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SHADOWING LEMMA FOR FAMILY 
OF 8-TRAJECTORIES 

TADEK NADZIEJA 

(Received November 1, 1985) 

Abstract. The aim of this paper is to show that most of the theorems about local stability of flow 
near hyperbolic set follows from one fundamental lemma. 

Key words. Hyperbolic sets.. Shadowing Lemma. 

MS Classification. 58 F 15. 

Shadowing Lemma is the most important tool for the detailed study of diffeo-
morphisms or flows near hyperbolic sets. Roughly speaking it states that pseudo 
orbit (for diffeomorphism or flow) contained in small neighborhood of hyperbolic 
set A can be approximed by orbit of some point from A. Some kinds of this lemma 
were proved by many authors [1], [2], [4], [7]. The most general version for 
diffeomorphisms can be found in [7]. 

The aim of this paper is to prove a similar Lemma for flows on a smooth mani
fold. Our result implies previous versions of Shadowing Lemma and a lot of facts 
about local stability of hyperbolic sets. Moreover the proofs of the known facts 
about hyperbolic sets, when using our Lemma, seem to be rather simpler than 
original ones. 

The essential difference between our result and other versions of Shadowing 
Lemma for flows lies in considering the problem of approximation not only of 
a particular pseudo orbit but the whole family of pseudo orbits. Similar situation 
for diffeomorphisms is described in [7]. 

The proofs and ideas we use in this paper are combinations of ideas of Alekseyev, 
Anosov, Katok and Moser. Some technical results which were helpful in prepara
tion of this paper can be found in [5], [6]. 

M will denote a smooth, Riemannian manifold, X(M) the space of all complete 
vector field on.M with C^topology. If XeX(M) then X(t,.) will be the flow 
generated by X. 

A compact subset A of M is hyperbolic for X e X(M) if A is invariant under the 
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flow X(t,.) and the tangent flow TX(t9.) leaves invariant a continuous splitting 

(1) TAM = ES®E°®EU 

and for some A, 0 < A < 1, c > 0 we have 

(la) ifve£*and t > 0 then || TX(t9v)\\ < cA'|MU 
(lb) if D e m a n d ; > Othen|| TX(/,t;)|| > cA- fIMU 
(lc) E° is spanned by the vector field X, i.e. E° = lin X, 

where || . || is a Riemannian structure on M. 
The following characterization of hyperbolic set will be useful in the next part 

of the paper. 

Remark 1. A compact A invariant under X(t9.) is hyperbolic if and only if there 
exists t0 > 0, a continuous splitting 

TAM=-Es
t0®E°®Eu

09 

which is invariant under TX(t09.) and there are numbers A, 0 < A < 1, c > 0 
such that 

(2a) ifi>e£;othen|| TX^lo, ") II < H n ' ° | M I forweN, 

(2b) if v eEu
0 then || TX(nt09 v) || > cX~n<01| v \\ for n e N, 

(2c) E° = lin X. 

Proof. We have to show the existence of a splitting invariant under TX(t9.) 
and fulfilling the conditions (1 abc). 

It is easy to see that the splitting (2) is uniquely determined, i.e. every continuous 
splitting Es ® Lin X ® Eu invariant under TX(t0,.) and close to the splitting (2) 
in C°-sense is equal to (2). 

Let for / e R denote Es = TX(t9 E
s
0) and Eu = TX(t9 E

u
0). 

The subbundles Es, Eu are invariant under TX(t0,.). In fact, 

TX(t0, E: ) = TX(t0, TX(t9 E
s
t0)) = 

= TX(t9TX(t09E
s
0)) = Es

t. 

For small t the bundles Et9 Et are near Eto9Et0 in C°-sense, respectively. Using 
the uniqueness of splitting we obtain Et = Et0 and Et = Et0 for small t and so for 
ali /. 

Put Es = Et0,E
u = Eu

0. Then obviously the conditions (1 abc) hold. 
Let F be a subbundle of TAM invariant under TX(t09.). We denote by r°(F) 

the space of continuous sections of F and by X*(t09.) the linear operator on r°(F) 
defined as follows: 

'X*(t0, v) (q) = TX(t09 v(X(-t09 q))). 
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Remark 2. Let A be a compact, invariant under X(tf.) subset of M and t0 > 0. 
There is a splitting fulfilling the conditions (2abc) if and only if there exists 

a continuous subbundle Esu invariant under TX(t0,.) such that the linear operator 
X*(l0, 0 : r°(Esu) -> r°(Esu) is hyperbolic. 

Proof. The proof is the same as the proof of Mather's characterization of hyper
bolic sets of diffeomorphism [9] hence we omit it. 

The Remarks 1 and 2 give the characterization of hyperbolic sets which will be 
useful in the proof of Remark 5. 

The family of e-trajectories of X is a triple of elements <P, <£, f(t, .)>, were P 
is a topological space, ^ is a continuous mapping from P to M and f(tf.) is a con
tinuous flow on P, satisfying: 

sup d(4>(f(t9 p))9 X(t, $(p))) < e for all p e P, 
t e [ 0 , l ] 

where d denotes the Riemannian metric on M generated by the structure || . ||. 
The curve $(f(t9p)) we will call the e-trajectory of X through the point #(P). 

Example 1. Let y : R -» M be a smooth curve such that || y(t) - X(y(t)) \\ < e 
for all t e R. Let P = y(R)9 <P = Identity and f(t9.) is the flow generated on P 
by y(t). Then the triple <P, $9f(t9 .)> is a simple example of a family of e-trajecto
ries of X. 

Example 2. Let X, Ye x(M) and Y is in e-C°-neighborhood of X. Then <M, 
Identity, Y(t, .)> is a family of e-trajectories of X. 

The family <P, $9f(t9 .)> can be 5-approximated by a family of trajectories if 
there exist continuous mappings \j/ : P -» M and a : P x R -> Af such that: 

(3a) *K./U/>)) = *(«(p, 0, <A(P))> 

(3b) . sup dtfip), *(p)) < * 

(3c) a(p, 0) = 0, | f - a(p, r) I < * for t e [0, l] 

lim <x(p, t) = +oo, lim a(p, r) = -co . 
f-> + oo f-> - 00 

The conditions (3a), (3b) imply that d(X(((x(p, /), $(p% <P(f(t,p))) < 6 for all 
teR.lt means that the trajectory of \l/(p) approximates the e-trajectory through $(p) 
after some "reparametrization" of time. 

Generally the "reparametrization" a(p, t) is not a homeomorphism of R. Now 
we are ready to formulate the main result of this paper. 

Lemma (Shadowing Lemma for family of e-trajectories). Let A be a hyperbolic 
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Set for X e X(M). Then there exist a neighborhood U(A) of A and a neighborhood 
W(X) of X satisfying the following property; 

(*) For every 8 > 0 there exists e > 0 such that if X e W(X), <P, $, f(t, .)> is 
a family of e-trajectories ofX and $(P) c U(A) then <P, <P, f(t, .)> can be S-approxi-
mated by a family of trajectories of X. 

Proof. We will prove the existence of a neighborhood U(A) of A with following 
property: for all <5 > 0 there exists e > 0 such that every family of e-trajectories 
of X contained in U(A), i.e. $(P) c U(A), can be ^-approximated by a family of 
trajectories of X. It will be easy to see that the neighborhood U(A) has property 
(*), i.e. for any X from some small Cx-neighborhood of X every family of e-trajec-
tories of X which is contained in U(A) can be ^-approximated by a family of trajec
tories of X. 

We can to extend the hyperbolic structure on A in a continuous way to some 
neighborhood U(A) of A. Next this continuous extension we approximate in 
C°-topology by the smooth splitting 

(4) TS{A)M = £ s 0 £ ° e FM. 

In the proof of the Lemma we will use only the continuity of the splitting (4). 
Its smoothness will be useful in the next part of the paper (Corollary 2). 

The splitting (4) may be not invariant under tangent flow TX(t,.), but for every 
e0 > 0 there are a neighborhood U(A) c U(A), a positive number T0 such that 

| |Pi(^ )T .X(r fi<x))| |<y| | i ;(x)| | i 

(5) \\Px«,x)TX(i,v(x))\\<e0\\v(x)\\ 

for v(x)eE'x, xe U(A) and te -^ t 0 , T0 , 

\\Pu
X(ttX)TX(t,v(x))\\>2\\v(x)\\9 

(6) \\Ps
Ht,x)TX(t,v(x))\\<e0\\v(x)\\ 

for v(x)e Eu, x e U(A) and te | -^ T0, T01, 

(7) iiP°Xit,x)TX(t,v(x))\\<e0\\v(x)\\ 

for v(x) eEs
x® Eu, x e U(A) and t e[^ T0, T01, 

where PJ, Pu
x and P°x denotes the projections on the space E'x, E

u, E°x = lin X(x), 
respectively. 
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Fix a number 8 > 0. We shall show that for sufficiently small a > 0, every 
family of e-trajectories <P, #, f(t, .)> of Xcontained in U(A) can be ^-approximated 
by family of trajectories. 

Fix a number t e — T0, T0 I. We start with the case of "discrete time". We 

want to solve the functional equation: 

(8) iKflf, P)) = WMp) + 1) >> *G»), 

where i]/: P -» M and u : P -> ,R are unknown functions. 
Equation (8) is a discrete analog of (3a). 
By H<-> we denote the space of continuous, bounded mappings w : P -+ TV(A)M 

such that w(p) e T^ip)M for any p e P. 
We equip the set H0 with the supremum norm 

|| w || = sup || w(p) ||. 

We will try to find a solution of (8) in the form 

ijj(p) = exp0 ( p )v(p), 

where v e H0 and v(p) e £J(P) © JŜ Cp> -
Thus (8) may be rewritten as follows 

(9) exp0(/ap))v(f(r, p)) = X((u(p) + 1) r, expa>(p)v(p)). 

Now we will transform (9) to a form convenient for our purposes. 
Consider the expression 

(10) K(v) = exp;(Jt„(p)) exp#(/(f#p))i>(/(f, p)). 

This formula gives, for small e, a well defined, smooth mapping K from some neigh
borhood of 0 in H0 to Hx(f,0(-))-

Using the Taylor expansion we obtain: 

(11) K(v) = K(0) + Jev + 0(i>), 

where / . is the linear part of K at 0 and lim „ ,, = 0 . 
*->o IMI 

It is easy to see that || / , || tends to 1 if e goes to 0. Consequently the left hand 
tide of (9) is equal to 

(12) «P-T(i.«f)) [*(P) + *rfP) + 0(v) (p)l 

Now we want to find a similar form for the right side of (9). 
Consider the mapping F from some neighborhood of 0 in H 0to #X(*,<PC» defi

ned as follows: every element w of H0 oan be in the unique way represented in the 
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form w «= v + uX, where « is a real continuous function on P and v(p) e £<p(P) © 
0 ££(p). Put 

(13) F(w) = F(y + uX) = expxj., #,,)) X((«(p) + 1) t, exPa>(p) pQ>))-

F is the smooth mapping and the derivative of F at 0 taken for w -v + uX 
is equal 

(14) DF(Q) (v + «*) . TX(t, v(p)) + /«(p) X(X(t, *(p))). 

Hence 

(15) X((u(p) + 1) r, exp<>(p)v(p)) = txpX(tt0(p))[TX(t9 v(p)) + 
+ tu(p) X(X(t9 *(p)) + F(0) + 0(vt;) (p)], 

0(w) 
where lim 

w->0 
0. 

w 
Combining (12) and (15) we obtain the following form of the equation (8) 

(16) Jev(P) ~ (TX(t9 v(p)) - tu(p) X(X(U <P(P))) = 
= F(0) - K(0) + 0(w) (p) = a(w) (p). 

The left hand side D of (16) is a linear operator from H0 to HX(t,<*>(•))• 
We want to show that D is invertible. 
Using the decomposition (4) we can pre:ent D in the form 

-Dss Dsu9 Ds0-

Du\ Duu, Du0 

0, 0, D00
m 

To prove invertibility of D it is enough to prove that operator D 

D5S, 0, 0 
0, Duu, 0 
0, 0, D00

m 

is invertible. 
In fact, the set of invertible operators is open and \\D — D\\ < s0 (for e0 

see (5), (6), (7)). Hence for sufficiently small e0 the operator D is invertible. 
Remark that in this moment we have fixed e0 and chosen the neighborhood U(A). 
Now we will prove invertibility of D. 
Define the following subspaces of H0: 

H% == {v e H* : v(p) e E*ip)}, 

Hl = {veH*:v(p)eE%iP)}> 

HZ~{VGH*: v(pls\in X(#(p))}. 
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Obviously 

Ho = Ho © Ho © Ho • 

The operator Dss : H% -> H% defined by 

D^(p) = PX{t^p)){JAp) - - W , v(p))] 

is invertible for small e, due to the fact that 

Px(t,<i>(p))TX (t,.): H0 -* HX(t,0 (•)> 

is a contraction and \\ JB\\ tends to 1 if e goes to 0. 
In a similar way we can show that Duu is invertible. 
Note that 

(D00uX) (X(/, $(p)) = tu(p) X(X(r, 4>(p))). 

Hpnce D00 is invertible too. Thus D is invertible. 
Consider the mapping Gr = D"1 . a. 
We claim that Gf maps some small neighborhood of 0 in H0 into itself. 
In fact, 

\\<?w\\ ^ I ID -Ml \\<w)\\ -^HD-MI | |K (0 ) -F (0 ) | | + HD-MI II 0 ("Oil, 

w(e) = || K(0) - F(0) || depends on e and lim w(e) = 0. The mapping || 0(w) \\ 

may be represented in the form || 0(w) || = y(w) .\\w\\ where lim y(w) = 0. Hence 
w-+0 

IIGVH = HZ?"1 ||a>(e) + y(w)|| w||. 

So for sufficiently small e and r 

\\Gfw\\ < r for || w|| < r. 

Hence our claim is proved. 
Obviously G* is a contraction. Hence G* has a fixed point w* = v* •+• u1X in small 

neighborhood of 0 in H^. 
Hence the functions if/1 = expo> (P)Vf(p) and u'(p) are the solution of (8). 
From the proof it follows that equation (8) has the unique solution of the form 

\[/(p) = exp,p(p)v(p). 
It is not hard to see that vt and u* are continuous functions of t (for detailes 

see [5]). Roughly speaking this fact follows from "continuous dependence" of 
the contraction G* in t. 

Define 

a(p, 0 = (u(p) + 1). t for re -1T0 , T0 | . 
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We are going to show that if/' = \j/To for / e — ^o, ro • This part of the proof 

is like steps 3 and 4 in the proof of Theorem A in [5]. We will present here this 
proof for the sake of completness and we will omit some technical details which 
can be found in [5]. 

We shall show that the equality \p" = ty*1 implies that 

•ij/'l+" = \j/u 

and -
<f(h,P), ti) + a(p, t2) = a(p, /. + t2) 

(17) ' for /1,/2,/1 + / 2 er i - r 0 ,T 0 J . 

By easy calculation we obtain 

i>,l(f(tx + h,p)) - X(a(f(h,p), tylVWh.p))) = 
= X(a(f(t2,p), /j) + a(p, t2), il>"(p)). 

Consequently, by uniqueness of solutions of (8), we get (17). 
In a similar way we can prove that the equality \{/" = ifr'2 implies that ^" = 

= ^"-'1 for /., t2, tt - t2 e J i - T0, T0\. 

Using this fact we obtain ^To = xj/ 2" " ° for k, n e N and — . T0 e -j- T0, T0 \. 

Hence \p' = \j/To for / e -i- T0, T0 due to continuity of ^' under /. 

We put \ji » ^r° . 

For / e 0, -j- T0 we define the function a as follows: 

a(p, /) = a (p, -J- T0 + /) - a (/(/, p), ^ T0). 

We will check that (3a) holds for / e 0, -j- T0 • 

Note that 

* ( « ( / ( ' , P), J To), * « * 0. « P » ) = 

= X (a (/(/, p), 1 To) + «(P. 0, *(P)) -

= x ( a ( p . i + l r 0 ) , ^ ( p ) ) = ^ ( / ( ' + | 7 0 , p ) ) - « 
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= xfaí/(ř,p),lr0Y^(f(t.p))j. 

Hence 

For t e [ - T0, 0] we put 

a ( p , 0 = -a(/(/,p), - 0 

and then by induction on k e N we put 

a(p, 0 = a(p, * - fcTo) - I a ( / ( r - iT0> p), - T0) 
i « 0 

for le[kr0,(/c + 1)T 0]. 
Finally for t ^ 0 we put 

a(p,0 = - a ( / U p ) , - / ) . 

Then (3ac) will be fullfilled on PxR. 

Remark 3. It follows from the proof of Lemma that the mappings i// and a are 
uniquely determined in some sense. More precisely, there exists <50 > 0 such that 
if the mappings ^ j , a t and ^ 2 , a 2 fulfill (3abc) with 5 < 80 and \J/i(p) x 

= exp0 ip)vt(p) where v^p) e E*{p) 6 ££(p), then ^ = \j/2 and a- = a2. 

Remark 4. If we assume that \\fx, oct, \j/2, a2 fulfill (3abc) with 8 < <50, then with
out any assumption on the form of $i there is a continuous function 0 : P -+ R 
such that 

(18) \J,t(p) « X(j?(p), ^2(p)) and | j8(p) | < Const. 5. 

Proof. It is enough to prove the thesis in the case \jfx has the form ty\(p) «= 
= Qxp0(p) v(p) where v(p) e £j>)p( + £3>(p). 

Consider the manifold Mr = exprJ)(p) 2?r(#(p)) where Br($(p)) is an open bal 
in £j>(p) © ££(p) of the radius r. For sufficiently small r, Mr is transversal to Jf 
and there is only one point \j/i(p) on Mr the trajectory of which ^-approximates 
the e-trajectory through $(p). Because the trajectory of \\f%(p) also ^-approximates 
the e-trajectory through #(p), hence there is a number Jt?(p) such that $x(p) •" 

- *Wp). *a(p». 
Continuity of j? and inequality (18) are obvious. 
In particular, it follows from Remark 4 that for sufficiently small S there is only 

one trajectory which ^-approximates the e-trajectory through $(p). 
We may rewrite the Remark 4 in the following way: 
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Corollary 1. The flow on a hyperbolic set is expansive, i.e. there is <50 > 0 such 
that if sup d(X(t, p), X(t, q)) < <50, then p = X(s, q) for some small s. 

teR 

Remark 5- The closure of \j/(P) is a hyperbolic set for X. 
Proof. Conditions (3ac) imply that ^(P) is invariant, hence cl \J/(P) is invariant, 

too. 
The operator X*(7"0,.) is hyperbolic. In fact, in the proof of Lemma we showed 

that the operator cJe - X*(F0,.) is invertible for every ceC such that | c \ = 1 
(compare the proof of invertibility of D). Hence X*(F0,.) is hyperbolic on r°(ESu). 
Due to Remark 2 cl i//(P) ' s a hyperbolic set. 

Corollary 2 (local stability of hyperbolic set). Let Ax be a hyperbolic set for X. 
For any number 8 > 0 there exists a neighborhood W of X in Cl-topology such 

that for every Y eW there is an invariant set AY, homeomorphism \j/Y : Ax -» AY 

and a function a : AYx R -• R such that sup d(\l/Y(p), p) < S and the following 

diagram 

(18) фy 

commutes. 

pzAx 

Җt, .) 

ľ(«(., /),.) 

Фr 

Proof. If a vector field Y belongs to a sufficiently small neighborhood W of X, 
then </lA, Id, X(t, .)> is the family of e-trajectories for Y. Denote by \j/Y and a 
the mappings which were constructed in the proof of Shadowing Lemma. For 

* such \j/Y and a the diagram commutes. All that remains is to show that \\/Y is 
invertible. 

It follows from Remark 4 that the equality \j/Y(p) = \}/Y(q) implies p = Y(f}(q), q). 
Now, using the fact that decomposition (4) is smooth, we can show that there is 
b > 0 such that ^Yip) ^ ^y(x(t,p)) for all p e Ax and t e(-b,b). In fact, let Br(p) 
be an open ball in TpM of the radius r. The mapping E : u {Br(X(t, p)) : t e 
e(-b,b)} -> M defiried by E(v) =-= exp A(, jP)v for ve Br(X(t,p)) is smooth and 
derivative of E at p is identity. Hence for sufficiently small r and b the mapping E 
is a diffeomorphism. Thus i/ry is invertible. 

The structural stability of Anosov flows follows in an easy way from Corollary 2. 
In fact we have something more, we showed that there is a C1 -neighborhood W 
of Anosov flow X such that for Y eWy X and Y are conjugate in the sense of 
diagram (19). 
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Corollary 3 (see [5]). Anospv flows are topologically stable. 
Proof. Let Xbe a Anosov field on a manifold M. If Yis in some small ^-neigh

borhood of X, then <M, Jd9 Y(t9 .)> is a family of e-trajectories of X. From Lemma 
it follows that there are the continuous mapping \j/Y : M -» M and a : M x # -» R 
such that the following diagram 

Y(t, •) 
M *• M 

фү фү 

м * M 
X(a(.,o,.) 

commutes. Because \j/Y is a continuous mapping from some small neighborhood 
of identity, hence \\iY is onto (see [10]). 

Now we are going to show that flow on hyperbolic set is semiconjugate to 
suspension flow of subshift of finite type (see [3]). 

We start with recalling some definitions. 
.For A = \Aij], an nxn matrix of 0's and l's, we define 

1A = {x = {xt}e{l9...9n}z :AXiXJ= 1 for a l l /JeZ} 
and 

aA : 1A -> ZA by o-A({xJ) = {*/} where x/ = x u l . 

If we give {1,...,«} the discrete topology and {1,..., n}z the product topology, 
then LA becomes a compact space and cA a homeomorphism. 

(LAt oA) is called a subshift of finite type. 
On the set 1^ x R we define the flow o(t9 (x9 s)) = (x91 -f 5). 
We identify the points (x, 0) and (ff^x), 1). After this identification we obtain 

space I>A and flow o(t9.) on tA. For simplicity of notation the elements of f,A 

we will denote like elements of 1^ x R9 i.e. ({xn}91) denotes the element of 1A 

after the identification described above. 

Corollary 4. (see [3]). Let A be a hyperbolic set for X. There exist a continuous 
surjection xfr : ltA -» A and a function a : S^ x R -> jR such that the diagram 

a(U •) 
lA + ^ 

* I u 
Л *• Л 

ДГ(a(ř,.).) 

commutes. 
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Proof. Let <5 and e be the same as in Lemma. We suppose that 5 is small such 
that there is only one orbit which <5-approximates e-trajectory. 

Let El9 ...9En be an open covering of A such that diam (X(t9Et)) < e/2 for 
'6 PU]. 

We define a matrix A = [/4l7] in the following way: Ai} = 1 if and only if, 
X(l,£.)n£, * 0 . 

Let {at}9 i = 1,... , n9 be a sequence of points such that at eEt. 
Note that if d(X(l, a)9 aj) < e, then there is a flow &/*,-.) such that {,/l, at) = 

= ai and 
</«,//, at)9 X(t9 a{)) <e for l e [0, 1]. 

We define <P : I,A -• A as follows: 

#({*„}, 0 = f i/r, O for t e [k, k + 1]. 

Then <I^, #, 5(/, .)> is the family of e-trajectories for X. Hence there are continuous 
mappings \j/ and a such that the diagram commutes. 

Now we remain to show that \j/ is a surjection. For p 6 A we define the sequence 
{xn} as follows: Xj = / if and only if X(j9p)eEl. The e-trajectory $(d(t> {*„})) 
is (5-appioximated by the trajectory of the point p, hence \l/({xn}9 0) = X(/?{p},p). 
Thus p = ^(or(l, ({*„}, 0))) for some small t. 

Corollary 5. Let A be a hyperbolic set for X. The periodic points of the flow X(t9 .) \A 

are dense in the set of nonwandering points X(t9.) 1 .̂ 
Proof. Let peQ(X(t9.) 1̂ ) and 8 > 0. There exists a point qeA such that 

d(p9 q) < r and d(X(t9 q)9p) < r for some T > 1. If the number r is sufficiently 
small we can construct a smooth closed curve y such that: qey9 y is in a small 
neighborhood of .4 and \\y(t) - X(y(0) II < « where e is a small number which 
depends on S as in Lemma. 

To obtain periodic orbit y such that dist (p9 y) < 5 we may, apply the Lemma 
to the case: P = y, # = Id, f(t,.) is the flow generated on y by y(f). 

In similar way we may obtain 

Corollary 6 (see Th. B in [4]). If A is a hyperbolic set for X and X(tt.) is chain 
recurrent, then A is contained in the closure of the set of periodic orbits. 
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