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O N T H E R E L A T I O N S H I P B E T W E E N THE INITIAL 
A N D T H E M U L T I P O I N T B O U N D A R Y VALUE 

P R O B L E M S FOR w-TH O R D E R LINEAR 
D I F F E R E N T I A L E Q U A T I O N S WITH DELAY 

ALEXANDER HASCAK 

(Received January 5, 1987) 

Abstract. In the paper it is shown that for each solution q>(t\ T0>&) of initial value problem 
for linear differential equation with delay there are the solutions q>v = q>(t\ rv, fiv), v = 1, 2, ... 
of boundary value problems such that 

lim <p(kKt; r„, p.) = ?<*>(*; r 0 , 0 ) , * = 0 ,1 , . . . , * - 1 
V-*oo 

uniformly in the considered interval. 

Key words. Linear differential equation with delay, initial value problem for differential 
equation with delay, multipoint boundary value problem for linear differential equation wiih 
delay. 

MS Classification. 34 K 10. 

Let us consider the following n-th order linear differential equation with delay 

(En) x(w)(0 + £ ait) x^'Xt) + £ MO *(n~°0 - ^(0) - 0 

having continuous coefficients at(t)9 fe,(/), / = 1, ...,n and a continuous delay 
A(f) i> 0 on an interval / = <a, b}. The underlying initial value problem for the 
equation (En) is defined as follows: 

Let T0 G <tf, b) and let on the initial set 

. EX0 = {/ - A(t): t - M0 < T0, te <T0, b}} u {T0} 

bounded and continuous vector function 

*(0 = (*o(0,*i (0 . - .*- i (0) 

be given. The problem is to find the solution of the equation (£„) which satisfies 
the conditions 

207 



A. HASCAK 

(iv) x(k)(To)" **(ToV k = °'lf *'*'" " *' 
*<*>(/ - A(t)) = <*>*(; - A(t))9 if / - J(i) < T0. 

Theorem 1. Under the above assumptions the initial value problem (£"„), (IV) has 
exactly one solution cp(t; r0, <P) which is defined on the interval <T0, b}. 

Definition 1. A vector function $ is called admissible if it is continuous and 
bounded on its domain of definition. 

Iii [1] is considered the following multipoint boundary value problem for (E„): 
Let T0 e <#, b), 

(t) T-L, T 2 , . . . , Tm 6 <T 0 , b), Tt ^ T2 ^ . . . ^ Tm(/ff ^ «)> 

ri>r2, ...9rmeN, rt + r2 + ... + rm = n 
and let 

The problem is to find the solution of the equation (En) which satisfies the condi
tions 

(BIO ^ - " ( T ^ t f * t>i«l , . . . , r i ; 
1 = 1, . . . , m . 

Further, let an admissible vector function $(t) = ($0(0> ^i(0> •••» ^n-i(O) 
defined on i?To be given. By 7/J>° we shall denote the following set of functions 
defined on Exo 

H$ - {(#o(0 + c0, #!(/) + c l f ..., #,.!(/) + cn_,) : c, e *, 1 = 0, 1, ..., 71 - I}. 

For the formulation of the existence and uniqueness theorem for boundary value 
problem (2s„), (BV) the function %(Q) is useful: let for the coefficients at(t), b((t)y 

i s 1,..., n the inequalities 

(1) \at(t)\£Ai9 | & , ( / ) | £ * „ /e<a,6>, i = l , . . . ,« 

hold. Then X(Q) is defined by the formula 

"MM' 
Theorem 2. (A. HagCak [2].) Let x(b - a) < I and T0 e <a, ft). 77ieyi for each 

admissible function <P(t) defined on EtQ there is a unique \j/ e H# such that the solution 
cp(t; x09 ty) satisfies the boundary condition (En), (BV). This solution will be denoted 
as<p(t;r,jl). 

* 
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ON THE RELATIONSHIP... 

The purpose of this note is to show a relation between the initial value problem 
{En)9 (IV) and boundary value problem (En)9 (BV). 

Now we shall introduce notations, notions and preliminary remarks which will 
be needed in the sequel. 

Let a function fit) in the interval <a, 6> be given. Consider the points 

a < xx <>x2 < ... < xn < b. 
Denote 

^ = /(Ti)» * = 1, . . . ,n . 

By difference quotient of the n-th order we shall understand 

D"(TI, ...,TB;j81,...,j?n) = [T1 , . . . ,Tn] = 

h . ^2 
(TX ~ X2)(x1 - T3) ... (ti - T„) (T2 - t!)(T2 - T3) ... (t2 - T„) 

+ . . . + • /?" 
fe-T1)(TII-T2)...(TII-Tll-l) 

and specially for n = 1 

^ ( T I ^ O - M ^ A (see [3] p. 17). 

If the function / has continuous derivatives to the «-th order (including the n-th 
order) in <a, fc>, then there are numbers £k9 k = 0, ..., n — 1, such that 

* i < & < **+i 
and 

(2) Dk+\xl9 ...9xk+l; pl9 ...9 pk+1) ^ ^ ^ - 9 fc = 0 , . . . , n - l 

holds. 

It turns out, that in this case 

(3) lim Dk+l(xl9...9xk+i;pl9...9pk+1)~ 
ti-*t0 

1=1 fc+1 

= lim —=-:— = — r ; — , fe = 0,1, ..., n - 1. 

Now we shall formulate a relation between initial and boundary value problem: 

Theorem 3. Let 

(4) l(b - a) < 1, 

T0 G <a, fc) flflrf let an admissible function $(t) defined on Et0 be given. 
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Let h fulfils the inequalities 

(5) 0 < h < mini fr — to. U « , » )> 

L = max(i4 l 9 ..., /4„, f?i, ..,!?,,)• 

Lef ffte boundary conditions 

(**>&,) T y l , T„2, .. .» Tvn; /ftfl, ^ 2 » •••> &,«» 0 = 1, 2 , . . . 

be such that 
%\ < *vi < ••• < *«.» t> = 1 ,2, . . . , 

(6) 0 < t r , - t0 < ft, / = 1, ...,w; v = 1,2, ..., 

limxi;l== T0 , i = l, ...,w 
t>->00 

(7) H m B 1 * 1 ^ trtHjfe ^ „ ) - - ^ , fe-0,1,...,II-1. 

Then the sequence <p(t;tv>pv), v = 1,2, ... <?/ solutions of the boundary value 
problem (En)9 {BV) and the sequences <p(k){t; tv9 pv), {k = 1, ..., n - 1) v = 1, 2, ... 
0 / ffcez/tf derivatives converge uniformly to the solution <p{t;x09 $) 0 / /fee zVzitfa/ 
value problem {En)9 {IV) resp. to its derivatives q><k){t; T 0 , ^ ) , fc = l, . . . , n - 1 on 
<t0,fc> as v -* 00. 

Proof. From (7) we conclude that 

/>* + 1 (T*I , . . . . trf+r.A,!, ...,j8Wk+i)» fc = 0, . . . , / i - l;t? = 1,2, ... 

are bounded i.e. there is a positive number M such that 

(8) I I I ! / ) * * 1 ^ ! , . . . i T r t + 1 ; ^ , - . , / U + i ) l § M, 

A: = 0, . . . , « — 1; t7 == 1,2, ... 

By (2) there are the numbers 

(9) Zvh&vl* •••>Tt* + r>&i> ' —»A*+i)€(? , , , O , t; = 1,2, ..., 

such that 

Kl & 

k = 0, . . . ,n - 1; t; — 1,2, ... 
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Thus we have 

I <p(kW> *., h) - * * ( T 0 ) I ^ I <p(k)(*o; *», ft,) - <?<*>(£,*; t „ A ) | + 
+ | * ! D»+ 1 (T, l f ... , T * + 1 ; 0 . t , ... , j?„fe+1) - # f c ( t ) | , 

fc = 0, ..., w - 1; v = 1,2, ... 

from where by Mean Value Theorem we get 

(11) | «><k>(T0; T „ ft) - <J>*(T0) I g (TW - T0) max | <?<*+1>(r, T „ ft) | + 
f e<fo#to+*> 

+ l * l^ + 1 ( t 8 i ^ + 1 ; ^ f l ^ + 1 ) - * 4 ( T 0 ) | , 

ft = 0, . . . ,n — 1; t? = 1, 2, ... 

Further, by Theorem 2 for each (tv, ft), v = 1, 2 , . . . there is unique function i/rt € 
€ # £ , ^ = (^0 , . . . ,^y B_1) such that pfo T0 , ^,) ==?(*; tp,.ft), fe<t0,&>, t; = 1, 
2, ... i.e. there are constants c^, A: = 0, 1, ..., n — 1; v = 1, 2, ... such that 

(12) xl/vk(t) = *k(/) + cyfc, / e £T0, A: = 0, 1, ..., n - 1; i; = 1, 2, ... 

Thus the equality 

(13) ^ ( T 0 ) - *fc(t0) + cvJk, A: = 0, 1, ..., n - 1; v = 1, 2, ... 

holds. By (12) and (13) we have 

</u(0 = **(0 + (^Ov, tpf ft) - **(*o», >e4» 
fc = 0, 1, . . . , n — 1; t; = 1, 2, ... 

from where by (11) we get 

(14) | M O - * (0 I ^ (t« - ^o) max | «><fc+1)(/; T „ ft) | + 

+ I k!D*+1(Tpi, . . . , t r t + 1 ; i J , l f . . . , ft*+i) - * * ( T 0 ) | , 

/ e £ t 0 , fc = 0, l , . . . , f f - 1. 

To show that ^ ( / ) , fc = 0, 1, ..., n - 1; v = 1, 2 , . . , uniformly converge to <Pk(t) 
on EXo as t? -» oo it suffices to,show (because of (7), (8) and (14)) that there is 
a constant C which is not dependent on f„, ft such that 

(15) /># . , ft) = max | (?(/)(f; rv, ft) I g C i - 1 , . . . , «, t> == 1, 2 , . . . 

We have 

I ?w(/; T„ ft) I ^ I *<*>«*;T„ ft) | +!9(k)(/;**> A) - vik)(U> t f, ft)!, 
A: = 0, 1,'..., w — 1, v = 1,2, ... 
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From this by (8), (10) and (15) W e g e t 

(16) ft(T,f &) £ Jtf + *A+l(T„j5r), k = 0, 1, . . . , « - l,t> = 1,2, ... 

From (16) and (5) we get 

(17) E ftfa. j9r) g nM + h £ P . ^ , 0,) 

and 

(18) ft(rp, 0„) ^ M*o + ..." + A-*-1) + fc"-*A(f„ A) ^ nM + hpn(rv, ft), 

k = 0 , 1 , . . . , « - l,i; = 1,2,... 

On the other hand (p(t\?V9pv) is a solution of (£n). Thus (by (1) and (5)) the 
inequalities 

(19) l ^ t o f - W I ^ I I * ^ ; * . . ^ , «e<T0,&>,» = l,2,..., 
* - l 

P„(Tt> »W = ^ E Pkfo, &), t? = 1, 2, ... 
* = 0 

hold. 
Now, from (17) and (19) we get 

• "Zft(*.. to ^ nM + klA(»., to + **.(*.. to ^ 

£nM + fc(i + L ) £ A(T„ i?„), 

from where 

(1 - *(1 + L) )£ p * ^ , Pv) ^ nM. 

n~1 nM 
Since (5) holds, we have 

(20) ^ ^ 1 - W + L ) 

At last, from (18), (20) and (19) we conclude 

pfa, to ̂  1 _ m + L ) » ./ - o> *> • •• > » . » * i , 2 , . . . 
Thus (15) is valid with the constant C = -̂  rr* r r a ^ d thus tyvk(t\ k — 0 ,1 , . . . , 

N 1 — h(l -f L) 
H — 1, t; = 1, 2, ... uniformly converge to $*(*) on Ero as t? -> oo. From this fact 
by theorem on bontinuous dependence of solutions on initial conditions we have 
that (p(k\t; Tv, /?„), k = 0, 1, ..., n — 1 uniformly converge to 

<p(kKt;T0>&) on <t0,fc>. 

The proof of theorem is complete. 
212 , 



ON THE RELATIONSHIP... 

REFERENCES 

[1J A. Has£ak, Disconjugacy and Multipoint Boundary Value Problems for Linear Differential 
Equations with Delay. Czech. Math. J., 39 (14) 1989, 70-77. 

[2] A. Ha§£&k, Tests for Disconjugacy and Strict Disconjugacy of Linear Differential Equations 
with Delays. Czech. Math. J., 39 (114) 1989, 225-231. 

[3] A. O. TejibtfroHA, McHucAeuue Konennbix pawocmeu. Toe. Pijfl. TeXHHHecKO-TeopeTHHecKoft 
jiHTepaTypw. MocKBa 1952 JleHHHrpafl. 

[4] C. B. HopKHH, JJutfcfiepeHUuaAbHbie ypaenenuH emopoeo nopndna c danaddueawiuuM apeyMeu-
moM. Hayxa, MocKBa 1965. 

Alexander Hascdk 
Katedra matematickej analyzy MFF UK 
Mlynskd dolina 
842 15 Bratislava 

213: 


		webmaster@dml.cz
	2012-05-09T20:51:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




