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Abstract. Singular quadratic functionals with a single singular end-point are investigated 
using the transformation theory of linear Hamiltonian systems. In particular, there are established 
results for self-adjoint 2n-order functionals. 
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1. I N T R O D U C T I O N 

The theory of singular quadratic functionals as introduced by Morse and 
Leighton [11] and followed by [12, 13] involves the study of functional 

(i) J[y; si, s2] = J1X0 /2(0 ~ «(0 /(')] dr. 

a < s± < s2 < b as sx -> a, s2 -+ b and y belongs to the prescribed class of 
"admissible arcs" defined on (a, b). Morse and Leighton [11] discovered a con
dition termed the ^singularity condition" which with the classical condition 
(disconjugacy of the corresponding Euler equation) yields necessary and 
sufficient condition for singular functional to be nonnegative, i.e. lim inf / [y; 

st~*a Mz-*b 

^i > ^2] ^ 0- Comprehensive bibliography concerning the problem may be found 
in [16]. 

In this paper we solve the problem of minimizing of the singular quadratic 
functionals corresponding to linear Hamiltonian systems. The principal idea we 
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use is the application of the transformation theory of linear Hamiltonian systems 
and corresponding quadratic functionals. In particular, we establish results for 
singular functionals in terms of a singular condition similar to that of [11, 17] 
and for regular functionals in terms of a phase matrix. In the case of the second 
order linear differential equation this approach was originally proposed by 
J. Krbila [10] for associated regular functionals (on the compact interval) and 
later in [8, 9] for singular functionals (1). However, the result in [8, 9] is incorrect 
as provides the counter example in [5]. 

Statement of the problem. We suppose the second order variational problem 
corresponding with the linear Hamiltonian system 

(-) _ , _ _ , л . . oг, 
ÿ =B(t)y + C(t)z, 
z' - -A(t)y-Bт(t)z, 

where A(t\ B(t), C(t) are nxn matrices of real-valued functions continuous on the 
interval I — [a, oo), the matrices A(t), C(t) are symmetric. 

We suppose (1) to be identically normal on 7, i.e. the trivial solution (y, z) ss (0, 0) 
is the only one solution of (2) for which y(t) = 0 on a nondegenerate subinterval 
of/. 

We consider the functional 

(3) J[y, z; a, b] - f [zT(t) C(t) z(t) - yT(t) A(t) y(i)] * . 
a 

a < b < oo. Integrals employed throughout are Lebesgue integrals and their 
extensions. 

We say that vector functions y(t)9 z(t) are admissible curves on I = [a, oo) with 
respect to (2) if 

i) z(t) is (Lebesgue) measurable on / and y(t) is a solution of y' = B(t) y -p 
-f C(t) z(t) a.e., satisfying boundary conditions y(a) = 0, limj<0 = 0; 

l -*oo 

b 

ii) J zT(t) z(t) dt < oo for every 6, a < b < oo. 

We seek conditions under which 

(4) liminf J[>, z;a9 0 ^ 0 
f-->00 

for all admissible functions y(t)9 z(t) on [a, oo) with respect to (2). Whenever (4) 
holds for the admissible class of curves we say that [a, oo) affords a minimum 
limit to /. 
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Remark 1. Some special cases of the problem have been investigated in the past. 
If n •= 1, C(t) ^ 0 then (2) and (3) corresponds to the second order equation 
(P(Oy')' + <l(t)y = 0 and to (1), respectively (Case I). If B(t) = 0, C(t) being 
invertible then we have quadratic functionals of n dependent variables correspond
ing to the second order linear system 

J (/ ' (TV - yTAy)dt -> (C^YJ + AY = 0, 
a 

investigeted by Tcmastik [17, 18] (Case II). 

The condition of the identical normality of (2) eliminates pathologies in the 
investigation of conjugate points present in an abnormal differential system (2), 
see [16]; in the terminology of [4] this condition is called "controllability condition". 

The introduced definition of admissible functions agrees with that of [4, 16] 
for the compact interval and with that of [17, 18] for Case II. 

2. P R E L I M I N E R I E S 

Corresponding to (2), we have the matrix equation 

("•) -7' _ Лít\ V BT, 

Y' = B(t) Y + C(t) z , 
Z' = -A(t)Y - Bт(t)Z. 

In accordance with [4, 16] we use the following notation. We say that (Y(t)9 Z(t)) 
is a solution of (2)* if Y(t)9 Z(t) e s/<g(I) (absolutely continuous) and (2)* satisfy 
a.e. on /. If (Y(t)9 Z(t)) is a solution of (2)* then YT(t)Z(t) - ZT(i) Y(t) = K, 
where K is a constant nxn matrix. If K = 0 then (Y(t)9 Z(t)) is called conjoined 
(an alternate terminology for this concept is isotropic; see [4]).Two points a9 b e R 
are conjugate with respect to (2) if there exists a non-trivial solution (y(t)9 z(t)) 
of (2) such that y(a) = 0, y(b) = 0. (2) is disconjugate on / if there exist no two 
distinct points from I that are conjugate with respect to (2). 

Let be (2) disconjugate on [a9 oo). Then there exists a conjoined solution 
(Y0(t)9 Z0(t)) of (2)* such that the matrix Y0(t) is nonsingular on (a9 oo) and 

lim[} Yt\t)CitHYlV1 wr1 =0. 
f->CO 

The solution (Y0(t)9 Z0(t)) with these properties is called principal at infinity. 
A principal solution (Ya9Za) at a is defined similarly; one can verify that this 
solution satisfies the initial condition Ya(a) = 0, Za(a) = N where _Vis anon-singu
lar matrix. A solution (Y(t)9 Z(t)) of (2)* is called antiprincipal at infinity if it 
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is conjoined, lt(f) is non-singular for large t and 

Urn [J Y'\t) C(t) YT"\t)Yl = M, 
f-*oo 

where M is a non-singular matrix. 

If (Y(t), Z(t)) is a solution of (2)* such that Y(t) is invertible for all / then 
W(t) as Z(t) Y~x(t) is a solution of the Riccati equation 

(5) W' + A(t) + H7_3(0 + _3r(0 W + IVC(0 JV = 0. 

The solution (Y(t)9 Z(t)) is conjoined if and only if the corresponding solution W(t) 
of (5) is symmetric. If (Ya(t), Za(t)) is the principal solution at a then the solution 
Wa(t) = Za(t) Y~l(t) of (5) is called the distinguished solution at a. 

Our method will be based on the transformation of linear Hamiltonian system 
given in the following two theorems. 

Theorem A. [1, Theorem 6.3]. Let D(t)9 E(t)es/^(I) be nxn matrices D(t) 
being non-singular, for which DT(t)E(t) = Kr(0 D(0-

Then the transformation 

(6) _ _ _ , „ . . , nг-i 
У - D(t) u, 
z =E(t)u + Dт-l(t)v 

transforms (2) into the system 

(7) .,,__„ , л . . _-, 
u' = _ 0 (0 « + Co(0 v, 
v' = - „ 0 ( 0 « - -*o(0 ». 

where _3o(0 = / r ^ - D ' + _9D + CK), C0(l) = D~lCDT~\ A0(t) = DT(K' + 
+ _4D + BTE) + (-D' + BD + CE). 

Remark 2. The transformation (6) keeps the identical normality, disconjugacy 
on the given interval 7, and a principal (antiprincipal, conjoined) solution is trans
formed into that of the same type. 

Obviously, the transformation (6) with £(0 = 0, D' = B(t) D transforms (2)* 
into the "off-diagonal" system 

(8) V = C(t) V, 
V « -A(t) V9 

where C(0 = D^XCDT'\ A(t) = DTAD. 

Theorem B. (5, Theorem 1]. There exist nxn matrices D(t\ E(t) e _$/#, D(t) 
being nonsihgular, inch that the transformation II = D(i) Y, V = E(t) Y + DT~l(t) Z 
transforms the system (8) into the system 
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M Y' = Q(t)Z, 
W Z'=-Q(t)Y, 

t 

where Q(t) = D~1CDT~1. The matrix A(t) = J Q(s)ds is called a phase matrix 
of the system (2)*. a 

3. T R A N S F O R M A T I O N OF FUNCTIONALS 
AND S I N G U L A R I T Y CONDITION 

The symbol ye@[a,b]:z will denote those functions y e j/<&[a, b] for which 
there exists a z(t) measurable, satisfying condition ii) from the definition of admis
sible functions and such that y' = B(t) y + C(t) z(t) a.e. on [a, b]. 

Theorem 1. Let ye @[a, b] : z. Then functions u, v given by the transformation (6) 
satisfy 

f (zrCz - yTAy)dt = )(vTC0v - uTA0u)dt + [y^D^y^. 
a a 

Proof. According to Theorem A it holds u' = B0(t) u + C0(t) v and u = D"1y. 
Using the transformation (6) we get 

b b 

(10) J (zTCz - yTAy)dt = J l(uTET + vTD^x) C(Eu + DT^v) - uTDTADu] dt = 
a a 
b 

= \(vTD"1CDT^H + uTETCEu + vTD~1CEu + uTETCDT~1v - uTDTADu)dU 
a 

Further it holds (uT)' = uTBT
0 + vTC0 = uT(-DT' + DTBT + ETC) D7""1 + 

+ »r.O-1CDT-1,thiis 

(uTDTEu)' = uT(~DT' + DTBT + ETC) DT~1DTEu + vTD~1CDT-1DTEu + 
+ uTDT'Eu + uTD*0u + uTDTED~i(-D' + BD + CE)u + uTDTED-1CDT-lv = 

= vTD~iCEu + uTETCDT-1v + 
+ uT(-DT'E + D*fE + ETCE + DT'E + DTE' - ETD' + ETBD + ETCE)u = 

= vTD~1CEu + uTETCDT~lv + 
+ u\DTE' - ETD' + DTBTE + 2ETCE + ETBD) u. 

Integrating the l^t equality we get 

(11) J (uTETCfy + vTD'lCEu + uTETCDT~1v)dt = luTDTEuftt + 
a 

+ ll~uf(DTE' - ETD' + DTBTE + £TC£ + ETBD)u] dt. 

227 



z. DOSLA 

Finally, by substitution (11) into (10) we have 

J (zTCz - yTAy) dt = J \yTC0v - uT(DTAD + DTE' - ETD' + DTBTE + ETCE + 
a a 

b 

+ ETBD) u] dt = J (vTC0v - uTA0u) dt + [uTDTEufa = 
a 

b 

- f (vTC0v - uTA0u)dt + \yTED'ly^. • 
a 

We can use Theorem 1 to have a non-negativity of functionals. In the following 
if C is symmetric nxn matrix (i.e. CT = C), C _ 0 means that C is non-negative 
definite. 

Theorem 2. Z>/ C(l) ^ 0 on [a, oo). In order that (4) holds for all admissible 
functions y(t)9 z(t) on [a, oo) with respect to (2) it is necessary and sufficient 

i) (2) is disconjugate on [a, oo), 
ii) singularity condition is satisfied, i.e. for all y(t), z(t) admissible on [a, oo) 

with respect to (2) such that 

t 

lim inf J (zTCz - yTAy) dt < oo. 
f-»ao a 

it holds 
liminfyT(t)Wa(t)y(t)^0, 

t-*oo 

where Wa(t) is the distinguished solution of (5). 
Proof. I. Note that if y(t), z(t) are admissible functions with respect to (2) then 

y e 3t[a, b] : z and by virtue of the boundary condition at a it holds [yTED~ 1y]t=a = 
=-0. 

Let (2)* be disconjugate on [a, oo) and (Y, Z) be a principal solution of (2)* 
at a. Then Wa(t) == Z(t) Y~x(t) is the distinguish solution of (5) at a and the 
transformation (6) with 

. D(t) = Y(t\ E(t) = Z(t) 

yields 

B0 « F - H - r + BY + CZ) = Y~l(-BY - CZ + BY + CZ) = 0, 

Co = Y~lCYT~\ 

A0 = YT(Zf + AY + BTZ) = YT(-AY - BTZ + AY + BTZ) = 0. 

By Theorem 1 

J(2гСz - ЃAtìdt - íV<»dt + ЬTад (-» 
« 
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holds for all corresponding couples of functions y(t)9 z(t) and u(t)9 v(t). From the 
inequality 

ft t 

lim inf J (zTCz - yTAy) ds ^ lim inf J (vTC0v) dt -F lim inf yT Way, 
r->oo a t-*oo a t-*oo 

it follows the sufficiency of the singular condition. 
II. We now follow a method which was used in the scalar case by Morse and 

Leighton [11]. Suppose there exists a couple of admissible functions y, z such that 
lim inf J[y, z\ a, t] < oo and the singularity condition is not satisfied for this 
* -»oo 

couple i.e., liminf >>r(f) Wa(t)y(t) = -fc2, where Wa(t) is the distinguish solution 
f-*oo 

of (5) at a and k is a real constant. Let e e (a, oo). We construct a couple of vector 
functions 

(V(t\ T (tW - J ^ 0 ' Z ( 0 ) f 0 r % E (<?' «*)' 
WW,ZAW - | ( y < j ( 0 c > Z f l ( 0 c ) f o r , 6 ( f l > e l 

where (Ya, Za) is the principal solution of (2)* at a, c is a constant vector such 
that (y(e), z(e)) = (Ya(e) c, Za(e) c). It holds 

* 

J (zTCz, - yjAye) ds = \c\ZaCZa - YjAYa) c dt + J (zTCz - >>T >̂-) ds = 
i a <* e 

= - crYl(e) Wa(e) Ya(e) c + J (zTCz - yTAy) ds -

= ->>T(e) JFe(e) >>(e) + j (zTCz - / ^ ds. 

Since lim inf (-yT(t) Wa(i)y(t)) = -k2 and lim inf J (zTCz - yTAy) ds < oo 
t->oo f-*oo a 

choosing e sufficiently large, we have — yT(e) Wa(e) y(e) < —2k2/3 and 

lim inf J . (zTCz - yTAy) ds < k2/3. 
*-*oo e t 

Consequently, we have lim inf \(zTCze — yeAye)dt < —k2/3 which is a con-
tradition. • --oo a 

Remark that in special Cases I and II (see Remark 1) the singularity condition 
complies with that one introduced in [11] and [17], respectively. 

The following theorem gives sufficient condi ions for singularity condition to be 
satisfied. Since every system can be transformed to "off-diagonal" form (see 
Remark 2) we suppose 5(0 = 0 in (2)* without loss of generality. 
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Theorem 3. Let B(t) = 0, C(t) ^ 0 on [a, oo). If the system (2)* is disconjugate 
00 00 

on (a — e, oo) for some e > 0, J C(s) ds < oo and J max | 0fj(s) | ds < oo tAerc 
a a 

[a, oo) affords a minimum limit to J. 
Proof. Let (Ya, Za) be a principal solution of (2)* at a. In the light of the fact 

that W = Wa = ZaY~x is a solution of the Riccati equation 

»" + A(t) + WC(t) W = 0, 
it holds 

* t 

W (t) « If (ft) - J W(s) C(s) W(s) ds - J A(s) ds, a<b<t 
b b 

and using the symmetry of W(t) we get 

(12) W(t) = W(b) - J ZttY;*CУÎ"*ZГ ds - j Л(s) ds 

The fact that (Ya, Za) is a principal solution and disconjugacy of (2) on (a — e, oo) 
for some e > 0 imply that (Yfl, Zfl) is a antiprincipal solution of (2)* at infinity. 

t t 

Thus J r a - 1 C r r ~ 1 d_y is bounded as well as Za(t) = - J AYa ds. 

Now, we use the following lemma [17, Lemma 6.3]. 

t 

Lemma. If Q(t) is a positive definite matrix on [a, oo), J Q(s) ds is bounded and 
a 

t 

A(t) is bounded matrix then J Alr(s) Q(s) A(s) ds is bounded. 
a 

According to this Lemma the first integral in (12) is bounded and thus W(t) is 
bounded. Hence lim yT(i) W(t)y(t) = Oi.e., the singularity condition is satisfied. • 

t-*oo 

In the following, we denote l„(Q) the maximal eigenvalue of the matrix Q(t). 
t 

If J ln(Q) <n then (9) is disconjugate on [a, t] (see e.g. [16, p. 366]). This fact together 
a 

with Theorem 3 is used in the following example. 

00 

Example 1. Let Q(t) ^ 0 on [a, oo) and J ln(Q) < u. Then it holds 
a 

Urn inf f (zT(s) Q(s) z(s) - yT(s) Q(s) y(s)) ds ^ 0, 
f->00 fl 

for all y(t), z(/) admissible on [a, oo) with respect to (9) i.e. y9 z e s/% such that 
? - Qit)z,y(a)~0~ limy(t). 
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This example corresponds in the scalar case to the well-known fact that 
b b 

J #(0 (y'2 - y2) dt > 0, y(a) = 0 = y(b), y -£ 0, whenever J q(t) dt < n. 

Till now we have used transformation of the functional (3) into the functional 
b 

J (vTC0v) dt which is allways non-negative (if C ^ 0). Now we use another method 
tt 

consisting in the fact that every system (2) can be transformed into the system (9) 
whose solutions are the so called trigonometric matrices (see [2]). This method 
follows the idea of [8, 9, 10] consisting in the fact that the equation (p(t) y')' + 
+ 9(t) y = 0 can be (globally) transformed into the equation u" + u = 0 whose 
solutions are the sine and cosine functions. 

The following statement sketches the application of this idea. 

Corollary 1. Let A(t), C(t) e <#[a, b], B(t) = 0 and Q(t) be a derivative of the 
b 

phase matrix of (2)* satisfying $ ln(Q) < n. Then 
a 

J (z\s) C(s) z(s) - yT(s) A(s) y(s)) ds = 0, 
a 

for all y(t), z(t) admissible on [a, oo) with respect to (2). 
Especially, if n = 1 we get results of [10]. 
Proof. It follows immediately from Remark 2 and Theorem B. 

4. SELF-ADJOINT FUNCTIONALS OF H I G H E R O R D E R 

Consider a self-adjoint linear differential equation of the 2n order 

(13) IK-i/C^Ou^T^o, 
fc-=0 

where pk(t) e ^k[a, oo), k = 0, . . . , n and pn(t) > 0 for t e I = [a, oo). 
Putting 

(H) y-=(u,t^...,«<»-*>)' z « ( * ! , . . . , z . ) r , z* = ii-iy-'iPju^y-'K 

we can write the equation (13) as a linear Hamiltonian system (2) where 

A = -diag[p0 ,P i , . . . ,A,- iL C = plT
1diag[0)...,0, 1] 

(15) B = *¥» *" = < 0 otherwise'. 
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It is easy to verify that C(t) ^ 0 and the system (2) with A, B, C given by (15) 
is identically normal. In accordance with [4] we call points a, b conjugate with 
respect to (13) if there exists a nontrivial solution of (13) having zeros of multi
plicity n at a and b. We say that (13) is disconjugate on I if there exists no couple 
points from I conjugate with respect to (13). 

The equation (13) is Euler - Lagrange equation for quadratic functional 

Js(u) - J[pB(u(B))2 + pn-,(u«-l)f + ... + pou^dt. 
a 

The functional J5(u)'will be investigated on the class of admissible functions u(t) 
on [a, oo) i.e. u e V 1 , uin)est<$, uU)(a) = 0 = lim w(l)(0, i = - 0 , . . . , » - 1, 

(pnu<n))<k) are measurable and J (pnu
in))(k) (pnu

{n))u) < oo for every b > a; k, j = 
= 0 , . . . , * - l . 

Note that admissible functions defined in such a way are admissible functions 
of the corresponding system (2) with matrices (15) as well as the definition of 
conjugate points with respect to (13) corresponds to that one of (2). Hence, we 
can apply Theorem 3. 

Corollary 2. If the equation (13) is disconjugate on (a - e, oo) for some s > 0 and 

]p:\t)t2n"2dt < oo, J \Pi(t)\ t2n~2«+1)dt < oo, i - 0, . . . , » - 1, 
a a 

then 
t n 

lim inf J £ pk(s)[u(k)(s)]2 ds £ 0 
*->oo a k~~0 

for all admissible functions u(t) on [a, oo). 

Proof. Using Theorem A and Remark 2 we transform (2) with matrices (15) 
into "off-diagonal" system (8). The equation D' = BD yields 

Then 

D"1 - (<?,,), d,j - < ( _ l)t+JtJ-il(j_ j) J J g ;-

and by a straightforward computation we get C(t) = D~1CDT~1 = (£,,) and 
A(t) = DTAD « («fy) 

j2--i- . / mln{U} ^-t- . -J 

^"H^C—0»»-/)» * " *?i (i-fc)!(/-fe)!P*-l(°-
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Now, Theorem 3 can be used to obtain the desired result. 

Example 2. Consider the self-adjoint equation of the fourth order 

06) (PvOyT+ <?(0y = 0 fe(0,oo), 

where p(t) > 0, pe<g2 and (i) q(t) < 0 for t e (0, oo), 
00 

(ii) f t 2 g > - o o , 

0 0 

(iii) ţt2p-í]<co. 
1 

00 

Assumptions (i), (ii) and Jp 1 < co ensure disconjugacy of (16) on [a, oo) 
where a is sufficiently large (see [7]). Hence, according to Corollary 2 it holds 

t 

lim inf J (p(s)u"2 + q(s)u2) ds £ 0, 
t->oo a 

for all admissible functions u(t) i.e. u e <#3[a, oo), u°\a) = 0, lim uil\t) = 0, 
i = 0, 1. 
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