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A REMARK ON A NONLINEAR BOUNDARY VALUE 
PROBLEM OF THE THIRD ORDER 

J. RUSNAK 

(Received December 4, 1986) 

Abstract. Existence theorem for a nonlinear boundary value problem of the third order is 
proved without requiring the existence of lower and upper solutions. The proof Is based on the 
construction of a lower and upper solutions by using signs of Green's functions. 
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1. I N T R O D U C T I O N 

In this paper we investigate a boundary value problem 

(1) xm = / ( / , *, x\ x'% (r, x, x\ x") e [ax, *3] x R\ 

a2^(«i) - «3*"(tfi) = Al9 x(a2) = A2, y2x'(a3) + yzx\a3) = A3> 

(2) <x2, a3, y2, y3 ^ 0, a2 + a3 > 0, y2 + y3 > 0, 
a2 + y2 > 0, at < a2 < a3. 

Let / = [al9 fl3]> h = {^u ^ h = fa, % ] • 
An existence theorem for (1) and (2) in [5] is proved under the assumption that 

lower and upper solutions of (1) and (2) exist. We prove an existence theorem 
without requiring the existence of lower and upper solutions. This theorem is an 
application of the theorem from [5]. The proof will be based on the construction 
of a lower and an upper solution by using signs of Green's functions. Thus the 
theorem is applicable to a fairly large class of functions. 

Let Gk(t, s), k = 1,2 be Green's functions corresponding to (1) and (2). Gk are 
uniquely determined by the following three properties (see [2], [3], [4]): 

for any point s e Ik there holds 
i 

1. Gk9 -j-- = Gkt are continuous in t on /. 
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d2C 
• 2" —"2" == Gku is continuous everywhere on / except at the point s, where 

it has a discontinuity of the first kind and Gkttis, + 0, s) - Gktt(s - 0, s) = 1. 
3. Gk as a function of / is a solution of x" = 0 on intervals [<2X, .y), is, a3] and 

satisfies the homogeneous boundary conditions (2) with At = A2 = ^3 = 0. 
Let <p(f) be a solution of the boundary value problem xm = 0 and (2) and let r(f) e 

6 C0(/). Then the solution x of boundary value problem xm = /•(/) and (2) can be 
expressed in the form 

(3) x(0 = < K 0 + £ T G * a * M * ) d s , tel. 
* = 1 ak 

From explicit expression of Green's functions Gx, G2 there follows immediately 
the following lemma on the signs of Green's functions and their derivatives. 

Lemma 1. For the Green*s functions Gl9 G2 there holds: 

Gk ^ 0 on It x Ik, Gk g 0 on 72 x 4 , 

Gkt g O on 7x/fc, A: = 1,2. 

Two functions a, p e C3(7) will be called a lower and upper solution of (1) and (2) 
respectively, if the following hold: 

a'O) g P\t) for any t e 7, 

<X2<*'(<*i) ~ <x*<x\ai) ^ A> afe) = ^2, ^a'fas) + Js^^s) ^ Az, 

*2P'(ai) - a3jS"(*i) ^ ^ 1 , ^ 2 ) = ^2, ViiJ'fe) + V s i W ^ A3, 

a**At,x9*'9a*), P" ^fit9x9p'9p») 

for all tel and those x for which a(f) ^ x ^ /?(*) when a(/) g /?(/) or for all 
t e 7 and those x for which pit) <; JC <; a(0 when £0) ^ a(f). 

In the following lemma we give a version of [5, Theorem 2] modified in the 
view of [5, Remark 1] : 

Lemma 2. Let there exist lower and upper solutions a, P e C3(7) of (1) and (2), 
respectively. Further suppose that, for some positive constant L9 

\fit9 x9 x', x") - fit, x, x', f) I g L I y> - / I, 

/or 0// (/, x, x'): Pit) g x g a(0, a'(0 ^ ' ^ j?'(/), ^ A <*«<* a(0 ^ x £ pit), 
a'(0 g x' £ p'it), t e 72, *', / e 7?. 

Then there exist at least one solution xofil) and (2) such that 

pit) £ xit) g a(/), telu <t) ^ xit) ^ pit), tel2, 

a'(0 ^ *'(') ^ >S'(0, *e I. 
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2. EXISTENCE T H E O R E M 

Theorem. Let the function f satisfy: 
(i) for any (t, x, x\x") elxR3 either fit, x, x', x") ^ M or fit, x, x', x") ^ M, 

where M is a real number. < 
(ii) fis non-increasing in x on Rfor t elt and f is nondecreasing in x' on Rfor 

tel2. 
(iii) / is non-decreasing in x' on R. 
(iv) there exists a positive constant L such that 

\f(t, x, x', x") - /(/ , x, x \ f) I fg L | x" - / | 

for all (t, x, x') e / x R2, x\ y" e R. 

Then there exists at least one solution x of (\) and (2). 
Proof. First we shall prove the theorem under the assumption/ ^ M. Without 

loss of generality we suppose that M < 0. We shall prove the existence of a lower 
solution a and an upper solution ft of (1) and (2) which satisfies the hypotheses 
of Lemma 2. The proof will then be complete because the Lipschitz condition 
of Lemma 2 follows from (iv). 

Let pit) be a solution of xm = M and (2). From (3) p(t) can be expressed in the 
form 

(4) P(t) = <p(t) + £ 7 lGJt, s) M ds. 

Pit) is an upper solution of (1) and (2) and in view of Lemma 1 and (4) we have 

P(t) ^ (Pit) for / e Iu (pit) ̂  Pit) for t G /2, 
V ; <p'(t) ^P'it) for tel. 

Consider a difiFerential equation 

(6) xT - L | x ' | - K = 0, 

where 
K = max (L, | cpit) | + / ( / , Pit), PV), 0)). 

We shall show that there exists a solution # of (6) which fulfils conditions 

a2#'(*i) - «3#"(ai) ^ 0, #(a2) = 0, y2*'(a3) + y&'iaj :§ 0, 

(7) #(f) ^ 0 for any f e Iu $(*) ^ 0 for any / e /2, 
#'(0 £ 0 for any r e / . 

For the solution x of (6) we have 
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f / 2K \ K , K 

(8) *(<) = a t * * jf 
^ct - — j-t0 + c2r 2 L I + ^3 * * g f0, 

where /0, cx, c2 are real constants. Then for any t0 there are constants ct and c2 

such that x(r) satisfies (7). 
Further chooser in the form a(/) = <p(t) + *(/)» for every f e /. From (5) and (7) 

it follows that 

P(i) ^ oc(f) for / e / t , a(f) ^ j?(0 for / 6 I2, 

a'(0 ^ J?'(0 for / e / / 

Let / 6 / t and x ^ j?(f) or f e /2 and x ^ /?(/). Then from (ii), (iii) and (iv) 
we get 

/ ( / , x, a', a') fg /(r, fi, p, oO ^ L I a" | 4- /(*, J?, J?', 0) j£ 
g L | #" | + L | <p* | + /(f, fi9 p\ 0) ^ L | V | + ^ = <J>" = a". 

Hence a and /? are lower and upper solutions of (1) and (2) which satisfy the hypo
theses of Lemma 2. 

The proof of the Theorem under the assumption / g Af is similar. In this case 
we can assume that M > 0. We show only the construction of <x(f) and fi(t) 
in this case. 

<x(0 will be a solution of xm = M and (2). For fi(t) there will hold: fi(t) = <p(t) + 
•f \\/(t\ where ^(0 is a solution of 

xm + L | x" | - K = 0, 

# = min ( - L | <?"(>) | + /( / , a(/), «'(')>0)), 
i 

satisfying 

«2^'(*i) ~ «3^(*i) ^ 0, <K*2) = 0, y2*'(aa) + V a ^ a ) ^ 0 

and ^(/) ^ 0 on /,, $(i) ^ 0 on I2 and tfr'(0 ^ 0 on /. 

Remark* The Theorem and the method of proof are generalizations of 
[1, Theorem 4] and [6, Corollary 5] for two point nonlinear boundary value 
problem of the second order. 
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