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ASYMPTOTIC AND OSCILLATORY BEHAVIOR 
OF S O L U T I O N S OF DIFFERENTIAL EQUATIONS 

WITH ADVANCED ARGUMENTS 

OLUSOLA AK1NYELE and R. S. DAHIYA 

(Received September 25, 1985) 

Abstract. We study the asymptotic behavior of solutions of the differential equation j/")(f) -f 
+ fit u(o(t))) =h(t) with advanced arguments which extend some earlier results of the authors. 
We also establish a necessary and sufficient condition that all solutions are oscillatory when n is 
even and are either oscillatory or stiongly monotone when n is odd. 
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§1 I N T R O D U C T I O N 

The purpose of this paper is to study the asymptotic and oscillatory behavior 
of solutions of the non-linear differential equation with advanced argument 

(l) «<">(0+f(t,w(<T(0)) = /i(0, 

where feC([0, co)xK, R) and satisfies conditions which guarantee the existence 
of solutions of (1) on [/0, co), t0 ^ 0, h e C([0, co), R) and a(t) ^ / ^ 0. A non-
trivial solution of (1) is called oscillatory if it has arbitrarily large zeros. Otherwise 
it is called nonoscillatory. A nonosciHatory solution is said to be strongly monotone 
if it tends monotonically to zero as t -> co together with its first n — 1 derivatives. 

Recently the authors [1] generalized results obtained earlier by Cohen [3], 
Tong [8] and Singh [7] for ordinary differential equations to delay differential 
equations of the form (1) with retarded arguments. Here we present several results 
some of which further extend our results to advanced arguments. 
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§2 MAIN RESULTS 

Wc shall need the following two lemmas. The first lemma can be proved easily 
and the second lemma is due to Kiguradze [5]. 

Lemma 1. Let u(t) and g(t) be nonnegative, real-valued continuous functions [0, oo) 
such that 

t 

. u(t) g u0 + J g(s) ua(s) ds, 0 < a <; 1, 
to 

for u0 as a positive constant and t = /0. Then for t e [0, oo), / = t0 we have 

ii(0 ^ [u0-a + (1 - a) j g(s) ds]"^«, 0 < a < 1 
to 

and 
t 

u(t) g M0 exp ( J g(s) ds), a = 1. 
*0 

Lemma 2. Ifu(t)> u'(i),..., w(M_1)(0 are absolutely continuous and constant sign 
on the interval [/0, oo) and u{n)(t) u(t) ;g 0, then there exists an integer /, 0 _ / S 
5jJ n — 1 which is even if n is odd and odd if n is even such that 

1 " ( 0 ' - {n - 1) ^{n - 0 ' "(''"1)(2""'"lf> I» ^ t o -

Theorem 1- Assume that the following hold: 

(0 /K0 i-* # continuous and nonnegative function on [0, oo) arid /?(/) > 0 for 
/ > 0, 

(ii) ](a(s))<n-1)p(s)ds < OO, 0 < a = 1, 
i 

(iii) | f(/, t/((T(/)) | g p(t) | M(a(0) |% 0 < a = 1, 

(iv) ]\h(s)\ds< oo. 

T/ĵ n equation (1) has 
(a) solutions which are asymptotic to the solutions of u{n)(t) = 0 as / -• oo, 
(b) solutions which are also asymptotic to ytn"1

9 y ^ 0 provided a = 1. 
Proof (a). Applying Taylor's theorem for / ;> 1, we have 

*~x u(J)(U 1 f 

"(o-z-^po-iy+T--^ jo-ar^wwd-. 
y-o ./• V" — -J* j 

56 



ASYMPTOTIC AND OSCILLATORY BEHAVIOR 

With appropriate choice of constants c0, ci9..., cn_x and / > 1, we get 

(2) | u(t) | < (i\ cj |) I-- l + f \ \ | «*">(s) | ds < 
J = o \W ~ -J- 1 

- C'"~' + (n - 1)! / ' , I ( S ) ' ds + (/. - 1)! / K s ) ' " ( ° ( s ) ) '*ds' 
n - 1 

where £ | c. | = c, 0 < a __ 1. 
J«o 

Now replacing / by (r(l), it follows that 

<wAy»-- *(0 
| «(a(0) | s c(ff(0)"_1 + } * " , j I h(s) I ds + 

(attW1 a(t) 

+ ( B - i ) i . / P W ' ^ W ) ! ' ^ -

From the above inequality, we have 

I liCflYfY* I 1 ff(0 . 1 ff(t) 

< »c) 

- ^ + (n - 1)! { P(s) l M(<7(s))'"ds (using (iv)) 

<fc+TWlKs)r-'>l"(g(s))''ds, 
i (<T(s)r("_l) 

i * 

where k = c + _ J | h(s) | ds. 

Applying Lemma 1, we get 

(a(0)n_1 L (" - J ) ! i J 
and hence 

( 4 ) I u(a(t))\ < M n y i e w f ( i j ) f _i f _ i and o < a _ 1. 
WO)"1 _ ~ 

Furthermore 

f | f(s, u(a(s))) | ds <; \p(s) | u(a(s)) |" ds ^ 
1 1 

f_ Maf((T(s))a(M-1)p(s)ds < oo. 
I 
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Now integrating (1) from 1 to /, we get 

u{*-l\t) = ^""^(l) - J f(5, u(a(s)))ds + J h(s)ds. 
1 I 

00 

Set u(n"n(l) + J h(s) ds = c2 and choose t0 large enough so that 
I 

Ma J p(5)(a(s))("-1)ads < c29 then lim uin"l\t) * 0. 

(b) Now for a = 1, it follows from (2) 

(5) Jij£M < fc + _| J p(s) I „(<-(-)) I ds < 

A/f °° 

S k + --. J (a(5))"-1 p(s) ds g kx in view of (ii) for some kx > 0. 

Integrating (1) from ti to / with tt > 1, it follows 

„<•-->(,) g ttC--i)(ri)+ J Mp(5)((7(5)r-1 d5 + J | fc(5) | d5 
ti ti 

and as / -> oo, 

uiH'x\t) ^ u^-'XtJ + M Jp(s)(a(s))n~1 ds + ]\h(s) | d5. 
- . f i 

00 fc 
For some k2 > 0, set u(w 1}(li) + J | h(s) | ds = ----- and choose tt large enough 

so that Jl/J/>(*) (*(*))"-! ds^-^ 2 - , then u^-^t) ^ k2. Hence limw^"1^) 

exists and ia a nonzero constant. Moreover, | u(0 I ^ k^f'1 will make u(t) 
asymptotic to y/""1, y ?- 0. 

Example 1. Consider the third order equation 

(6) u'"(0 + r5ull2(t + n) = r 4 , / > 0. 

Now /( / , u(a(t))) = r5ull2(t + TI), so that p(t) = r 5 , cx(t) = / + n9 h(0 = r 4 

1 °° 
and a = —. The hypothesis of Theorem 1 are satisfied with Jh(/)d/ < oo. The 

2 ! 
conclusion of Theorem 1 (a) therefore holds. A solution of the given equation is 
given by u(0 = (/ — n)2. 

Example 2. Consider the fourth-order equation 

(7) u'v(0 + e-\t + n)~3 u(t + n) = e~\ t £ 0. 
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-t 

I / ( Í , «(<*)))! u(t+ -.)!-- e \u(t + n)\, 
(t + n) J | (f + n)3 

p(t) = , o-(0 = t + 7T, h(t) = e t and a = 1. 
(t + n)3 

Again the hypothesis of Theorem 1 are satisfied and the conclusion (b) of 
Theorem 1 holds. A solution of the equation is given by u(f) -= t3. 

Example 3. Consider the n-th order equation 

(8) u(">(t) + t~(n + 2)ull2(t + n) = e'\ 

\f(t9u(a(t)))\ <t-(n+2)\u(t + n)\l}2, 

so that 

p{t) = /"(" + 2), a(t) = t + n, a = y and h(t) = e'
f. 

The hypothesis of Theorem 1 are satisfied and the conclusion therefore implies 
that there exist solutions which are asymptotic to the solutions of u(n)(0 = 0 as 
/ -> oo. 

Theorem 2. Assume that cp(t) is a nonnegative continuous function on [0, oo) and 
g(u) > 0 is continuous for u > 0 and nondecreasing on [0, oo) such that the following 
hold: 

OO 

(v) J (p(s) ds < oo, 
00 

(vi) J | h(s) | ds < oo, 

( v i i ) | / 0 , « ( a ( 0 ) | ^ 9 ( 0 g ( | ^ | ) . 

Then the conclusion of Theorem 1(a) holds. 
Proof. Following the proof of Theorem 1 and using the hypothesis, we obtain 

J±M^st+l';wiJi!W£))i)d, 
W0)-' . V w r v 

Applying Bihari's lemma [2], we get 

i««жs c-. [ е д +7^ ) d s ], 
wor1 - ( 

m ds 
where G(co) == J —py and G""1 is the inverse of G. Now using hypothesis (v), we 
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see that 

I " W O ) I ^ M f o r s o m e M > 0 a n d a in ^ i 
(cr(O)" 

and hence 

J | f(s, u(ф)) | ds < 00. 
1 

The remaining proof is similar to that of Theorem 1. 
Remark. In Theorem 2, the choice g(u) = \ u |a, where a is any positive number, 

is permitted. In particular, if we choose g(u) — \ u |a where a > 1, then we still 
have the same conclusion provided the equation (1) has solutions that exist on 
[T, oo) for any T > 0. 

The proof in the following theorem is similar to the method by Sevelo and 
Vareh [6] for even order linear delay equations. 

Theorem 3. Suppose there exists a continuous function p(t) on [0, oo) and p(t) > 0 
for t > 0, p < 1 such that /(/, u) > 0, if u > 0, /(/, u) < 0, if u < 0, 

\f(t9u)\ £p(t)\u\'9 (l ,u)e[0,oo)xP , 

and there is a function Q(t) such that 

Q("\t) = h(t) with lim Q(i\t) = 0 for 0 ^ i ^ n - l . 
r-»oo 

If 
fr^-^/KOdt--- oo, 

then every solution of{\) is oscillatory in the case n is even and is either oscillatory or 
strongly monotone in the case n is odd. 

Proof. Let n be even and u(t) be a nonoscillatory solution of (1). We assume that 
u(t) > 0 for large t. Set u(t) = y(t) + Q(t)9 then u(o(t)) = y(o(t)) + Q(o(t)) and 

y(rt)(0 - ~f(U u(°(t))). 

Now y(M)(0 < 0 f° r large f due to a condition in the theorem. Hence y{n~l)(t) is 
decreasing and so the derivatives of X0 of orders up to (n — 1) are eventually of 
constant sign, the odd order derivatives being eventually positive. Hence 

y'(t) > 0 and y(t) is increasing for large /. 

Using Kiguradze's Lemma, 
9(J-« + l ) ( « - l ) 

y(t) ̂  y(2^w+1>o ̂  - j 4 — — — (* - t0y-i y>-i>(0 
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for t > t0 provided t0 is sufficiently large. Hence if 

2 ( i - n + i ) ( n - i ) 

fc== ( n - 1 ) . . . ( » - J ) ' 
then 

y(t) ^ ktn-1/n~1\t)> t£2t0. 

Since a(t) >. t and y(t) is increasing for large f, there exists tt such that 

yfa(O) .S y(0 ^ /kl""1/""1^) for t £ / j . 

Moreover, since lim g(,)(0 = 0 for 0 ^ i ^ /J — 1 and u(t) = y(0 + (>(0> for 
f-*oo 

large /, i.(n_1)(/) ^ / " _ 1 ) ( 0 , so 

/»>(/) + W-»p(t) [yin-l)(t)Y £ /B>(0 + pd) [y(<r(.t))Y ^ 
g /">(/) + p(/) [«(«x(0)]' ^ yln)(t) +f(A <<*))) = o. 

Dividing the inequality by [? (" - 1 >(/)]' and integrating from /, to /, we obtain 

[/"""(-XT' 

For large enough /, we see that 

+ fc'íí"<"~1)p(0d. r^O. 

J tfi(n X)p(t)dt < co which is a contradiction. 

Now let n be odd and assume the existence of a nonoscillatory solution u(0-
If u(0 does not approach zero as t -+ oo, then y(t) does not approach zero as 
/ -* co, since u(0 = y(0 + <?(0-

Now 
y(0 

1*01-- .1*2 ' 1-11+1 . 

>>(2,_»+10 

and an application of Kiguradze's Lemma to | ̂ (2'~"+1)/) | yields with the increas­
ing property of y(t), 

I X<r(0) I £ I y(f) I ^ m*/ - 1 1 / " - > ( 0 I. 
where 

y(0 m « inf 
УV J - # + i . j 

The proof now follows in the same way as for n even. It follows that if a non-
oscillatory solution exists then it approaches zero as t -> o°. Hence lim u{i)(t) -*» 0, 
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i = 1, 2 , . . . , n — 1 monotonically. If u(t) < 0 then the proof can be constructed 
similarly. 

Theorem 4. Suppose there exists a continuous function p(t) on [0, oo), p(t) > 0, 
y < 1 and f(t, u), h(s) satisfy conditions of Theorem 3 such that 

(0 I / M l £p{t)\u\\ 
co 

(ii) J | h{s) | d_r < co. 

Then a necessary and sufficient condition that every solution of (I) be oscillatory 
if n is even and be either oscillatory or strongly monotone if n is odd is that 

J[a(/)]^-1>p(0dr = oo. 

Proof. Suppose (1) is oscillatory if n is even and is either oscillatory or strongly 
monotone if n is odd and 

][o(t)Y*~X)Pif) At = co does not hold, 

then by Theorem 1, equation (1) has a nonoscillatory solution u(t) which are 
asymptotic to the solutions of u{*\t) -= 0 as / -+ oo. Hence (1) is not oscillatory, 
and also not strongly monotone. 

Conversely suppose 

][a(t)Y^l)p(t)dt = oo9 

then by Theorem 3, every solution of (1) is oscillatory if n is even and is either 
oscillatory or strongly monotone if n is odd. The proof is complete. 
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