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ON THE NATURAL OPERATORS 
OF BIANCHI TYPE 

JAN KUREK 

(Received May 2, 1988) 

Abstract. In this paper we determine all natural operators JlY -> VY ® A 3T*X for a fibred 
manifold F~> X. We prove that the only operator of this type is the zero operator. This gives 
another proof of the Bianchi identity for generalized connections. 
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In this paper we determine all natural operators JiY-+ VY ® AZT*X for 
a fibred manifold Y -> X. We prove that the only operator of this type is the zero 
operator. This gives another proof of the Bianchi identity for generalized con
nections. 

In the paper we use a form of Bianchi identity for generalized connections 
described in [1] by I. Kolaf and his method for finding all natural operators of 
certain types elaborated in [2], [3]. 

The author is grateful to Professor I. Kolaf for suggesting the problem, valuable 
remarks and useful discussions. 

1. Let p : y-> X be a fibred manifold, dim y = n -h m, dimX = n, and let 
(x\ yp) be a fibre chart on Y. A generalized connection T on Y is a section 
F : y -• J1 y of the first jet prolongation with respect to target jet projection 
P : JXY -> y. In local fibred coordinates (x*, yp

9 yf) on J1 Y9 the equations of F are: 

(1) r:yf = Fftx,y) or dj;* = Ff(x, y) dx' 

with arbitrary smooth functions FP(x, y) on Y. 
Let F{ denotes the horizontal lift of a vector field £ on X. In local coordinates, 

if £ = £*(x) — - then its horizontal lift is of the form: 
dxl 

(2) n^iXx^+Ffay^x) d 

дxl , v " \ ' õy" 
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The curvature of a connection F on yis a map Qr : Y ~> VY ® A 2r*Z determined 
by the difference: [F£, FC] - r([£, C]) for any vector fields <J, C onK, [2]. In local 
coordinates, the curvature Qr of F is of the form: 

(3) Qr - flRdx1 A dx' ® — - (^r + F?-^W \dxJ® — 
J dyp \dxl dyqJ by 

p 

Curvature Qr determines a natural operator 

Q: JxY-> VY® \2T*X9 T ^ Qr. 

Consider the flow prolongation VF^ on VY of the horizontal lift F£: 

(4) vn - tl4i + ml4r + 4^ n1— 
0xf 3yp dyq dYp 

where (x1, y*, Yp) are the induced coordinates on VY. The vector field VT£> on Vy 
defines a horizontal lift with respect to a unique connection VF on VY-*X of 
the form: 

(5) VF : dyp = Ff(x, y) dx\ dYp == - ^ - Y*dx ! 
dy* 

We use a construction of the exterior differential of curvature 
Qr: 7-> Vy ® ® A 2F*X with respect to the vertical lift VF, given in [1] in the 
form: 

(6) dvrQF: Y-+ VY®\ 3T*X9 

d 

дy" 
dyrQr=:^B+f*f^ ~ j^w)***^*1*^® 

Evaluating (6), we obtain the following: 

Proposition 1. [1] (Bianchi identity) It holds: dvrQF = 0. 
The rule T -> dvrQr is a natural operator 

(7) A :JlY~* Vy® \3T*X. 

The Bianchi identity says that A is the zero operator. 
The following Proposition determines all natural operators of Bianchi type: 

Proposition 2. The only natural operator JXY~> VY® \3T*X is the zero 
operator. 

Proof: I. TJtte second order natural operators A : J1 Y-* Vy® A 3T*X are 
in bijection with the natural transformations A : J2(Jl Y) -» VY ® A 3T*X o 
with G^m — equivariant maps of standard fibres 

r(8) (J*( -* J m:\fRRn) -> .Rn+m) -+ Rm ® A 3Rn*9 
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where G*>m is the group of all 3-jets at origin of the diffeomorphisms of R'+m: x' «= 
= x'(x), y~p = yp(x, y) preserving origin and the fibration p: 
Rn+m _, Rn 

Any section a : Rn+m -*• J1(«"+m -» R") is of the form: 

(9) a : ix1, y>)-* (*', VP, yf = <tp
t(x, y)). 

The canonical coordinates on the standard fibre J^J1 of the second jet prolonga
tion Jl(J1(Rn+m -* R") -> Rn+m) are: 

(io) y!,y!j,y!q,y!jk,y!v,y!jq-

The coordinates on G„tm, which correspond to the values of the partial derivatives 
of functions xl(x), yp(x, y) at the origin are: 

(H ) a),a)k, al
Jkt, a

p
tyafj,«..%, ap, ap,, ap

v, avt, ap
tJ, aP„. 

Using standard evaluations we find the following action of G3„t„ on the standard 
fibre J\Jl: 

(12) yf =aPyr
t~a\ + ap

t~a\, 

Pf„ = apy'tsa\a'q + ap
syt

ras
qa\ + afsa\a'q, 

yfj = aMJlaJ + apyr
lsa\a'j + ap

ry
ral

tJ + 

+ afsy
r
ta\a'j + a&ffia? + ap

ta\j + 

+ at
pa\arj + afjaja1,, 

y&r = afylflpffi + apy\sa'va\ + 

+ ap
uy\sa

uaqa\ + ap
sy\a'v~\ + 

+ af,y'tuay9a\ + ap
suy\au~'qa\ + 

+ <y\K^\ + a!sta\a,
rl'q, 

PfJq = afyLaftaj" + afy^afca'j + 

+ a&La&a)" + afy^a^ + 

+ ap
ty

r
sa\aqa'j + aPyr

tsa\2'jq + 

+ apy'ttaqa\j + a^/J'^aJ + 

+ aP
ty

raqa
l
tJ + ap

sy
r
ta'Jqa\ + 

+ ap
rsty

ra'saqa\ + aLJtfafrJ + 

+ afsa\ja'q + afra\ar
Jq + a!„a\arja'q + 

+ a^ajafo, 

y!jk = apy\mna\amal+ ... 

where a = a'1 means the inverse element in G3„im. 
Any G',m — equivariant map / : J\JX -* Rm ® K3Rn* is the composition of 
a G;..m — equivariant map 
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g : Jlj1 -+ Rm ® ® 3R"* and of the alternation alt: Rm ® ® 3Rn* -• RM ® A 3R"*. 
G3

>m acts on the standard fibre Rm ® ® 3Rn* by: 

(13) *tjk = alztn£l$jan
k. 

Let a map g : JQJ 1 -• Rm ® ® 3R"* have the coordinate expression: 

(14) zfJk = gfJk(yf9 yfq9 yfj9 yfqr9 yfJq9 yfjk). 

Consider first equivariancy of g with respect to the base homoteties: a) = kd)9 

ap = Sp and all others a's vanishing. This gives a homogeneity condition: 

(15) . k*gfJh = gfjk(kyf, kyfq9 k
2yfj9 kyfqr9 k

2yfJq9 k3yfjk). 

Since gp
ijk are globally defined smooth functions, (15) implies that gp

ijk is a poly
nomial which can consists of some expressions: linear in yp

ijk, bilinear in: (yf9 yfj), 
(yf>yp

iJq)> (yfq>yfi)> (yfq>yP
iJq)> (yP

iqr>yfj)> (yP
iqr> yP

ijq)> trilinear in (yf> yp
iq9 yp

iqr)9 

(yf>yf>y%)> (yf> yf>yV>> G £ yfq>yfq)> (yf> y%r> yp
iqr)> (yp

iq> y%> yp
iqr)> (yfq> yp

iqr>yp
iqr\ 

Equivariancy with respect to the fibres homoteties: a) = S)9a
p = kdq9 and 

with all others a's vanishing, gives: 

(16) kgfjk = gfjh(kyf9 yfq, kyfj,±yfqr, yfJq, kyfJk\. 

Combining equivariancy with respect to fibres and base homoteties (16), (15), 
we get that gp

ijk is a polynomial consisting some expressions: linear in yp
ijk9 bilinear 

in (yf,yp
Uq)> (y%>y%)> and trilinear in (yf9y

p
iq9j

p
iq)9 (yf,yf9y

p
qry We shall use the 

fact that every Gl
nxGm — invariant tensor P is a linear combination of the products 

Q ® Ty where Q is Gx
n — invariant tensor and T is Gm — invariant tensor, [3]. 

By symmetry of the following expressions: 

(17) y!jk>yMqy
rkr> yfyrjqyl> yb)ypkqr> y\y)yl«, 

their alternations are equal to zero. Thus, the map 

/ : J\Jl -• Rm ® A 3R"* has the form: 

(18) ffjk = Mv%u + Myfo* + vitfî fo + 
+ riycV/*] + hyruyp

qyk]r + ^ j ^ y f i - . + 

+ w5yMj«r--

Considering equivariancy of / with respect to the subgroup: a) = d)9a
p = 5P 

and all others a's arbitrary, we get a sum including among others the following 
independent terms and the sum is equal zeroT 

(19) Pitfiyjkjt* p2d^yjpklq> yiypiq<*jk}> V2yliqajki> 

^iy[fijqykyf^ytia%ykyf^yiiajy^ 
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Hence, we get: Pt -= /?2 = yx = y2 = A, = X2 = \x ~ 0. In this way we obtain 
the zero mapf: J%Jl -> _Rm ® A 3_R"* only. 

II. Assume, we have an r-th order natural operator A : J1 Y-+ VY <g) A 3r*X\ 
It corresponds to Gr„*£ — equivariant maps between the standard fibres 
f: JoJ1 -> Rm <g> A 3Kn*. Denote by y?^ the partial derivatives of yf with respect 
to a multiindex a in xf and a multiindex /? in >>p. Any map f: Jr

0J
l -> .Rm ® <8> 3-Rw* 

is of the form: 

4 = / ^ ) . | a | + | / ? | g v . 

Using base homoteties we obtain a homogeneity condition: 

(20) fcVf;* = /f;*(fc1 + | a 1 ^ ) . 
This implies that fgfc is independent on yfafi for | a | ^ 3 and is linear in yfJkp, 
bilinear in (yfp, yfjp) and trilinear in yffi. 

Using fibre homoteties, we get: 

(2D kf>ijk = fUk'-myU)-
Hence, ffjk is independet on yfafi for | /31 ^ 1. Both (20), (21) homogeneity condi
tions implies thatf^ is linear in yfjk9 bilinear in (yf, yfjq), (yfq,yfj) and trilinear 
in (yf, yfqfyfq), (yf, yf, yfqr). Hence the r-th order natural operators are reduced 
to the case I for every r > 2. By Slovak theorem [5] every operator of this type 
has finite order. This proves Proposition 2. 
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