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NATURAL TRANSFORMATIONS OF 2-QUASLJETS

A. DEKRET, G. VOSMANSKA

(Received March 3, 1989)

ABSTRACT. This paper deals with a concrete application of the theory of prolonga-
tion functors. We describe explicitly all natural transformations of quasijets of the
second order into themselves.

The notion of quasijets of the second order was introduced by Pradines, [8].
In the case of the higher order we refer to [1]. As to the theory of prolongation
functors we use methods developed by many authors mainly in [5], [6], [7], [8].

Let M be a smooth manifold and pys : TM — M, pry : TTM =ToM - TM
be tangent bundles. A chart (z*) on M induces the charts (z*, z}), (z*, z%,, z},, z},)
on TM, To M, respectively. On T, M there is a canonical involution, see [2], with
the following coordinate form i : (z*, 2}, z8;, z%,) — (2, 2, 2!, 28,).

Let Tf denote the differential of a map: f : M — M. Let (pram), (Tp,,) shortly
denote the vector bundles pry : T(TM) — TM, Tp,,, : To:M — T M, respectively.
Let (prm)o, (Tpa )o be the sets of zero-vectors on (pra), (Tp,, ), respectively, and
let VoT'M be the set of vertical vectors on TM along the set of zero-vectors on M.
There exist three canonical embedding E; : TM — TTM,i=1,2,3:

Ey(TM) = (prm)o, El(z‘.,z'i) = (1‘",1";,0,'0) _
E2(TM) = (nu)oi EZ(I'.’Z‘;) = (25,0,21,0)
E3(TM) = VoTM, Es(z',z}) = (2,0,0,z})

Let M, N be smooth manifolds. A quasijet of the second order with source
z € M and target y € N is map @ : (TaM), — (T2N)y which is linear thh
respect to both vector bundle structures (pra) and (Tp,,).

Denote by QJZ(M, N), the set of all 2-quasijets with source z and target y.
Let QJ 2(M N) indicate the set of all quasijets from M into N.

Let ('), (1) be charts on M, N, respectively. In the induced charts on TzM

and T3 N a quasijet from M to N has the following form:

o =Wzlo, h =Lzby, 1f, = z10""’31 +d’311
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It induces the chart (2,37, b, ¢}, df, ef;) on QJ%(M, N).
Let us recall that the manifold J!(M, N) of all 1-jets from M into N can be

identified with the set eMU ENL(T,M ,TyN) of all linear maps from T: M into
z ’y
T,N,forallze M,y € N. '

The embeddings Ej, i
QJ*(M,N) — JY(M,N), i
le(“) = pTN(ZEl(u))v mz = (zi’yp, bf)
“22(11) = TPN(ZE2(u))’ mz = (zi’yp$ C:’)

m3z(u) = p2(2E3(u)), 73z = (=, ¥, df)

1,2,3, determine three different submersions =; :
1,2,

,2,3, as follows:

where p, VTN — TN denotes the projection on the second factor of the identi-
fication VTN = TN xNy TN, z € QJ2(M,N),u e T M

Lemma 1. Let h € JI(M,N),. Then there exists unique hy,h; € QJ2(M,N),
such that

mi(h1) =h, hy:(prm): = 0C (PrN)y,
ma(h2) = h, ha:(Tpp): = 0C (Tpp)y-

Proof. Let h = (z',y?, h?). Consider h; = (z*, 7,08, cf, df, e ) By the condition
m1(h1) = h, ¥ = hY. The coordinate form of the condition hl(pTM), = 0 is the
following one

oy =0, €f 310"’61 + dfz}, = 0 for any zpy, 239, 23,
It holds & =0, df =0, ef; = 0. Analogously, h; = (%, 97,0, h?,0,0). O

Corollary. There are two embeddings k1,%2 : J(M,N) ‘—-> QJ3(M,N); k1(h) =
hl; xﬂ(h) =
This immediately gives

Proposition 1. Let u € QJ?(M» N), ¢1,¢2,c3 € R. Then by the rules
u > ki(cymi(u) + coma(u) + cama(u)), i=1,2

are determined two families of maps from QJ*(M,N) into QJ*(M,N) of the
following coordinate forms

K1(c11(u) + c2ma(u) + cans(u)) = (2,7, 1} + eacf + cadf,0,0,0)
 Kka(ermi(u) + camz(u) hesms(u)) = (2,47, 0,e1df + eacf + €3, 0,0).

The canonical involution i3 from T3 into T induces the involution I : u +— iuis

on QJ?(MFN)! Iz(zi)f)bgicpl $? u)'—(z incf!b"’df!e‘ej)’
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Let u € QJ2(M, N),. Denote by uy,us the linear maps (pra): — (Prn)y,
(Tpre)e = (Tpn )y, respectively, which are determined by u. Every t € R states
the only two elements U,U € QJ2(M,N) such that mU = mu, Uy = tu;
and 70U = mu, Uy = tuy. In coordinates, U = (z',y, 8, tch, tdf, tef, %) U =
(z*, 99t} f, 1d}, tef;). So t determines two mappings 1y : u — U, 73 : u = U
mdlcated by the corresponding greek letters. For example if ¢, ¢ € R then

72(11(u) = (2*, ¢, cbf,tcf,ctdf,ctef;).
We get

Proposition 2. In general, two real numbers t, ¢ determined two transformations

u— o1 (u)

u— 7271 (I2(u))
from QJ%(M, N) into QJ*(M, N).

We are interested in finding all so called natural transformations on QJ2(M, N).
We will state that the only natural transformatlons on QJ?(M, N) are the ones
described in Proposition 1 and 2.

Let us recall that the manifolds of all holonomic, semiholonomic, non-holonomic
2-jets from M into N are submanifolds of QJ?(M, N). For instance the equations
of the submanifold in the holonomic case are of the form: df = ¢} = b}, ef; = ef,.
The composition rule for jets extends on quasijets by the composmon of maps.

Let H2M, H%N be the principal fibre bundle of all frames of the second order
on M, N, respectively. Let G2, G2 be the structure groups of H2M, H2N, respec-
tively. For example, H2M is the space of all 2-jets of local diffeomorphisms from
R™ into M with target 0 € R™ and G2, is the set of all 2-jets j2¢ of local diffeo-
morphisms ¢ : R™ — R™, ¢(0) = 0. Then H2M x H?N is a principal fibre bundle
with the structure group G2 x G2,. It can be shown that QJ?2(M,N) - M x N
is associated with H2M x H2N with standard fibre QJZ(R™,R"),.

Let f : M — M, g : N — N be local diffcomorphisms. Let u € TT, M
h € QJZ(M,N),. Then by the rule

QJA(f x g)(h)(u) :=TTg -h-TTf™(u)
is defined the map QJ?(f x g) from QJ?(M, N) into QJ2(M, N) which has the
following coordinate form:
ypo = gpbqf ’_"io: 17’61 = 9{,’0}1‘{531,
(1) #i=lg f,’rb'cl' i f‘ + gh(efifi f' +d' ]"'10 01+
+ 95 jfi,zll'

Analogously as in [3] it can be proved that QJ? is a prolongation functor from
category My, x M, into category of fibre bundles. Here M, denotes category of
all n-dimensional manifolds and their local diffeomorphisms. R



158 A. DEKRET, G. VOSMANSKA

Now in our case, a natural transformation from QJ? to QJ2 can be formulated
as a family of maps A such that if h € QJ%(M, N) then

QI*(f x 9)Amxn(h) = AqxnQI*(f x g)(h)

for any local diffeomorphisms f : M — M, g: N — N.

By the Krupka procedure [7] it can be shown that there is a bijection between
the set of all natural transformation from QJ? to QJ? and the set of all G2, x G2-
equivariant maps on QJ¢(R™,R")o.

Let (,,d,¢%;) € QI3(R™R™)o, (f},fy) € G, (¢2,42,) € G2. The
equations (1) implies the following rule of an action of the group G2, x G2 on
QJ¢(R™,R™)o:

@ ¥ =gibifl, & =gicifl, df = gfd]f],
& = gb Wi fEf} + ahel S ff + gbdi £

Amap® : QJ3(R™, R™)o — QJZ(R™, R")o, B = P (b, c,d,e), & = 17(b, ¢, d,e),
& = 88(b,c,d,e), Efj = 1%(b, ¢, d,€), where for example b is a shortened denoting
of b¥, is G% x GZ-equivariant if g®(h) = ®g(h) for every h € QJJ(R™,R")o and
every g € G2, x G2. In the case of the functions 87, this condition is of the form,

(use (2)):

98By (b,c,d,e)fi =

(3)
= B (ghbL fF, gbct f}‘,yidlf}‘,gf,’rbldf;"f} + gheb fE S+ gbdifh).

Analogously in the case of 77, 67,
In what follows it will be useful a modification of some Kolaf and Janyska
results on homogeneous functions, [4].

Lemma 2. Let f(z',3,...,2*) be a smooth function defined on RN such that
for every positive real number k a homogenity condition

4) kf(z', ..., 2°) = f(k°z'  K°P, ... k°2°)
where a, b, . .., ¢ are positive real numbers, d € R, are satisfied. Then non-zero func-
tions of this property are sums of homogeneous polynomials of degrees (m,n, . .., q)

in variables (z*,y?,...,2*) such that

(5) am+bn+.--+cqg=d.

If there is no positive integer solution (m,n,...,q) of (5) then only f =
satisfies (4).
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Using the canonical injective group homomorphism G,l,.l x GL — G',z,. x G¥ and
restricting to the subgroup of homothetiesin G}, ( fj=ké;,95 =88, fix = 0, g =
0), we get for (3):

kB? (b, c,d,e) = BF (kb, ke, kd, k?e).
By Lemma 2, t.he functions A7 are linear according to the variables b7, f, d? and
We

independent on e . It holds analogously in the cases of the functlons 2, .
have

klb? +kch +k3dp
k bp+k5(.‘p+k6dp
= 7bp+kacp+k9dp

o
d’

(6)

By (2) the condition of the G2, x GZ-equivariance gives for the functions an

9B B FE £ + aEnbufE S + aR 6L FE =l (ahbL £F, gb el £F,

7
( ) d‘IIch ,gp ch ft fl +gpeklfkf_; + gpdqfu)

In the case of the subgroup of homothetic maps on R™ or R™, respectively, (7)
has the simple form .

k?; (b, ¢, d, ) = nf; (kb, ke, kd, ke)

or

Icznfj(b, c,d,e) = r,fj(kb, ke, kd, k?e),

respectively. Then by Lemma 2 nf; is linear according to el ie. e” Af;: e], and

does not depend on b, c,d. Then (7), with respect to the subgroup G1 x G1, leads
to finding all G}, x G}-equivariant linear maps on R” ® R™ ® R™*. By [10] such
a map is of the form

nf;- = aefj + ﬂe;-’,-.
Let 72 : G2, x G2 — G}, x G} be the group homomorphism determined by the
jet projection. Then (7) on Ker #? gives
92, (k1! + kac? + ksd?)(kab} + ksc] + kod?)+
+ef; + ef; + (kzbf + kach + kod}) £ =
= a(gh.bic] +ef; + d”f )+ ﬂ(g;’,bjcf + ej‘ +df ,J)

Comparing these two polynomials we get

ko =a+ B, a=kiks, B=koks k1ksy=0, ky1k¢=0
kaoks = 0, kake =0, kaky =0, kaks =0, k3ks =0,
k7 = ks =0
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There are the following four different cases of all solutions of these equations

i.e.

i.e.

(i)k4=k5=k6=0, )

O = kibf + kodf + kadf, & =0,d} =0, e =0
(ii) ky = ky = k3 = 0,

¥ =0,& = ko + ks + ked?, & =0, &, =0
(i_ll) k2=k3=k4=k6=0,

€. bf = klb"-’, (—:f = kscf, Jr = k1k5d?, é?j = klksefj

(iiii) ky = k3 = ks = ke = 0,

i.e. bf = kch, (_!f = k4b€, dp = k2k4d?, é?j = k2k4efj.

Comparing (i) - (iiii) and Propositions 1 and 2 we verify the following theorem

Theorem. There are the only following types of natural transformations of the
functor QJ? into itself

u n,-(k17r1(u) + k-_)‘ll'g(‘u) + kaﬂs(u)), 1=1,2
U — 721‘1(‘!1)
u > 27y (I2(u))

where v, 7y are maps determined by real numbers c,t by the procedure described

at

(1]
(2]
&)
[4]
(5]
(é]
(7]

(8]
5]

Proposition 2.
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