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Abstract. In this paper there will be investigated a question proposed by M. Darnel. PJ 
concerning the multiplication of torsion classes generated by radical classes of lattice ordered 
groups. 
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1. P R E L I M I N A R I E S 

For the basic terminology and notations on lattice ordered groups cf. Conrad 
[1] and Fuchs [3]. We recall the following notions. 

A torsion class (cf. Martinez [7]) is a collection of lattice ordered groups closed 
with respect to convex /-subgroups, joins of convex /-subgroups, and homomorphic 
images. A radical class (cf. [4]) is a collection of lattice ordered groups closed 
with respect to convex /-subgroups, joins of convex /-subgroups, and isomorphic 
images. 

Let 0 be the class of all lattice ordered groups and let R be a radical class. For 
every G e ^ we denote by R(G) the join of all convex /-subgroups of G that belong 
to R. Then R(G) e R; moreover, R(G) is an /-ideal in G (cf. [4]). 

Let & be the collection of all radical classes. For R, SsSt we define JR . S to be 
the class of all lattice ordered groups H such that GIR(G) belongs to S. Then R . S 
is a radical class [4]; if both R and S are torsion classes, then R. S ii a torsion 
class as well [7]. 

We denote by 9~ the collection of all torsion classes. Both 3t and & are partially • 
ordered by inclusion. Then St is a lattice which is complete and Brouwerian [4]; 
3* is a closed sublattice of 3t [7]. 
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For each radical class JR let Rh be the meet of all torsion classes T such that 
U s T. The torsion class Rh is said to be generated by the radical class R. The 
mapping R -+ Rh is a closure operator on the lattice 9t. This closure operator was 
thoroughly studied in [2]. From the results of [2] we quote the following one: 

1.1. Proposition. ([2], Proposition 5.7.) For any two radical classes R and S 
we have (Rh . Sh)h =* Rh. Sh and (R . S)h g Rh. S*. 

Next, the following open question is proposed in [2]: 
It is not known if 

(1) Rh, Sh g (R • S) \ 

It will be shown below that the relation (1) does not hold in general. Moreover, 
it will be proved that the collection 0tt of all radical classes R having the property 
that the relation 

(2) Rh .Rh S(R. R)h 

fails to hold, is nonempty. 
Let X be a subcollection of ^. We denote by Xr the meet of all radical classes Rt 

such that X g Rt; then Xr is said to be the radical class generated by X. 
For each G e ^ let c(G) be the system of all convex 1-subgroups of G. 

1.2. Proposition. (Cf. [5], Theorem 3,4.) Let 0 f l £ ?. Assume that X is 
closed with respect to isomorphisms, {0}eX and that each lattice ordered group 
belonging to X is linearly ordered. Let G e <§. Then the following conditions are 
equivalent: 

(i) GeXf> 
(ii) There are systems {At}ieI g c(G) and '{A^j^y g c(At)f)X for each 

iel, such that A\ = (JJC-KO^I) *s v a ^ f° r e a c ^ *G ̂ > am* ^ ~ Ziei^i-

1.3. Proposition. ([2], Proposition 5.5.) For any radical class R and lattice 
ordered group G9 Rh(G) = {Ce c(G): there exists He R and an 1-ideal Lof H such 
thatCczH/L}. 

For each subclass X of ^ we denote by Horn ! the class of all homomorphic 
images of elements of X. 

1.4. Lemma. Let X be as in Propos. 1.2. Let Ybe the class of all linearly ordered 
groups Ai having the property that there exist linearly ordered groupsAy (J e J(i)) 
belonging to c(At) f)X such that At =* Q/e/co^J- Then (Xr)h = (Horn Y)r. 

Proof* This follows from Proposition 1,2, Proposition 1.3 and from [6], 
Lemma 3.2. 
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2. THE RADICAL CLASS R(a) 

The additive group of all reals (all rational numbers) with the natural linear 
order will be denoted by R0 (or by RQ, respectively). 

For each i e RQ let A( = R$ and let A° be the lexicographic product 

(cf. [3]). Let A be the subgroup of A0 consisting of all elements of A0 with finite % 

support. 
Let a be a cardinal, a ^ H 0. Let Ia be the first ordinal with card Ia = a and 

let Ja be a linearly ordered set dual to Ia. For each; e Ja let Bj = R0. Put 

B° = rBj (jeJa) 

and let B be the subgroup of B° consisting of all elements of B° with finite support 
Put 

G = B o A, 

where o denotes the operation of lexicographic product. Let X be the class of all 
linearly ordered groups G' such that either G' = {0} or G' is isomorphic to G. 
PutK=X r -

From the construction of the linearly ordered group G we obtain immediately: 

2.1. Lemma. Let Y be as in Lemma 1.4. Then Y = X. <• 
Lemma 2.1 and Lemma 1.4 yield: 

2.2. Lemma. Rh = (HomI) r 

2.3. Lemma. Lei {0} ^ G' e 0. Then G' belongs to Horn X if and only if some 
of the following conditions is fulfilled: 

(i) G' c* G. 
(ii) There exists a dual ideal J± of the linearly ordered set R'0 such that G'^JBO A!9 

where Ar = TA{ (i e Jt). 
(iii) There exists a subset J2 of J^ such that either J2 = 0 or J2 is an ideal of the 

linearly ordered set Ja such that G' ~ TBj (J e J^\J2)^ 
Proof. This is an obvious consequence of the structure of the linearly ordered 

group G. • , . 
Let Y' be defined analogously as Y (in Lemma 1.4) with the distinction that 

instead of X we take now the class HomI into account. Then from. 2.3 we infer: 

2.4. Lemma. Y' =* HomX 
Since each element of Horn X is a linearly ordered group, from 2.2, 2.4 and 1.2 

we obtain: . 

117 



J. JAKUBf K 

2.5. Lemma. Let H e&. Then the following conditions are equivalent: 
(i) H belongs to Rh. 

(ii) H is a direct sum of linearly ordered groups belonging to HomZ. 

2.6. Proposition. Let Hl be a linearly ordered group having a strong unit. Then 
the following conditions are equivalent: 

(i) Ht is an Usubgroup of some element of Rh. 
(ii) Ht belongs to HomX. 
Proof. This is a consequence of 2.5 and [6], Lemma 3.6. 
In view of 2.3. we have B e Rh, whence 

(3) BoBeRh.R\ 

The linearly ordered group G and the radical class R depend from the cardinal a; 
when we want to emphasize this fact then we write G = G(oc) and JR = R(<x). 

3. THE RADICAL CLASS (R. R)h 

/We apply the same denotations as above. Put H2 = B o B. We want to verify 
that H2 does not belong to (R. R)h. 

By way of contradiction, suppose that H2e(R . R)h. Let At and AtJ be as in 1.2 
with the distinction that we have now H2 instead of G and R. R instead of X. 
Without loss of generality we may suppose that At # {0} for each i el. Since H2 

is linearly ordered, the set / must be a one-element set, / = {i} and H2 = At. 
Next, if2 cannot be represented as a join of proper convex /-subgroups of H2; 
thus if2 = AtJ for some j eJ(i). Hence H2e R . R. Therefore 

(4) H2IR{H2)zR. 

Let /f3 be a convex 7-subgroup of H2% H3 # {0}. Then H3 cannot be represented 
as a join of its proper convex i-subgroups, and clearly there is no convex subgroup 
of G isomorphic to H3. Therefore R(H2) = {0} and hence in view of (4), H2 belongs 
to R. By analogous argument as above (using 1.2) we would obtain that H2 is 
isomorphic to a convex i-subgroup of G, which is a contradiction. Thus we have 

3.1. Lemma. H2 does not belong to (R . JR)\ 
In view of (3) and 3.1 we obtain: 

3.2. Corollary. Rh . Rh fails to be a subclass of (R . R)h. 

3.3. Lemma. Let a and ft be cardinals, Ho « <* < /*. Then G(fi) does not belong 
to JR(a). 
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Proof. This is an easy consequence of [2], Lemma 5.4. 
Let &x be as in Section 1. From 3.2 and 3.3 we infer: 

3.4. Theorem. The mapping <x -+ R(<x) is an injective mapping of the class of all 
infinite cardinals into the collection ^tx. 
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