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ARCHIVŮM MATHEMATICUM (BRNO) 
Tomu. 27 (1991), 139 - 148 

ON EXTENSIONS OF HOMOMORPHISMS AND 
HOMOTOPIES OF COMMUTATIVE N-ADIC GROUPS 

A N T O N I C H R O N O W S K I 

(Received January 6, 1988) 

ABSTRACT. This paper if mainly concerned with two topics: tome properties of 
retracts of n-adic groups and extensions of homomorphisms and homotopies com
mutative divisible n-adic groups. 

In the paper we deal with some theorems on extensions of horrK>morphisms 
and homotopies of commutative n-adic groups under additional assumptions of 
divisibility of n-adic groups. The definitions, theorems, and notations related to 
the n-adic group theory are based on papers [1], [2], [3], [5], [7], [8]. The symbol a 
denotes a skew element in an n-adic group. 

According to the Hosszii theorem (cf. [5]) for an arbitrary n-adic group A( ) 
there exist a binary group (A} •), an automorphism a € Aut(.A, •), and an el
ement a € A such that a(a) = a, an~l(z) = a a? a"1 for every * € .4, and 
(*i,*2, *3, • • •, *n-i>*n) = *i • <*(*2) • <**(*3) •.. .an~7(zn-i) a • zn for all *i ,r2 , 
a ? 3 , . . . , x n . _ i . x n G - 4 . 

The system (A, *,a,a) is said to be a binary retract of the n-adic group A{ ) 
(cf. [3]). For the sake of simplicity a binary retract we shall call a retract and often 
treat it as a group. Insted of (.A, *, a, a) we shall also write (A, a, a). 
The retract can be used to the construction of n-adic groups (cf. [5)). 

Notice that if (A, *, a, a) and (A, •, aiyai) are retracts (with the same operation •) 
of an n-adic group A(), then a = ai and a ss ai.Ideed, (XI>*2,- .M**~1I*I0 =-*r 
a(x2)-.. .an-2(zn-i)azn and (xi, x 2 , . . . , *n-ii'*n) = *i<*i(*a) • • *a^*(*ii-l)-
ai >zn for all xi, x2 , . . . , * n - i , *n € A. Putting z% = 1, x3 = 1,. . . ,**-%•& 1, t*'» 1 
we get a(x2) • a = <*i(x2) • a\ for an arbitrary x2 € A. fot x2 = 1 we have a as at, 
hencea = a i . 

1991 Méiktm%Heš Subject C1*stificmtit>%: 20N16. ; ! ^ <•' '••*"? i-
Kef words end fkr*se»: n-adic group, retract of n-adic group, cSvkibie * -adk group, ] 

mótgěágta and homc4opy of *<-*dk gre-op*. •-•lyr-l-^. V '^nl 
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Sokolov (cf. [8]) gave a very useful method of constructing a retract (.4, o, a, a) 
for an n-adic group A(). Namely, 

xoy=(x,pn-2,y), 

a(x) = (p,x,pn-2), 

a = (?) 

for an arbitrary fixed element p E A and for all x,y E A. The set A with the 
operation o forms a group for which p is an identity. 

We shall present a few remarks on the Sokolov method of constructing retracts 
because it will play an important role in our considerations. 

Proposition 1. A retract (A, a, a) of an n-adic group A( ) can be constructed 
by means of the Sokolov method if and only if there exists an element p E A such 
that 

(a) p n - 2 = a"1, 
(b) «(P) = P. 

Proof. Assume that the retract (^4,a,a) can be constructed by means of the 
Sokolov method. Then there exists an element p € A such that xy = (x ,p n~ 2 , y) = 
x a(p) <x2(p) . . . an~2(p) ay and a(x) = (p, x,pn"~2) for every x, y E A. Notice that 
a(p) =s (p,]/1""1) = p. Setting x = y = 1 in the above equality we havep n " 2 = a"1 . 

Assume that conditions (a) and (b) are fulfilled. Then x o y = (x,pn"~2,y) = 
xa (p )a 2 (p ) . . .an~"2(p)ay = xpn"2ay = xy for every x,y E A. Thus the retract 
(.A, o, a, a) constructed by means of the Sokolov method with respect to the element 
p is identical with the retract (.A, a, a). • 

Proposition 1 yields immediately the following 

Corollary 1. Every retract (.A, a, a) of a 3-adic group A( ) can be constructed 
by means of the Sokolov method. 

From the proof of Proposition 1 we obtain the folowing 

Corollary 2. 4 retract (A, a, a) of an n-adic group A( ) can be constructed by 
means of the Sokolov method with respect to an element p E A if and only if the 
following conditions are satisfied 

(a) p» - - = a- 1 , 
(b) a0) = p. 

Proposition 2. For every natural number n > 3 there exist n-adic groups and 
their retracts which cannot be constructed by means the Sokolov method. 

Proof. Consider the group (Zn~2y+) of integers modulo n — 2 for n > 1. In the 
set 2Tn_2 we define the n-ary operation as follows: 

(xi, x2i..., xn) = xi + x2 + • • • + xn + 1 
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for a l l x i , x 2 , . . . , x n € Zn_2. 
Zn_2( ) is an n-adic group for which (Z n - 2 , +, Mzm_a,1) is a retract. Prom Propo
sition 1 we immediately deduce that the retract ( Z n - 2 , + , idzn„7) 1) cannot be 
constructed by means of the Sokolov method. 

If an n-adic group A( ) is commutative, then every retract of A( ) is of the form 
(Ay id A, a) for a certain a € A. 
Indeed, let (.4, a, a) be a retract of a commutative n-adic group A( ) . 
Then (xx, x2, x 3 , . . . , xn_i, xn) = xxa(x2) <*2(x3) . . .an~2(xn_i) axn for all xu x2, 
x 3 . . . , x n _ i , x n € A. Taking x3 = X4 = ••• = xn_i = 1 and xn = a-"1 we 
obtain ( x i , x 2 , 1 , . . . , lja""1) = (x2 ,xi , 1 , . . . , l , a - 1 ) for every x i ,x 2 G A. Hence 
xia(x2) = x2a(xi) for all x i ,x 2 € A. Putting x2 = 1 we get a(xi) = xi for every 
xi eA. 

Now we pass on to the definition and some properties of devisible n-adic groups. 
For the sake of the uniform notation we shall use the multiplicative notation, also 
for the divisible groups (cf. [4]) and so instead of the symbol nx we shlal write xn 

for n E N. 
Let A( ) be an n-adic group. We begin with the following inductive definition: 
(i) (x,pn-*,x)W = x 
(ii) (x,pn-\xfk+V = ((x,p»-*,x)(k\p»-\x) 

for arbitrary p, x € A and Jb 6 No-
We say that an n-adic group A( ) is divisible by a natural number k € N if 

(i) V V V ^ p " " 1 . ^ " 1 ' ^ -
p€A yeA x£A 

Theorem 1. An n-adic group A( ) is a divisible by a natural number k £ N if 
and only if there exists a retract of the n-adic group divisible by the number k. 

Proof, (i) Assume that an n-adic group A( ) is divisible by k € N i.e. condition 
(1) holds. We construct the retract (.A,o,a,a) of A( ) by means of the Sokolov 
method with respect to the element p E A fulfilling condition (1): 

for arbitrary x, y £ A. 
By condition (1) we get 

xoy = (x,pn-2,y), 

а(*) = (P,*,Ѓ-2), 

а = (Ѓ) 

У€A *€-4 

where xk = xoxo-..ox(k times). 
Thus, the retract (A, o, a, a) is a group divisible by kl£N. 
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(ii) Assume that there exists a retract (A, a, a) of the n-adic group A( ) which is 
a group divisible by k G N. Let p G A be an arbitrary fixed element. We construct 
the retract (^4,o,/?, b) of A( ) by means of the Sokolov method putting 

xoy= (x,pn"2 , t / ) , 

/?(x) = ( p , x , ^ 2 ) , 

* = ( ^ ) 

for all x,y G .A. 
Since the retracts (A, a, a) and (.rt,o,/3,6) are isomorphic, the retract (J4,O,/? , 6) 
is a group divisible fc, i.e. 

y€-4 xG.4 

where a r f c =:xoaro . . .ox (Ar times ). 
In virtue of this condition we get condition (1) and so A( ) is an n-adic group 
divisible by k. D 

Since all retracts of an n-adic group A( ) are isomorphic, Theorem 1 implies 
the following corollaries. 

Corollary 3. An n-adic group A( ) is divisible by a natural number k G N if and 
only if all the retracts of A( ) are groups divisible by the number k. 

Corollary 4. Let A( ) be an n-adic group. Condition (1) is equivalent to the 
following condition: 

A A V (*,^-a,*)(*-1) = y. 
p€A y€>- x£A 

Taking into account Proposition 1 we get tha following 

Corollary 5. If a commutative n-adic group A( ) (n > 3) is divisible by n — 2, 
then every retract of A( ) can be constructed by means the Sokolov method. 

If an n-adic group A( ) is divisible by every natural number k G N, then A( ) 
is called divisible. 

In virtue of Theorem 1 and Corollary 3 we obtain 

Theorem 2. An n-adic group A( ) is divisible if and only if there exists a retract 
of the n-adic group A( ) which is a divisible group. 

It follows from the foregoing that the following statement is valid. 

Corollary 6. An n-adic group A( ) is divisible if and only if the tretracts of A( ) 
are divisible groups. ) 

Now we pass on to the extensions of the homomorphisms and the homotopies 
of the commutative n-adic groups. 

We begin with the following theorem. 
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Theorem 3. Let f : A-+ B be an epimorphism of a divisible n-adic group A( ) 
onto n-adic group B[ ]. Then B[ ] is a divisible n-adic group. 

To prove this theorem it is enough to notice that the condition 

Mx,pn-\z)W) = [/(*), /(p)"-2, /(»]<»> 

for ail p, x eA and k G N is fulfilled. 

We can formulate Theorem 1 of Corovei [2] in the following equivalent form. 

Theorem 4. Let A() and B[ ] be n-adic groups with retracts (.A, a, a) and 
(J5,/?,t), respectively. 
A function f : A —• B is a homomorphism of the n-adic groups A( ) and B[ ] if 
and only if there exists a homomorphism <p : A —+ B of the groups (A> a, a) and 
(B, /?, 6) and an element a\ 6 B such that 

(*) / (*) = <*MX)> 
(b) (^a)(x)/?(a1) = / 5 ( a 1 ) ( ^ ) W , 
(c) <p(a) = j3(a\)p(a\)...F-\a\)ba\ 

for every x € A. 

Proposition 3. Let (A, a, a) and (B,/?,fe) be arbitrary fixed retracts of n-adic 
groups ( ) and B[ ], respectiveiy. 
For an arbitrary homomorphism f : A —• B of the n-adic groups A( ) and B[ ] 
there exist a unique homomorphism <p : _4 —• B of the groups (.A, a, a) and (.S, /?, 6), 
and a unique element a\ £ B such that 

(2) 

for every x £ A. 

/(.г) = аi<p(x) 

Proof The Corovei theorem guarantees the existence of a homomorphism <p and 
an element a\. Suppose that f(x) = a\<p(x) and f(x) = a2<pf(x) for x 6 A. Putting 
x = 1 we get a\<p(l) = 02^(1), i.e. a\ = 02. Hence <p = <pf. D 

Remark L On the whole, the homomorphism <p and the element a\ will be changed 
in formula (2) if the retracts of the n-adic groups A( ) and B[ ] are changed. 

We shall give a suitable example. 

Example. Let A = {e,a,6,c} be the Klein group i.e. 

e a 6 c 
c e a \ b c 
a a 1 e c b 
b b c e a 

c c b a ě 
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In the set A we define the 3-ary operations ( ) and [ ] as follows: 

(xi,x2ix3) = xix2x3a 

[xi,x2ix3] = xix2x3b 

for all x\yx2ix2 G A. 
A( ) and B[ ] are 3-adic groups with the retracts (.A,idAla) and (A,idA}b). The 
function <p : A —• A is defined by setting: (p(e) = e, (p(a) = 6, >̂(6) = c, (p(c) = a. 
The function y? is a homomorphism (an automorphism) of the groups (A,idA,a) 
and («4, idx^). Notice that the homomorphism (p and the element c £ _4 satisfy 
conditions (b) and (c) of Theorem 4, and so the function f(x) = c<p(x) for x G .4 is 
a homomorphism of the 3-adic groups A( ) and A[ ]. For the 3-adic group A( ) we 
construct the retract by means of the Sokolov method with respect to the element 
cG A: 

xoy = (x,c,y) = xyb 

for all x,y € A. 
Since c = b we have (c, c, c) = (6,6,6) = c. We have obtained the retract (A, o, idA) 

c) of the 3-adic group _4() with the identity 6. It follows from Theorem 1 of Corovei 
[1] that there exists a homomorphism if> : A —• A of the groups (J4,O, idA,c) 
and (A, idyi,6) such that f(x) = f(b)tp(x) for x G -4. Since /(&) = e we get 
f(x) = eip(x) for x € - 4 , hence ^ = /• Thus / (x) = c<p(x) and / (x) = etf>(x) for 
x G -4, where c ^ e and 9 ^ V-

Theorem 5. Let -4i() be an n-adic subgroup of a commutative n-adic group A( ) . 
Let f : A\ —> B be an arbitrary homomorphism of the n-adic group A\( ) into 
a commutative divisible n-adic group B[ ]. Then there exists a homomorphism 
f : A —* B of the n-adic groups A( ) and B[ ] which is an extension of the 
homomorphism / . 

Proof. We construct the retract (A, idAla) of the n-adic group A( ) by means of 
the Sokolov method with respect to an arbitrary fixed element p G A\: 

xy=(xyp
n-2,y), 

a = (p») 

for all x,y G A. 
Then (A\, idAl, a) is a retract of the n-adic group J4X ( ). Notice that (A\, idAl, a) is 
a subgroup of the group (A, idA} a). Let (S , ids, b) be an arbitrary fixed retract of 
the n-adic group B[ ] . It follows from Theorem 4 that there exists a homomorphism 
tp : A% -+ B of the groups (Ai, 10*^,0) and (£,t4B>i)> and an element ai G B 
such that / (x ) = ai <p(x) and y>(a) = (ai)n~lb. Since the group (fl, idB ,6) is a 
commutative divisible group, it follows from Theorem 16.1 (cf. [4], p. 59) that there 
exists a homomorphism <p : A—* B of the groups (.A, idA%a) and ( £ , td#, 6) which 
is an extension of the homomorphism <p. Let us put f(x) = <n £(x) for x G -4. 
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Since conditions (a), (b) and (c) of Theorem 4 are satisfied for every x € A, then 
/ : A —• B is a desired homomorphism of the n-adic groups A( ) and B[ ]. 

In general, the homomorphism <p is not uniquely determined (cf. [4], p. 69), thus 
the homomorphism / is also not uniquely determined. 

We shall consider a homotopy of n-adic groups. 
A homotopy of n-adic groups A( ) and B[ ] we call a sequence of functions 

a i , a 2 , . . . , a n + i : A -+ B such that a n +i ( (x i ,x 2 , . . . ,xn)) = [a i (x i ) ,a 2 (x 2 ) , . . . 
•••>an(xn)] for all x i , x 2 , . . . , x n G A. 
A homotopy will be denoted by (ai, a 2 , . . . , an+i). 

For commutative n-adic groups Theorem 6 of Chronowski [1] has the following 
form. 

Theorem 6. Let A( ) and B[ ] be commutative n-adic groups with retracts 
(A, idA,a) and (B, ids, b), respectively. If a sequence of functions (a i , a 2 , . . . 
. . . , a n +i) is a homotopy of the n-adic group A( ) into the n-adic group B[ ], then 
there exist a homomorphism <p : A —• B of the groups (A,U/A, a) and (B,ids,b), 
and elements a i , a 2 , . . . , an E B such that 

a*(x) = ak(p(x) for k = 1 ,2 , . . . , n - 1, 

(3) an(x) = an<p(ax), 

<*n+i(x) = anb<p(x) 

for every x £ A. 
If <p : A —• B is a homomorphism of the groups (A,idA,a) and (B,ids,b), 
and a i , a 2 , . . . , a n E B are arbitrary elements, then the sequence of functions 
(a i , a 2 , . . . , a n +i) of the form (3) is a homotopy of the n-adic group A( ) into the 
n-adic group B[]. 

Remark 2. Let (A, id A, a) and (B, ids^b) be arbitrary fixed retracts of commuta
tive n-adic groups A( ) and B[ ], respectively. 
For an arbitrary homotopy ( a i , a 2 , . . . , a n +i ) of the n-adic group A( ) into the 
n-adic group B[ ] there exist uniquely a homomorphism <p : A —• B of the groups 
(A, id A , a) and (B, idsjb), and elements a\,a2,...,an E B such that (3) holds. 

Theorem 7. Let A\( ) be n-adic subgroup of a commutative n-adic group A( ) . 
Let ( a i , a 2 , . . . , a n + i ) be a homotopy ofthe n-adic group A\( ) into a commutative 
divisible n-adic group B[ ]. Then there exists a homotopy (di , d 2 , . . . , d n+i) of the 
n-adic group A( ) into the n-adic group B[ ] which is an extension of the homotopy 
( a i , a 2 , . . . , a n + i ) . 

Proof. We construct the retract (A, id A, a) of the n-adic group A( ) by means of 
the Sokolov method with respect to an arbitrary fixed element p € A\: 

xy = (x,pn-2 ,j/) , 

a = (?) 
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for all x,y 6 A. 
(.Ai-fcUi-ft) is a retract of the n-adic group A\( ) . Moreover, (Ai,idAi,a) is a 
subgroup of the group (A>id^^a). Let (B,idB,b) be an arbitrary fixed retract of 
the n-adic group B[ ]. 
It follows from Theorem 6 that there exist a homomorphism <p : A\ —• B of the 
groups (AiyidA^a) and (B,idB,b)y and elements a i , a 2 , . . . , a „ 6 B such that 
(3) is valid for x € A\. Since the group (B,ids,b) is commutative and divisible, 
it follows from Theorem 16.1 (cf. [4], p. 59) that there exists a homomorphism 
<p-: A —> B of the groups (A, id A , a) and (B,idB>b) which is an extension of 
the homomorphism <p. To construct a homotopy ( a i , a 2 , . . . , a n + i ) which is an 
extension of the homotopy (on, a 2 , . . . , <*n+i) we put: 

Q ^ X ) = ah<p(x) for *=- l , 2 , . . . , n - 1, 

an(x) = a„£(ax), 

an+i(ar) = ay6^(x), 

for an arbitrary ar G -4. • 

We say that n-adic group A( ) is uniquely divisible by a natural number k £ N 
if 

(4) V A V 1 ^ ^ ^ - 1 ' ^ 
p€-4 y€-4 x€A 

Proposition 4. An n-adic group A( ) is uniquely divisible by a natural number 
k 6 N if and only if there exists a retract of the n-adic group A( ) uniquely 
divisible by the number k. 

The proof of this proposition is similar to the proof of Theorem 1. 
Since all retracts of an n-adic group A( ) are isomorphic, the following corollaries 

are valid. 

Corollary 7, An n-adic group A( ) is uniquely divisible by a natural number 
k € N if and only if every retract of A( ) is uniquely divisible by the number k. 

Corollary 8. Let A( ) be an n-adic group. Condition (4) is equivalent to the 
following condition: 

A A V W - W ' - ^ y . 
pGA yeA x£A # 

Let .Ai() be an n-adic subgroup of an n-adic group A( ) . Consider the following 
condition: 

(5) V V A («,*"-', «)(*-I) 6-4,. 
p€Ai *€-V *€-4 
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Theorem 8. Let A\() be an n-adic subgroup of a commutative n-adic group A( ) 
for which condition (5) is fulfilled. Let B[ ] be a commutative n-adic group uniquely 
divisible by the natural number k £ N (from condition (5)). Let f : A\ —> B be 
a homomorphism of the n-adic groups A\( ) and B[ ]. Tie there exists a unique 
homomorphism f:A-+Bofthe n-adic groups A( ) and B[ ] which is an extension 
of the homomorphism f. 

Proof. Let (.4, td^, a) be a retract of the n-adic group A( ) constructed by means 
of the Sokolov method with respect to the element p £ A\ which satisfies condition 
(5). Let (B,idB,b) be an arbitrary fixed retract of the n-adic group B[ ]. Notice 
that (A\yidAx)a) is a retract of the n-adic group A\( ). Moreover, (Ax^id^^a) 
is a subgroup of the group (A>idA,a). It follows from condition (5) that there 
exists a number k £ N such that xk £ A\ for every x £ A. By Theorem 4 
f(x) = anp(x) for x £ Ay where (p : A\ —• B is a certain homomorphism of the 
groups (AuidAlia) and (B,idB,b), and ai £ B. According to Theorem 4 (cf. [6], 
p. 481) there exists a unique homomorphism (p : A —• B of the groups (.4, id A,a) 
and (Byids.b) which is an extension of the homomorphism <p. Thus, it is enough 
to put f(x) = a\<p(x) for all x £ A and we get the desired homomorphism / . Let 
a homomorphism g : A —• B of the n-adic groups A( ) and B[ ] be an extension 
of the homomorphism / . It follows from Proposition 3 that there exist a unique 
homomorphism tp : A —• B of the groups (A, id A , a) and (J3, ida, 6), and a unique 
element b\ £ B such that g(x) = b\tj)(x) for x £ A. Since g\A\ = / , applying 
Proposition 3 we obtain a\ = b\ and ^\A\ = (p. Thus, if g(c) ^ f(c) for a certain 
c £ A N A\, then tp(c) ^ (p(c) which contradicts Theorem 4 ( cf. [6], p. 481). We 
have obtained the uniqueness of the extension of the homomorphism / . • 

Theorem 9. Let A\() be an n-adic subgroup of a commutative n-adic group A( ) 
for which condition (5) is fulfilled. Let B[ ] be a commutative n-adic group uniquely 
divisible by the number k £ N (from condition (5)). Let (ai,c*2,.. . ,<*n+i) ^ e a 

homotopy of the n-adic group A\( ) into the n-adic group B[ ]. The there exists a 
unique homotopy (ai, d 2 , . . . , an+i) of the n-adic group A( ) into the n-adic group 
B[ ] which is an extension of the homotopy (ai ,a2, • • • > <*n+i)-

The proof of this theorem is similar to the proof of Theorem 8. It is enough to 
use Theorem 6, Theorem 4 (cf. [6], p. 481) and Remark 2. 

Remark 3. Using formula (16) (cf. [6], p. 481) we can give the formulas for the 
extensions / of the homomorphism / and ( a i , a 2 ) . . . , $ n +i ) of the homotopy 
(a?i, c*2,..., an+i) occuring in Theorems 8 and 9. 
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