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METRICALLY REGULAR SQUARE OF 
METRICALLY REGULAR BIGRAPHS I. 

VLADIMÍR VETCHÝ 

(Received April 25, 1989) 

ABSTRACT. The present paper deals with the spectra of powers of metrically regular 
graphs. A necessary condition for G to have the square G2 metrically regular is 
found and the problem of the construction such graphs G is solved for metrically 
regular bipartite graphs with 4 and 5 distinct eigenvalues (these eigenvalues can 
have various multiplicities) 

1. INTRODUCTION AND NOTATION 

The theory of metrically regular graphs originates from the theory of association 
schemes first introduced by R.C. Bose and Shimamoto [2]. All graphs will be 
undirected, without loops and multiple edges. 

1.1. Definition [l]. Let X be a finite set, n := |.K| > 2. For an arbitrary natural 
number D let R = {Ro, R\,..., RD} be a system of binary relations on X. A pair 
(X, R) will called an association scheme with n classes if and only if it satisfies the 
axioms .41 — A4: 

Al. The system R forms a partition of the set X2 and Ro is the diagonal 
relation, i.e. Ro = {(x,x);x € X}. 

A2. For each i € {0,1, . . . , D} it holds Rr1 G i?. 
A3. For each t, j , Jb G {0,1 , . . . , D} it holds 

(x, y) € Rk A (an, yi) €#*==> Pij(x,y) = Pij(xit yi), 

where p0-(x,y) = \{z\(x,z) £ RiA(z,y) € Rj}\. 
Then define p*. := Pij(x, y) where (ar, y) € Rk-
A4. For each t, j , Jk € {0,1, . . . , D} it holds p<*. = p£. 

1991 Mathtmatia Subject CU$$ification: 05C50. 
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The set X will be called the carrier of the association scheme (X, R). Especially, 
Pio — hk, Pij = vi&ij> where Sij is the Kronecker-Symbol and v,- := p?-, and define 

/^--HM <.,;,*</>. 
Given a graph G = (X> E) of diameter D we may define /** = {(ar, y); d(x, y) = 

fc}, where d (x, y) is the distance from the vertex x to the vertex y in the standard 
graph metric. If (X, R), R = {Jlo, Ru • • • • ^x>}> gives rise to an association scheme, 
the graph is called metrically regular and the p*« are said to be its parameters or 
its structural constants. Especially, metrically regular graphs with the diameter 
D = 2 are called strongly regular. 
1.2. Definition. Let G = (X,E) be an undirected graph without loops and 
multiple edges. The second power (or the square) of G is the graph G2 = (Xy E) 
with the same vertex set X and in which different vertices are adjacent if and only 
if there is at least one path of the length 2 or 1 in G between them. 

1.3* Definition. Let G be a graph with an adjacency matrix A. The characteristic 
polynomial |AI —J4| of the adjacency matrix A is called the characteristic polyno
mial of G and denoted by PG(A) . The eigenvalues of A and the spectrum of A are 
called the eigenvalues and the spectrum of G, respectively. If Ai > A2 > • • • > An 

are the eigenvalues of G, the whole spectrum is denoted by SP(G) and Ai is called 
the index of G. 

Define (0, l)-matrices Ao,..., Ap by AQ = I and (-4f )j* = 1 if and only if the 
distance from the vertex j to the vertex k in G is d ( j , Jb) = t. Using these notations 
it follows: 

1.4.Theorem [4]. For a metrically regular graph G with diameter D and any 
real numbers r i , . . . , rjy the distinct eigenvalues of^2i=i r*^* a n c ' -Ci=i rt-fi are 
the same. In particular the distinct eigenvalues of a metrically regular graph are 
the same as those otP\. 

1.5. Theorem [9]. For a graph G with an adjacency matrix A there exists a 
polynomial Pjfe), such that P(A) = J, if and only ifG is regular and connected. 
In this case we have 

P(T\ _ n ( * - A 2 ) . . . ( g - A m ) 
1 ' ~ ( r - A 2 ) . . . ( r - A m ) 

where n is the number of vertices^ r is the index of the graph G and Ai = r, 
A2, . . . , Am are all distinct eigenvalues of G.J(J = (£»;) with e%j = 1.) 

1.6. Theorem [13]. A metrically regular graph with a diameter D has D + 1 
distinct eigenvalues. 

1.7. Theorem [4]. Let X\ = r, A2, . . . , An be the spectrum of a graph G, r being 
the index ofG.Gis regular if and only if 

<=i 

Then G is regular of the degree r. 

1 n 
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1.8. Theorem [11]. The number of components of a regular graph G is equal to 
the multiplicity of its index. 

1.9. Theorem [6, p.161]. Let G be a regular connected graph with n vertices 
whose spectrum is SP(G) and whose set of distinct eigenvalues is T. Suppose 
\T\ < 4. Then the following statements are equivalent: 
(i) H is cospectral with G, 

(ii) H is regular, connected, has n vertices, and has T for its set of distinct 
eigenvalues. 

1.10. Theorem [6, p.87]. A graph containing at least one edge is bipatite if and 
only if its spectrum, considered as a set of points the real axis, is symmetric with 
respect to the zero point. 

1.11. Theorem [6, p.82]. A strongly connected digraph G with the greates 
eigenvalue r has no odd cycles if and only if —r is also an eigenvalue ofG. 

1.12. Theorem [11]. IfG is a regular graph of degree r with n vertices, then for 
the complementary graph G it holds 

P6(X) = ( _ l ) » ^ ± I ± i p G ( - A - 1) 

i.e., if the spectrum of G contains Ai = r, A2, . . . ,An , ' then the spectrum of G 
contains n — 1 — r, A2 — 1 , . . . , An — 1. 

1.13. Theorem [7]. The spectrum of a graph G determines whether or not it 
is a regular connected line graph except of 17 cases. In these cases G has the 
spectrum of the line graph L(H) ofH where H is one of the 3-connected regular 
on 8-vertices or H is a connected semiregular bipartite graph on 6 + 3 Vertices. 

1.14. Theorem [7]. The line graphs of the following 17 graphs are cospectral 
with an exceptional graph (a graph that is cospectral to a regular connected line 
graph but is not itself a line graph ) : 

(i) #4,4, K^fi. 
(ii) The coctail party graph CP(4) on 8 vertices. 

(iii) K8. 
(iv) C*. 
(v) C m U C n , { m , n } = {3,5},{4,4}. 

(vi)-a H where H is regular, connected and cubic graph on 8 vertices (four 
graphs in all). 

(vi)-b H where H is regulax, connected graph on 8 vertices (five graphs in all). 
(vii) The semiregular bipartite graph with the parameters (m, n, r\, r2) = 

= (6,3,2,4). 
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1.15 Theorem [12]. If G is a regular graph of degree r with n vertices and m 
(= \nr) edges, then the following relation holds: 

(11) PL(G)W = (A + 2)m-nPG(A - r + 2). 

A multigraph (i.e. multiple edges are allowed) G is called semiregular of degrees 
ri,r2 if 

it is bipartite having a representation G = (X\ ,X?,E) with \Xi\ = n,-, ni+n2 = 
n, where each vertex x 6 X{ has valency r,- (t = 1,2). 

1.16. Theorem [5]. Let G be a semiregular multigraph with n\ > n2. Then for 
the line graph ofG the relation 

IV)(A) = (A + 2fJ(-^)">-»'PG(y/0^2-)PG(-y/b^2-) 

holds where a. = A — r. + 2 (i = 1,2), /? = n\r\ — n\ — n2. 

1.17. Theorem [10]. Let G,G' be connected graphs, L(G) 2. L(G'). Then G 2. 
G' exceptly the case G = K$, G' = A1.3. 

2. METRICALLY REGULAR GRAPHS WITH 4 DISTINCT EIGENVALUES 

For metrically regular graphs with 4 distinct eigenvalues we get by Theorem 
1.4.: 

| A / - P i | = 

= A4-A3(pJ1+p?2 + p?3)+ 

+ A2(-Ai + p\lP
3

3 + pltpfj + p?2p?3 - p3i2Pi3 ~ P11P12)-

- A(PiiPl2Pi3 ~ PllPl2Pl3 - PllPl2Pi3 ~ AiP?2 - Aip?3)+ 

+ Ai(Pi2Pi3-Pi2Pi3)-

By simple calculations we obtain 

(2.1) A2 + A3 + A4 = p\\ + p?2 + p?3 - Ai 

A2A3 + A2A4 + A3A4 = -Ai + Pn(p?3 + P?2) + P?2Pi3 - P12P13-

- P11P12 ~ AI(P1I +.P12 + P13 - Ai) = 

= -Ai + pJi(p?3 + P12 ~ Ai) + Pi2(p?3 - Ai)+ 

+ P3
2(Ai - P?3) ~ Pii(Ai - 1 - P11) = 

( ' = -Ai + p{i(p?3 - P?3) + P?i(l - Ai)+ 

+ Pia(Ai-Pi3-Pi2) = 

= -Ai + pii(p?3 - P?s) + Pii(l - A» + P?2) = 

= -Ai + P1I(P83 - P?3) + Pii(l - Pis) 
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( 2.3) A2A3A4 = Pi2p
23 - p2

2Pi3 
We use some of known relations from the theory of the association scheme [1]: 

(2-4) ».=£pk 
i 
3 

(2.5) ViVj^J^^PiJ 
Jb=0 

(2.6) viP)k = vrfik 

2.1. Condition for G to have the square G2 strongly regular 

If A denotes the adjacency matrix of a metrically regular graph G and ./42 the 
adjacency matrix of G2 it is easy to see that 

(2.7) ^ 2 = 4_^ + P n ^ P _ L j 4 _ ^ . / 
Pii Pii Pii 

So, if the eigenvalues of G are Ai > A2 > A3 > A4 with respective multiplicities 
mi = 1, m-i, mj, m\, the eigenvalues of G2 are 

n _ A ? + ( P ? I - P 1 I ) A > ^ A I 
W ~ 12 

Pll 

with the same "formal" multiplicities as A,- (for t = 1,2,3,4), i.e. the multiplicity 
of m is J2 mj w i t h Mi = {J : Vj = ."•)• 

j€Mi 
If m is the index of G2 it holds /i,- = v\ + v2, where vi, v2 are the parameters 

of G. Because of v\ = Ai from (2.6) (i = 1, j = 2, Ar = 1) we get Aip}2 = t>2PiiJ 
thus we obtain (p\2 = Ai — pn — 1) 

„ _ x , W i - p h - l ) _ Af + ^ - p l J A i - A i _ 
A** = M + o = 2 = Pi-

Pn P11 
As the multiplicity of the index of a graph is equal to 1, the index of G2 must be 
H\. Because of Theorem 1.6 G2 has diameter 2. Hence, if G2 is metrically regular 
then G2 is strongly regular and because of Theorem L6 one of the following cases 
a), b), c) occurs 

(2.8) a) H2 = /*3, then A2 + A3 = px
n - p2

n 

(2.9) b) /i2 = /i4; then A2 + A4 = p\x - p\x 

(2.10) c) /i3 = \i\\ then A3 + A4 = pjx - p2
n 

On the other hand if G2 is strongly regular, the parameters of G2 are 

(2.11) 2pl
n = ph + 2p{2 +pl22 = P?i + 2p?2 + p 2̂ 

(2.12) 2 P l 2 = P 2 3 = P l 3 + P 2 3 

(2.13) 2 P22=P33 = P33 
2Pll = 2p\2 + P22» 2Pl2 = Pl3 + P23» 2P22 = P.33-
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2.2. Lemma. For metrically regular graphs with 4 distinct eigevalues the condi
tions (2.11), (2.12), (2.13) are equivalent. 

Proof. (2.11) =» (2.12). From (2.4) i = 2, Jb = 1,2 it follows 

(2.14) v2 = Pi2 + P22 + P23 = 1 + P?2 + P22 + P23-

If we substitute (2.4) i = 1, Jb = 1,2 in (2.11) we get 

Ai - 1 + p\2 + P22 = Ai ~ P?3 + P?2 + P22-

So from (2.14) we obtain (2.12). 
(2.12) =* (2.11). From (2.14) and (2.4) i = 1, Jb = 1,2 we get 

P11 + 2Pi2 + P22 = *i - ! + P12 + P22 = 

= M + P?2 + P22 ~ P?3 = P?1 + 2p?2 + P22-

(2.12) O (2.13). From (2.4) i = 3, Jb = 1,2 it follows 

t>3 = P23 + P33 = P?3 + P23 + P33 

and equivalence is easy to see. • 

2.3. Theorem. Let G be a metrically regular graph with 4 distinct eigenvalues 
and G2 be a strongly regular graph. Then condition (2.9) holds and A3 = —1, 
A2 > 0. The conditions (2.8) and (2.10) cannot set in. 

Proof, a) Substituting (2.8) in (2.1) we obtain from (2.4) i = 1, Jb = 2 

(2.15) A4 = p\x + p?2 ~ P?2 = P?3 - P?3 

The relations (2.2), (2.8) and (2.15) imply 

A2A3 + (p?3 ~ P?3)(Pu ~ P?i) = Pli(P?3 - P?3) + P?i(l - P?3) ~ *i 

and we obtain 

(2.16) A1 + A2A3 = p?1(l-p?3). 

By the substitution (2.15) and (2.16) in (2.3) we get 

[P?l(l - P?3) - *l][P?l + P?2 ~ Pl2] = Pl2P?3 - P?2Pl3 

and by a simple calculation using (2.15) and (2.4) (i = 1, k = 3) we obtain 
""PiiPis(Pii +P12 ~Pi2 +1) = 0. As the diameter of G is D = 3 we obtain p\x ^ 0, 
P?3 ^ 0, so 

A4=Pii+P?2-Pi2 = - l -
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e smallest eigenvalue of a graph is equal to —1 if and only if the components 
re complete graphs [8] which is a contradiction to D = 3. 
f the condition (2.9) holds the procedure is equal as above in a) if we 
ute A3 for A4. So we get 

• A3 = p1"1+p?2-p?2 = - l 

ondition (2.10) gives 

A2 = P i i + P ? 2 - P i 2 = - 1 -

graph has exactly one positive eigenvalue if and only if its non-isolated 
s form a complete multipartite graph [13], which is a contradiction with 
by Theorem 1.6. This completes the proof. • 

3. BIPARTITE GRAPHS WITH 4 DISTINCT EIGENVALUES 

heorem. For every k G N, k > 2 there is one and only one metrically 
bipartite graph G = (X, E) with diameter D = 3, n = |X| = 2k 4- 2, so 

2 is a strongly regular graph. Its structure constants are: 

P10 = ! P20 = 1 P30 = 1 vo = 1 Ai = * 
Pii = 0 Pii = * - 1 Pii = 0 v i = t A2 = l 
p\2 = k - 1 p\2 = 0 p\2 = k v2 = * A3 = - 1 
P13 = 0 P13 = 1 P13 = 0 v3 = 1 A4 = -k 
P22 = ° P22 = k ~ ! P22 = 0 mi = 1 m4 = 1 
P23 = 1 P23 = 0 P23 = 0 m2 = *r m3 = k 
P33 = 0 P33 = 0 P33 = 0 

As G is a bipartite graph, p^ = 0 must be fulfilled for any t, j*, Jb G {1,2,3}, 
k = 1 (mod 2). Thus it follows 

1 1 1 1 2 2 3 3 3 3 / \ 

Pll = Pl3 = P22 = P33 = Pl2 = P23 = Pll = Pl3 = P22 = P33 = 0 

cording to Theorems 1.10 and 2.3 we get Ai = — A4, mi = m4, A2 = —A3 = 1, 
m3. With respect to (2.4) t = 1, Jfc = 1,2,3 it holds p\2 = Ai - 1, p\3 = 

Pll)Pl2 = ^l-
(2.3) gives AiA^ = Ai(Ai - pfx). This implies p2

n = Ai - 1, pf3 = 1. (2.11) 
P22 = Ai — 1. Using relations (2.6) we obtain 

V2 = Ai-y- = Ai, v3 = t?2--p = 1, 
P11 P12 
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yields p\z = 0 and from (2.4) (t = 2, Jb = 3) pf3 = 0. According to (2.7) the 
eigenvalues of G2 are 

(2) 
\i\ = 2Ai multiplicity m\ ' = 1 = mi; 

(2) 
H2 = 0 multiplicity m\ ; = Ai + 1 = m^ + m.4, 

(2\ * 

/13 = —2 multiplicity 1713 = Ai = m3. 

Construction of G = (K i , K2> -^)-
Xi = {t>i,v2,...,t;jfe+i}; X2 = {tii,tx2,...,tijb+i}; 

£={( i ; < , t i j ) ; t , j = l , 2 , . . . , * + 1; i±j}. 
This graph is shown in Fig. 

t**+i v* + i 

It remains to prove the characterization of G by its spectrum. According to 
Theorem 1.12. this is equivalent to the assertion that the complement of G is 
characterized by its spectrum. • 

As G 5- Kjb.fi + Ki 9_ L(Kk+\,2) we must prove that the line graph of A'jb+1,2 
is characterized by its spectrum. But we prove the following theorem. 

3.2. Theorem. Let G -=* L(Kn i ,n2), ni > n2. Then G is characterized by its 
spectrum unless: 

(i) {ni ,n 2 } = {4,4}, 
(ii) {ni ,n 3 } = {6,3}, 

(iii) {m, n2} = {t(2t + 1), t(2t - 1)}, t > 2. 
Jn the case (i) and (ii) there is a cospectral mate that is not itself a line graph. In 
the case (iii) for t = 2 it holds 

L ( / M Q , 6 ) ^ L ( L ( / V " 6 ) ) . 
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but L(K\o,6) is cospectral with L(L(KQ)). 

Proof. The cases (i) and (ii) follow from Theorems 1.13. and 1.14. Because of 
Theorem 1.13. it is enough to consider the case G is cospectral with L(H). 

With respect to [6, p.72] the spectrum of Kni>n2 contains the numbers v/rnin2, 
—y/n\n2, and ni +n2 — 2 numbers all equal to 0 and we obtain 

IJKBl.„,(A) = (A2-nin2)A"'+»>-2 

By Theorem 1.16. it holds 

^(K„,.3)(A) = (A + 2r»--"'-»'(a1a2 - n^K^a?-" 1 . 

As a i a 2 - n i n 2 = ( A - n 2 + 2)(A - ni + 2) - n i n 2 = (A + 2)[A-(ni + n2 - 2 ) ] we 
get 

IJt(xni,1I3)(A) = (A + 2 ) n " - " ' - " ' + 1 -

[A - (n, + n2 - 2)][A - (n2 - 2)]n«"1[A - (m - 2)]"'-1 

So we get a connected regular graph of degree ni + n2 — 2 with nin2 vertices. 
By Theorem 1.9. the line graph L(H) cospectral with L(Knitn2) must be regular, 
connected and it has nin2 vertices and the same set of the distinct eigenvalues. It 
follows, that H must be either a semiregular or a regular graph. 

A. Let H = (Xi,X2,£') be a semiregular graph of degrees ri,r2 with |X , | = 
mi} dn(xi) = rt, x, € Xt (i = 1,2), mi > m2. According to [6, p.31] we get 
±y/r\r2 E SP(H) with the multiplicity 1 and from Theorem 1.16. it follows that 
the multiplicity of-2 in L(H) is m\r\ — mi — m2-fl and that ri — 2 is an eigenvalue 
of L(H). Hence from (3.1) we obtain n2 = ri. So, it follows 
ri = n2 

rmri = vti2r2 - the necessary condition for H. 
m\r\ = nin2 - the numbers of vertices of L(H)} G. 
miri — mi — m2 + 1 = - the multiplicity of —2 in the spectrum 
= nin2 — ni - n2 + 1 of L(H) and G. 

But these equations give H S KnitTl3. 

B. Let H be a regular graph of a degree r with n vertices and m = ^nr edges. 
Denote SP(L(H)) = {At} = SP(G), X\ > A2 > . . . . According to Theorem 1.15. 
we obtain comparing the degrees of L(H) and G, Ai = 2r — 2 = ni + n2 — 2, so 
r = Wl^na. Moreover, m = nin2 . 

1) Let H be a bipartite regular graph (Xi,X2,2?) with |X*| = m<, «-a? 1,2, 
m\ > m2. Then mir = m2ry i.e. mi = m2 = | n . By Theorem 1.10., ~r € SP(H), 
and from (3.1) and (1.1) it follows mir = nin2 and that the multiplicity of —2 is 

(3.2a) m — n-r 1 = nin2 — ni — n2-f 1 
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As m = | n r we obtain 

w = 4 / n i n 2 - 4 \ i fm + n 2 - 4 ^ 0 . 
\ n i + n 2 - 4 ) 

Comparing (3.1) and (1.1) we get that the spectrum of H contains the numbers 

Aii = 2^1^ (multiplicity 1) 
/i2 = n i~n* (multiplicity n2 - 1) 
ji3 = -w»~na (multiplicity ni - 1) 
JI4 = ^ax±nz (multiplicity 1) 

As H is a bipartite graph we obtain by Theorem 1.10. 

ni = n2, so n = 2ni and mi = m2 = ni = n2 = r, 

hence 

If ni + n2 — 4 = 0 we get from (3.2a) 

- ( n i + n2 — 4) = nin2 — ni - n2 = 0. 

So we obtain ni + n2 = 4, nin2 = 4. This implies ni = 2, n2 = 2, r = 2, 
mi = m2 = 2, m = n = 4 and H £ C4 2. i^2j2. 

2) Let H be a nonbipartite regular graph. Comparing (1.1) and (3.1) we obtain 
(—r is not eigenvalue of H - Theorem 1.11) 

m - n = nin2 — ni — n2 + 1, 
(32) n , ' JX 

•j(ni + n2 - 4) = nxn2 - ni ~ n2 + 1. 

a) ni + n2 — 4 = 0. It implies nin2 = 3. So we obtain 

nx = 3, n2 = 1, r = 2, m = 3 = n and H £ # 3 . 

But I ( / f 8 ) S M#3,0 . 
b) ni + n2 > 4. So we get from (3.2) 

(3.3) n = 4 n i n 2 - 1 2 4 
v ni + n2 - 4 

Comparing (3.1) and (1.1) we get in this case that the spectrum of H contains the 
numbers 

pi-&***4p* (multiplicity 1) 
^-m^ni (multiplicity n2 - 1) 
JI3 = topx (multiplicity nx - 1) 
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if ni -̂ n2; if ni = n2 then /i2 = /i3 = 0 has the multiplicity 2ni - 2. As H has*no 
loop the sum of all eigenvalues /*i, — , / i n J^JLi Hi = 0 and we obtain 

( n i - n 2 ) 2 - ( n i + n2) = 0. 

If we denote m — n2 = t, we get 

< 2 - t - 2 n 2 = 0. 

As t G N we obtain ni > n2 

. As r = - - ^ = i i ± ^ G N, we obtain Ar = 2j — 1, j > 1. So we get r = 2i2 , 
m = i(2i + 1), n2 = i (2i - 1), n = 4i2 - 1, m=\nr = i 2 (4 i 2 - 1). 

It is easy to see that H is a strongly regular graph with the following table of 
the structural constants: 

Pio = 1 P20 = 1 A*i = 2 i 2 (multiplicity 1) 
Pii = i 2 Pii = i 2 /*2 = i (multiplicity 2i2 - j - 1) 
P12 = i 2 - 1 P12 = i 2 /*3 = - i (multiplicity 2i2 - i - 1) 
p | 2 = i 2 ~ l Pl2 = i 2 ~ 3 t ; x =2 i 2 t;2 = 2 ( i 2 - l ) i G 1 V \ { 0 } . 

So for i = 1 we get H = K3i nx = 3, n2 = 1, but £(#3,1) 2 £(#3) . For 
i = 2 it is easy to see that H congL(Ke). According to Theorem 1.17. we obtain 
Sp(L(K10te)) = SP(L(K6))) but L(K10te) ?- L(L(Ke)), because K1Qte f L(K6). 

The fact that H is isomorphic with L(Ke) we can obtain by the same procedure 
as before. At first, H = L(W) with some if' holds because of Theorem 1.13.; then 
we get: 

A. W - semiregular graph of the type (mi,m 2 ,r i ,r 2 ) . Comparing L(H') and 
H we obtain: miri = m%r2^ m\r\ = 15, ri + r2 = 8 (the degree of L(H-) and if), 
m i n — mi — m2 + 1 = 9 (the multiplicity of - 2 ) . But there are no mi>m2,ri,r2 

satisfying these conditions. 
B. H1 - a regular connected graph of a degree r'. So we obtain: 
1) H1 - a bipartite graph. It implies 2r' — 2 = 8, r' = 5, m — n + 1 = 9, so 

| n = 8. 
2) H' - a nonbipartite graph. It implies m — n = 9 and as r' = 5, n » 6 , So 

H'**Ke. 
The table of the association scheme with the parameters pfj for this case (i.e. for 
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1 0 1 1 2 1 
1 1 0 1 1 2 
2 1 1 0 1 1 
1 2 1 1 0 1 

194 VLADIMIR VETCHY 

the graph H) is the following 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
2 1 0 2 2 1 1 1 2 1 1 1 1 2 2 2 
3 1 2 0 1 2 1 1 1 2 2 2 1 1 1 2 
4 1 2 1 0 2 2 1 1 1 1 2 2 2 1 1 
5 1 1 2 2 0 1 2 1 1 2 1 2 1 2 1 
6 1 1 1 2 1 0 2 2 1 2 2 1 1 1 2 
7 1 1 1 1 2 2 0 1 2 1 1 1 2 2 2 
8 1 2 1 1 1 2 1 0 2 2 1 2 1 2 1 
9 1 1 2 1 1 1 2 2 0 1 2 2 2 1 1 
10 2 1 2 1 2 2 1 2 1 
11 2 1 2 2 1 2 1 1 2 
12 2 1 1 2 2 1 1 2 2 
13 2 2 1 2 1 1 2 1 2 
14 2 2 1 1 2 1 2 2 1 
15 2 2 2 1 1 2 2 1 1 1 1 2 1 1 0 

Substituting 2 by 0 we obtain the adjacency matrix of H for j = 2. • 

4. METRICALLY REGULAR BIPARTITE GRAPHS WITH 5 DISTINCT EIGENVALUES 

Let T = {Ai, A2, A3, A4, A5} be the set of the distinct eigenvalues of the graph G 
and Ai > A2 > A3 > A4 > A5. As G is a bipartite graph we obtain from Theorem 
1.10. 

Ai = —A5, A2 = —A4, A3 = 0. 

According to Theorem 1.4., A,- (t = 1,2,3,4,5) is the solution of the equation 

|A/ -P ! | = 0. 

As G is bipartite it holds 

p)k = 0 for t, j , Jb G {0,1,2,3,4}, i + j + jb = l(mod 2) 

and we get 

A6 - A3[Ai + p{2Pii + P?3P?2 + P?4P?3]+ 

+A[Pl2PllPl4Pl3 + <MPl3P?2 + P?4Pl3)] = 0-
From the condition for G to have the square G2 strongly regular we get for the 
structural constants 2p*;- of G2: 

Pn = PÎI + 2PÌ2 + P22 = A + 2PÏ2 + P22 
2PІ2 = P23 = PÏз + P23 + P24 
'P22 s= Pзз + 2PІ4 + P44 = Pзз + 2PІ4 + P44 
'PÎI = 2P?2 + P22 = 

4 
P22> 

2PІ2 ss Pзз + 2PІ4 • + f& s- Pзз + 2pti + PÍ4 
2PÌ2 "-- PlЗ + P?4 + PІз + P24 

+ 
PÍз 
P23 

+ 
• + 

PÍ4 
P24» 

+ 
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As G is a bipartite graph we obtain 

(4.2) 2p}i = 2pi2 = p?i + pi2 

(4.3) Vl2 = P23 = Pl3+P24 

(4-4) 2pk = 2pL» = P33 + P44 

(4.5) 2p?i = 2p?2 = p^2 

(4.6) 2P?2 = IJi34 + I>233=I'l43 + IJ244 

(4-7) 2P22 = 2pi4 = P33 + P44 

According to the form of the matrix Ai of G2 we get the eigenvalues of G2 in the 
form 

,. = A 2+P.У.-A 1 ; ÍЄ {1,2,3,4,1 (4.8) fa = ' ™ i; ie {1,2,3,4,5} 
Pii 

As for a bipartite graph it holds p2i(/ii — /-») = P?i(Ai — A,)(Ai + A, + p 2 i ) > 0, /*i 
is the index of G2. As a strongly regular graph has 3 distinct eigenvalues it must 
hold (for distinct numbers i, j , k, m; i, jf, fc, m -̂  1) either /*,- = /ij = /** or /*,- = /i;-
and /i* = / i m . 

A. //,- =/i; =/i*. 
According to (4.8) we obtain 

Pn - Pii = *i + *; = A,- + A* = A;- + A*. 

So we get the contradiction with A,- ̂  Xj ^ A* ^ A,-. 

B./i, = /i;,//* = / i m . 
Because of Theorem 1.4. we obtain for a strongly regular G2 of a degree r 

/i2//3 = - ( r - 2p2

2) < 0. As G2 contains at least one edge /13 < 0, so fi2 > 0. 
Because of p\x > 0 it remains /i2 = /is, /*3 = /*4-
In this case we obtain from (4.8) for the bipartite graph G 

A2 — Ai = —pu = —A2 

(4.9) so Ai =2p? 1 = 2A2. 



196 VLADIMIR VETCHÝ 

From (4.1) we obtain 

(4.10) A? + AÍ = Ai+p}2p?i+p?3P?2 + p?4pÍ3 

and using (4.9), (4.10) and (2.4) (t = 1, Jb = 1,2,3) we get 

, . ..x P12 = 2p?i - 1, Pis = Pii, Pis = 2pii, 
( 4 1 1 ) 3 2 , 1 3 2 , 

Pl2 = Pll + L P l 4 = P l l - l -
As p?4 > 0 {D = 4) we get p?t > 1. 
From the relation (2.6) (t* = 1, j = 2, k = 1 and i = 2, j = 3, it = 1) we get 

(4.12) V2 = 2(2p?!-1) 

6 

Píi + l 
(4.13) and v3 = 4p2

n - 6 + 

As t/3 is an integer we get p\x 6 {2,5}. 
a)Pii = 5. 

Accroding to (4.9) and (4.10) - (4.13) we obtain 

vi = 10 v2 = 18 v3 = 15 p\2 = 9 

Pi3 = 5 P?2 = 6 p?4 = 4 p?3 = 10. 

By (2.6) (t = 3, j = 4, k = 1) we get v4 = 6. (2.4) (t = 2, Jfc = 1) implies p\3 = 9 
and from (4.3) we obtain p\A = 4. By (2.4) (t = 4, ifc = 2) we get p\A = 2. As (2.6) 
(t = 2, j = 4, ifc = 4) implies p\A = 6 and v4 > j>24> which follows from (2.4) (t = 4, 
jfc = 4) we obtain a contradiction. 

b)p?i = 2. 
According to (4.2) - (4.13) and (2.4) - (2.6) we obtain the following table: 

Pio = 1 P20 = ! P30 = 1 P40 = ! »o = 1 
Pii = 0 P?i = 2 p?i = 0 pt1 = 0 vi = 4 
Pi2 = 3 P?2 = 0 P?2 = 3 p?2 = 0 v2 = 6 
Pi3 = 0 P?3 = 2 P?3 = 0 Pi3 = 4 «3 = 4-
Pl4 = 0 P?4 = 0 P?4 = 1 P?4 = 0 1>4 = 1 
P22 = 0 p22 = 4 pf2 = 0 p\2 = 6 Ai = 4 = -A5 

P» = 3 P§3 = 0 p2 3 = 3 p^3 = 0 A2 = 2 = -A4 

P24 = 0 P$4 = l Pf4 = 0 P^4 = 0 A3 = 0 
P33 = 0 P33 = 2 P33 = 0 p^3 = 0 mi = 1 = m5 

P34 = 1 P34 = ° P34 = ° P34 = ° m2 = 4 = m4 

P44 = 0 P?4 = 0 pf4 = 0 pU = 0 m3 = 6 

The realization of this table is the 4-dimensional unit cube. So we have proved 
the following theorem: 
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4.1. Theorem. There is only one table of the parameters of an association scheme 
so that the corresponding metrically regular bipartite graph with 5 distinct eigen
values has the strongly regular square. 

4.2. Remark. Theorems 3.1. and 4.1. show that for k = 3 and Jb = 4 the Jfc-
dimensional unit cubes have the strongly regular square. 
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