1} \psi_{1}(t)=t+\omega_{1} \pi, \quad \omega_{1} \in \mathbf{R} \backslash \mathbf{Z}, \quad \text { case } 1 \mathrm{c} \text { for } h
$$

and

$$
\psi_{2}^{-1} g_{1} \psi_{2}(t)=t+\omega_{2} \pi, \quad \omega_{2} \in \mathbf{R} \backslash \mathbf{Z}, \quad \text { case } 1 \mathrm{c} \text { for } g
$$

Then

$$
\begin{gathered}
h_{1}^{\left[n_{1}\right]}(t)=\psi_{1}\left(\psi_{1}^{-1}(t)+n_{1} \omega_{1} \pi\right) \\
g_{1}^{\left[n_{2}\right]}(t)=\psi_{2}\left(\psi_{2}^{-1}(t)+n_{2} \omega_{2} \pi\right)
\end{gathered}
$$

and the condition $h_{1}^{\left[n_{1}\right]}(t) \neq g_{1}^{\left[n_{2}\right]}(t)$ on \mathbf{R} implies

$$
\psi_{3}\left(t+n_{1} \omega_{1} \pi\right) \neq \psi_{3}(t)+n_{2} \omega_{2} \pi
$$

for $\psi_{3}:=\psi_{2}^{-1} \psi_{1} \in \mathscr{F}$, otherwise $h_{1}^{\left[n_{1}\right]}$ coincides with $g_{1}^{\left[n_{2}\right]}$ that shows that h_{1} and g_{1} belong to the same infinite cyclic group, the case already excluded from our considerations. Since

$$
\psi_{3}(t+\pi)=\psi_{3}(t)+\pi
$$

we have

$$
\psi_{3}(t)=t+p(t)
$$

where p is a π-periodic function: $p(t+\pi)=p(t) \in C^{3}(\mathbf{R})$. Hence

$$
t+n_{1} \omega_{1} \pi+p\left(t+n_{1} \omega_{1} \pi\right) \neq t+p(t)+n_{2} \omega_{2} \pi
$$

or

$$
p\left(t+n_{1} \omega_{1} \pi\right)-p(t) \neq\left(n_{2} \omega_{2}-n_{1} \omega_{1}\right)
$$

for all $t \in \mathbf{R}$ and all $n_{1}, n_{2} \in \mathbf{Z}, n_{1}^{2}+n_{2}^{2} \neq 0$.
If $n_{2} \omega_{2}-n_{1} \omega_{1}=0$ for some n_{1} and n_{2} then either

$$
p\left(t+n_{1} \omega_{1} \pi\right)>p(t) \quad \text { on } \mathbf{R}
$$

or

$$
p\left(t+n_{1} \omega_{1} \pi\right)<p(t) \quad \text { on } \mathbf{R}
$$

Neither of these cases is possible for any continuous periodic function p.
Hence $n_{2} \omega_{2}-n_{1} \omega_{1} \neq 0$ for all integers n_{1} and $n_{2}, n_{1}^{2}+n_{2}^{2} \neq 0$, that means that ω_{1} and ω_{2} are rationally independent. Then for each number $t_{0} \in \mathbf{R}$ the set

$$
\left\{g_{1}^{\left[n_{2}\right]} \circ h_{1}^{\left[n_{1}\right]}\left(t_{0}\right) ; n_{1}, n_{2} \in \mathbf{Z}\right\}
$$

is dense in \mathbf{R}, because for different couples $\left(n_{1}, n_{2}\right)$ and (n_{1}^{*}, n_{2}^{*}) the values, $g_{1}^{\left[n_{2}\right]} \circ h_{1}^{\left[n_{1}\right]}\left(t_{0}\right)$ and $g_{1}^{\left[n_{2}^{*}\right]} \circ h_{1}^{\left[n_{1}^{*}\right]}\left(t_{0}\right)$ are different, there are infinite number of coumples $\left(n_{1}, n_{2}\right)$ satisfying $\left|n_{1} \omega_{1}+n_{2} \omega_{2}\right|<\varepsilon$ for any given $\varepsilon>0$ and, moreover, ψ_{1} and ψ_{2} are C^{n}-diffeomorphisms of \mathbf{R} onto \mathbf{R} for any $n \in \mathbf{N}$ satisfying

$$
\psi_{1}(t)=t+p_{1}(t), \quad \psi_{2}(t)=t+p_{2}(t)
$$

with π-periodic functions p_{1} and p_{2}.
Since φ is a C^{n}-diffeomorphism of \mathbf{R} onto I, and the group $G \mathcal{G}$ is archimedean and closed, the union of graphs of all its elements is the whole square $I^{\mathbf{2}}$. In such a situation we may apply Theorem 1 of G. Blanton and J. A. Baker [1] which
states: "Each group whose elements are C^{n}-diffeomorphisms of an interval I onto I and such that to each point $\left(x_{0}, y_{0}\right) \in I \times I$ there exists just one element h of the group satisfying $h\left(x_{0}\right)=y_{0}$, is formed by functions

$$
\chi\left(\chi^{-1}(x)+c\right)
$$

where χ is a C^{n}-diffeomorphism of \mathbf{R} onto I and c ranges through the real numbers". In our case we may write

$$
G=\chi \circ h_{c} \circ \chi^{-1}
$$

where $h_{c}: \mathbf{R} \rightarrow \mathbf{Z}, h_{c}(t)=t+c, c \in \mathbf{R}$.
2. Now, suppose that

$$
\varphi^{-1} h \varphi(t)=\operatorname{Arctan} \frac{e^{6} \tan t}{b \tan t+1 / a_{j}}, \quad t \in R_{+},
$$

$a \in \mathbf{R}_{+}, b \in \mathbf{R}$, is an element of the two-parametric group \mathscr{F}_{2} of increasing functions. Since $\lim _{t \rightarrow 0_{+}} \varphi^{-1} h \varphi(t)=0$, we have

$$
\varphi^{-1} h \varphi(\pi)=\pi
$$

hence $\varphi^{-1} h \varphi=\mathrm{id}_{\mathbf{R}_{+}}$that is excluded from our considerations.
$3 m$. If

$$
\varphi^{-1} h \varphi(t)=\operatorname{Arctan} \frac{a \tan t}{b \tan t+1 / a}, \quad \varphi^{-1} h \varphi ;(0, m \pi) \rightarrow(0, m \pi)
$$

$$
a \in \mathbf{R}_{+}, b \in \mathbf{R}, \quad \text { then } \quad \lim _{t \rightarrow 0_{+}} \varphi^{-1} h \varphi(t)=0 \quad \text { and } \quad \lim _{t \rightarrow \pi_{-}} \varphi^{-1} h \varphi(t)=\pi
$$

because h as well as $\varphi^{-1} h \varphi$ are increasing functions. Hence $m=1$, otherwise $h=\mathrm{id}_{I}$ that contradicts to our assumptions. However, if $a \neq 1$ and $b \neq 0$ then the equation

$$
\arctan \frac{a \tan t}{b \tan t+1 / a}=t
$$

i.e.

$$
a \tan t=(b \tan t+1 / a) \tan t
$$

is satisfied for $\boldsymbol{t}_{\mathbf{1}} \in(0, \pi)$ where

$$
\tan t_{1}=\frac{a^{2}-1}{a b}
$$

This case is excluded from our considerations. Even the case $b=0$ impossible since then

$$
\varphi^{-1} h \varphi(t)=\arctan \left(a^{2} \tan t\right)
$$

intersects $\mathrm{id}_{(0, \mathrm{x})}$ at $\pi / 2$.
If $a=1$ then

$$
\begin{aligned}
\varphi^{-1} h \varphi(t) & =\arctan \frac{\tan t}{b \tan t+1} \\
& =\operatorname{arccot} \frac{1+b \tan t}{\tan t} \\
& =\operatorname{arccot}(\cot t+b), \quad t \in(0, \pi),
\end{aligned}
$$

hence h is conjugate to $x \mapsto x+b, x \in \mathbf{R}$ for a fixed $b \in \mathbf{R}$ by means of the function $\varphi \circ \operatorname{arccot}: \mathbf{R} \rightarrow I$.

Now, let h and g be two different elements of the stationary group \mathscr{G} that do not belong to the same infinite cyclic group. Then

$$
\psi^{-1} h \psi(x)+x+b_{1} \quad \text { and } \quad \psi^{-1} g \psi(x)=x+b_{2}
$$

on \mathbf{R} where $\psi=\varphi \circ \operatorname{arccot} \in C^{n}(\mathbf{R})$, and b_{1} / b_{2} is irrational. Since the union of the graphs of functions

$$
x \mapsto x+n_{1} b_{1}+n_{2} b_{2} \quad \text { for all } n_{1}, n_{2} \in \mathbf{Z}
$$

is dense in $\mathbf{R}^{\mathbf{2}}$, and the group \mathscr{G} is closed, it is C^{n}-conjugate to the group of all translations:

$$
\{x \rightarrow x+c, c \in \mathbf{R}\} .
$$

$4 m$. Finally, if

$$
\begin{aligned}
& \varphi^{-1} h \varphi(t)=\operatorname{Arctan}(a \tan t), \quad a>0 \\
& \varphi^{-1} h \varphi:(0, m \pi-\pi / 2) \rightarrow(0, m \pi-\pi(2)
\end{aligned}
$$

then $\quad \lim _{t \rightarrow 0_{+}} \varphi^{-1} h \varphi(t)=0 \quad$ and $\quad \lim _{t \rightarrow x / 2_{-}} \varphi^{-1} h \varphi(t)=\pi / 2$,
and hence $m=1$. In this case h is conjugate to the function $x \rightarrow x+\ln a, x \in \mathbf{R}$ by means of the C^{n}-diffeomorphism $\varphi \circ \arctan \circ \exp : \mathbf{R} \rightarrow I$.

Now, analogously to case $3 m$, if h and g are two different elements of \mathscr{G} that do not belong to the same infinite cyclic group, they are C^{n}-conjugate to $x+b_{1}$ and $x+b_{2}$, respectively, with respect to the some C^{n}-diffeomorphism, the quotient b_{1} / b_{2} being irrational. Hence the group \mathscr{G} is C^{n}-conjugate to the group

$$
\{x \mapsto x+c ; c \in \mathbf{R}\}
$$

that finishes the proof of the theorem.

F. NEUMAN

IV. REMARK

The present paper gives technical details of the proof of Theorem 6.3.5 in the monograph [6], where main steps of the proof were outlined.

REFERENCES

[1] G. Blanton and J. A. Baker, Iteration groups generated by C^{n} functions. Arch. Math (Brno) 19 (1982), 121-127.
[2] O. Borůvka, Lineare Differentialtransformationen 2. Ordnung. VEB Berlin 1967. Linear Differential Transformations of the Second Order. The English Univ. Press, Lonđon 1971.
[3] O. Hölder, Die Axiome der Quantität and die Lehre vom Mass. Ber. Verk. Săchs. Ges. Wiss. Leipzig, Math. Phys. Cl. 53 (1901), 1-64.
[4] A. I. Kokorin and V. M. Kopytov, Linejno oporyadochennye gruppy, Nauka, Moskva 1972.
[5] F. Neuman, Stationary groups of linear differential equations, Czechoslovak Math. J. 34 (109) (1984), 645-663. (C. R. Acad. Sci. Paris Ser. I Math. 229 (1984), 319-322).
[6] F. Nepuman, Ordinary Linear Differential Equations, Academia, Prague \& North Oxford Academic Publishers Ltd., Oxford 1989.

František Neuman
Mathematical Institute of
the Czechoslovak Academy of Sciences
branch Brno
Mendlovo nd́m. 1
60300 Brno
Czechoslovakia

