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ARCHIVŮM MATHEMATICUM (BRNO) 
Tomus 27 (1991), 229 - 241 

ON THE BOUNDEDNESS OF SOLUTIONS 
OF NONLINEAR SECOND - ORDER 

DIFFERENTIAL EQUATIONS WITH PARAMETR 

SVATOSLAV STANEK 

(Received May 19, 1989) 

ABSTRACT. This paper establishes sufficient conditions for the boundedness of so
lutions of a one-parameter differential equation y" — q (t) y = / (t, y, y", /A) either on 
a halfline (<i,oo) or on R satisfying conditions either y (ty) = y(t2) = 0(t2 > H) 
or i / ( f i )-=0, respectively. 

1. INTRODUCTION 

We consider the second-order differential equations 

(i) y"-q(t)y = h(t,y,fi) 

and 

(2) y"-q(t)y = f2(t>y,y'^) 

with q G C°(J), fx 6 C°(J xRxI), f2e C°(J x R2 x /), q(t) > 0 for t € J, 
where J C R is either a halfline (*i,oo) or R, I = (a,/?) (-oo < a < /? < oo), 
containing a parameter fi. 

For y G C°(J) define ||y|| := sup {|y(*)| ; t G J} . If J = (*i,oo) is a halfline and 
j 2 > <i is a number, the problem is considered to determine sufficient conditions 
on #, / i , /2 such that it is possible to choose the parameter \i so that there exists 
a solution yi (y2) of (1) ((2)) satisfying either the boundary conditions 

(3) Vi (*i) = 2/i (*2) = 0 (y2 (*i) = V2 (t2) = 0) 

or the initial conditions 

Vi (h) = y[ (h) = 0 (y2 (tx) = V2 (ti) = 0) 

1991 Mathematics Subject Classification: 34CU,34B15. 
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and 

(4) INI < oo ( W + W<oo). 

If J = R and t\ € R is a number, the problem is considered to determine 
sufficient conditions on q) / i , fi for the existence of a ^o € / such that equation 
(1) ((2)) with /i = /io has a solution y\ (2/2) satisfying 

(5) tfi(<i) = 0 ( t / 2 (O = 0) 

and (4). 
It is discussed also the uniqueness of solutions y\ and y% satisfying either (3) 

(4) for a halfline J or (4), (5) for J - R. 
By using the technique of the two-point boundary value problem Bebernes and 

Jackson [1], Belova [2] and Corduneanu [3], [4] have been studied the existence (and 
uniqueness) of bounded solutions of the equation y" = f (x,y) and Kiguradze [6] 
of a system of differential equations either on the halfline (0, oo) or on R and in the 
case of the halfline (0, oo) with the further condition y(0) = yo- In contradiction 
to them in this paper there are studied second-order differential equations (1) 
and (2) depending on the parameter /* and using the technique of the three-point 
boundary value problem it is investigated boundary solutions satisfying the above 
conditions. The three-point boundary value problem y(a) = y(b) = y(c) = 0 only 
for homogeneous second-order linear differential equations with two parameters 
has been investigated in [5]. 

2. LEMMAS 

Lemma 1. Let r be a positive constant. If the assumptions 

(6) | / i (<,*/, /i)| < rq(t) for (t,y^) E D i x / , where Dx: = J x ( - r , r ) , 

(7) / i (t, y, •) is an increasing function on I for every fixed (t, y) 6 D\, 

(8) h(i,y,<*)fi(t,y,l3)^0 for (t,y)€Du 

hold, then for any three numbers a, b, c 6 J , a < 6 < c there exist ^o, fi\ SI such 
that equation (1) with fi = /*o and /i = /ii has a solution yo and a solution y\, 
respectively, satisfying 

(9) J/o (a) =yo(6) =yo(c) = 0, 

yi (°) - yi (a) - J/i (c) = 0, 

and 
\yi(t)\£r for te^c) and t = 0,l. 

For the proof see [7]. 
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Lemma 2. Let r\, r2 be positive constants. If the assumptions 

l/2(<,yi,y2,/i)| < r\q(t) for (t,yi,y2 ,/i) G D2 x I, where 

(10) D 2 := Jx(-n,ri)x (-r2 ,r2) , 

h (t, yi, y2 > •) ^ an increasing function on I for every fixed 

(11) (t ,yi ,y2)G-02 , 
(12) /2(t ,y i ,y 2 ,a) / 2 (<,yi ,y 2 , /?)^0 for (t,yi,y2) G D2 , 

2 \ /n \ /^2 + n|k| | ^ r2, where A2 := -?up{|/2(t,yi,y2,/i)|; 

(13) ( t ,y i ,y 2 , /z )GL> 2 x I} , 

hold, then for any a, b, c € J, a < b < c there exist Ho, H\ G I such that equation 
(2) with // = /i0 and /i = /ii has a solution t/o and a solution y\, respectively, 
satisfying (9) and 

l y f W I ^ ^ + i for tG(a,c) and i , j = 0,1. 

For the proof see [7]. 

Remark 1. It follows from Lemma 2: Assume J4 2 := sup {|/2 (<,yi,y2,/-)|; (t,yi, 
y2, n) € J x (—ri, ri) x ft x / } < oo for a positive constant r\. If ||g|| 5* oo and 
assumptions (10) - (12) are fulfilled for D2 = J x (—ri, ri) x R, then for any three 
numbers a, 6, c G J, a < b < c there are /i0, /ii G I such that equation (2) with 
/i = /z0 and /x = //i has a solution yo and a solution j/i, respectively, satisfying (9), 

|y.(OI.= n for tG(a,c) , i = 0,l 

and, of course, |y-(<)| £ 2y/r1y/A2-rrisup{q(t)) te(a,c}} for t G (a,c), 
i = 0, l . 

3 . BOUNDEDNESS AND UNIQUENESS OF SOLUTIONS ON HALFLINE 

In this part we shall assume that J = (ti, oo) is a halfline on R and t2 G (f i, oo) 
is an arbitrary but fixed number. 

Theorem 1. Assume that assumptions (6) - (8) are fulfilled for a positive con
stant r. Then there are /io, /-i G I such that equation (1) with p. = /io and /i = /ii 
has a solution yo and a solution y\ , respectively, satisfying 

(14) yo(ti) = yo(t2) = 0, 

(15) yi(<i) = y i d ) = o 

and 

(16) lly-ll^r for i = 0, l . 
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If, in additional, 

(17) IMI < oo, 

then 

(18) IWH^2V2r(r||«|| + i4i) for t = 0,l, 

where Ax := sup {\fx (*>y,/i)| ; (t,y,^) G -Di x /} (= r||g||). 

Proof Let {an} be an increasing sequence, ai > t2 lim an = oo. Then, by Lemma 
n—*oo 

1, there is {/in}> /-n € I such that equation (1) with p — pn has a solution yn 
satisfying 

(19) yn(*i) = yn(t2) = yn(an) = 0 

and 

(20) \Vn{t)\£r for <G(*i,an). 

Setting Qn := max{g(t);i 6 (*i, an)}, then |j#(*)| <: 2rQm for t G (*i, am), m ^ n . 
Let £n G (<i,*2) be a such number that t/n{£n) = 0. From the equalities 

j/n(*)= / *d#W* for *6(ti,an)> n€N , 

we get 
|yn(*)l^2rQm(am-ti) for *€(*i,am), m^n. 

Consequently, {yn(t)]n
<Lk is equicontinuous and uniformly bounded on (*i,a*) 

for k G N and t = 0,1. Thus by the Ascoli's theorem we may choose a "diagonal" 
subsequence of {yn {t)} which for short we denote again {yn (t)} such that {yn^ {t)} 
locally uniformly convergent on J for t = 0,1. Since I is a compact interval without 
any loss of generality we may assume {fin} is a convergent sequence, lim /in = /i0. 

n—>oo 

From the equalities 
(21) !/n(*) = g(*)yn(*) + /i(*,yn(*),/in) for <G<<i,an), neN, 

we see {yd'(0} *s locally uniformly convergent on J and for y0(<) := lim yn(t), 

t € J, we have lim yn
%\t) = y^(*) locally uniformly on J for t = 0,1,2. If we 

n—»oo 

pass to the limit for n —• oo in (21), we get 
y0

,(*) = 9(*)yo(*) + /i(*,yo(*),/io), * e J , 

and therefore yo is a solution of (1) With /i = fio satisfying (14) and (16) for t = 0. 
Let assumption (17) be satisfied. Then \\y%\\ ^ r||g||-Mi and from the Landau's 

inequality |||/0||
2 g 8||y0|| ||y£|| we obtain (18). 

The proof of the existence of a solution yi having the properties demande^Ua 
Theorem 1 is very similar to that above and therefore it is omitted. 
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Example 1. Let i/, m be positive constants and let k € R. Consider the differen
tial equation 

(22) ^ = ,(«)y+_i?|y|-' + ^ ) + / l 

with q, <p € C°(J), \q(t)\ = 2(m + |jb|), \<p(t)\ ̂  m for t G J and /i € 
(—|Jb| —m, |£|+m) =: I\. Equation (22) satisfies the assumptions of Theorem 1 with 
r = 1 and thus there are /J0, n\ £ Ii such that equation (22) with /i = /i0 (/* = / J ^ 
has a solution y o ^ ) satisfying (14) ((15)) and ||y,|| = 1 for i = 0,1. If, in 
additional, \\q\\ < oo then with respect to the inequality 

sup{lrT72 |yr + ^ ) " f ^ ; (<.»^)€Jx(-l ll)x/1 |^2(m+|t|) 

we obtain ||yj|| ^ 2./2(|M| + 2(m + |*|)) for t = 0,1. 

Theorem 2. Let assumptions (10) - (13) be fulfilled for positive constants r\,r2. 
Then there are /i0, /ii E I such that equation (2) with p = fio &nd /i = fi\ has a 
solution y0 and a solution y\ satisfying (14) and (15), respectively, and 

(23) M°II.Sr.+i ** *\i = 0,l. 

Proof. Since the proofs of the existence of solutions yo,y\ are very similar we shall 
prove only the existence of y0. Let {an} be defined as in the proof of Theorem 1. 
By Lemma 2 there is a sequence {/in}> t*n £ I such that equation (2) with u = /in 

admits a solution yn satisfying (19), |yn (01 = rt+i -°r * € (*i,an), n € N, 
i = 0,1 and |yj|(0l = rilkll+-42 fort £ (ti,an), n e N. Using the Ascoli's theorem 
and the Cauchy's diagonal method we may assume {yn* (i)} locally uniformly 
convergent on J for i = 0,1 and (since I is a compact interval) {/in} is a convergent 
sequence, lim /in == /*o- From the equalities 

n—ЮO 

y'n(t) = «(0»n(0 + /2(*.to(0.l/n(0^n), t€(t l ,an ) - n € N, 

we obtain that {2/^(0} locally uniformly convergent on J. Thus the function yo, 
y0(t) := lim yn(t) for t E J, is a solution of (2) with /z = /i0 satisfying (14) and 

(23). 

Remark 2. Let ||g|| ^ ooandlet sup{|/2(t,y1 ,y2 ,/i)|; (<,yi,y2,/x) € j x ( - r i , r x j x 
I? x I} < oo, where rA is a positive constant. If assumptions (10) - (12) are ful
filled for r\ and an arbitrary positive constant r2 then there exist pi , / i2 € / 
such that equation (2) with /i = fi\ (/i = /i2) has a solution yi (y2) such that 
mih) = yi(<2) = 0, HyiH £ ri(j&(*i) = &(t\) t= 0, ||y2|| £ n). Ttts follows 
immediately from Remark 1 and the proofs of Theorems 1 and 2. 
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Example 2. Let 1/ > 0 be a positive constant and let m > 0 be a positive integer. 
The differential equation 

(24) y" = q(t) y + |y|* « ( • ) + ^ ^ + f 

with g € C°(J), q(t) = 2 + 7r for t G J, |k|| = oo, where /i € ( -1 - | , 1 + | ) =: Ii, 

satisfies assumptions (10) - (12) with ri = 1 and an arbitrary r2 > 0. Thus by 
Remark 2 there are /ii, a2 G Ii such that equation (24) with /i = /4i (/i = /i2) 
has a solution yi (y2), yi(tx) = yi(t2) = 0, ||yij| ^ 1 (y2(ti) = yf2(tx) = 0, 

||y2|| ^ 1). Assume \\q\\ < oo. Since ||yifsin(y2) + " ^ f f + /i| ^ 2 + TT for 
H f t 

(<,yi,y2,/*) € J x (-1,1) x fix Ii, assumption (13) holds for r2 = 2>/2 + 7T+ ||o|| 
and thus by Theorem 2 we have ||y(|| ^ 2^/2 + x + ||?|| for t = 1,2. 

Theorem 3. Let r\, r2 be positive constants and let 

|/2(<,yi,y2,/i) - /2V*,*i,22,/i)| ^ MOItt - *l| + M<)|y2 ~ Z2| 

for (t,yi,y2 , /i), (t,*i,*2,/i) € (ti,t2) x ( -r i ,r i ) x ( -r 2 ,r 2) x I, wAere Af- G 
C7°((ti,t2)), i = 1,2. Let the initial problem (2), y ( , )(t0) = A, has the (locally) 
unique solution for all t0 G (t2,oo) and |A,| ^ r,+i (i = 0,1). Moreover, assume 
that at least one from the following conditions 

t 2 exp f h2(u) du) f\q(T) + M r ) ) drds £ 1, 
Jti Jtx Jtx 

I \(<i(s) + M«)) (*- *i) + M*)] <** ^ i 
J-i 

J \expj 2 h2(v)dv)j\q(T) + hx(T))dTds = 1 

/ ' [ ( « « + M ' ) ) (*2 - *) + M«)l <*« ^ 1, 
J.i 

holds. 
If there exists a /i0 G I such that equation (2) with /i = /io has a solution y0 satis

fying (14) and (23), then this solution is unique in the set {y : y G C2( J), ||y(0|| $ 
r l + 1 fori = 0,1}. 

Proo/, If yi is a further solution of (2) with /i = /i0, yi(f i) = y\(t2) = 0, ||j,W|| g 
r<+i (i = 0,1) then analogous to [7] we may prove y0(t) = yi(t) for t € (<i,*2). 
The locally uniqueness of solutions implies y0(t) = yi(t) for t G J. 
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Corollary 1. let 

l/i(*,y,/i)-/ivM,/i)l ^ M % - * l 

for (t,y,/i), (tyzyp) E {t\,h) x (~r,r) x 7, where h G C°((ti,t2)), be satisfied for 
a positive constant r. let the initial problem (1), y^(t0) = A, has the (locally) 
unique solution for all to G (t2) °o), |Ao| ^ r and Ai G #• Finally let at least one 
from the following conditions 

I f\q(T) + h(T))dTds%l, 
Jti Jtl 

f\q(s)-rh(s))(s-t1)ds^h 
Jti 

/ t 2 / 2 ( 9 ( r ) + ft(r))dr<fS~1' 

/ 2 ( ? ( s ) - f / l ( s ) ) ( t 2 - 5 ) d 5 ^ 1 , 
Jti 

be satisfied. 
If for a /i0 G 7 equation (i) with /i = //0 has a solution y0 satisfying (14) and 

(16) then this solution is unique in the set {y; y G C2(J), \\y\\ ^ r,}. 

Lemma 3. let assumption (11) be fulfilled for positive constants ri,r2 and let 

?fi-, | £ G C°(D2 x 7). Assume 
dj/i 3̂ /2 

(25) g ( 0 + ^ ( ' , y i , y 2 , / - ) = m for (t,yuy2,ii)eD2xI, 

where m ^ 0 is a non-negative constant and 

(26) ( I :-=)inf{^(t,2/1,2/2,/i); (*,yi,y2,A0 G I>2 x 7} > -00 . 

7f at ieast one from the conditions 

(27) m > 0 , 

(K :=) inf I / p(s) ds; t2 = z ^ t \ > -00 , where p(t) = 

(28) =min {jl(t,yuy2,n); (yuy2,fi) € ( - r i , n ) x {-r2,r,) x 7} 

for te (<2.°o) , 

(29) inf { | /2( . , ! / i ,y2,/ i i)-/2(<,yi,w,/ia) | ; (.,yi,j/j) € D,} > 0 

for /ii , / i2€L(Ui?-M2. 



236 SVATOSLAV STANfiK 

holdsy then there is at most one /io G I such that equation (2) with /i = /io has a 
volution yo satisfying (14) and (23). In the positive case the solution t/o is unique 
in the set {y; y € C*(J), | |^0 | | £ r , + l f t = 0,1}. 

Proof. Assume yi and y2 are solutions of (2) with /i = /ii and /i = /i2, respectively, 
/il,J*2 € J, /ii _ /i2, «(*i ) = y;(<2) = 0, ||y5°|| = r l+1 for i = 0,1 and j = 1,2. 
Putting u; = yi, y2 then 

w"(t) = q(t)w(t) + (/2(«,»i(0il/i(0.m)-/2(<,wW.l/i(0im))+ 
+ (/2(t, y2(t), yi(t), /n) - /2(«, yi(t), i6(<), /ii))+ 
+ (/2(<, »>(*)> «£(*)> Aii) - /2(«, y2(0,2/2(0, w) ) , 

consequently, 

(30) u;"(*) = (*(*) + g(t))w(t) + A(<X(<) + a(t) for t e J, 

wher* $, A,a € C°(J), g(<) + y(<) = m ( = 0) (by (25)), /i(t) ^ L (by (26)) and 
a(<) _ 0 (by(ll)) for f € J. If /n < /i2 (/ii = /i2) then a(t) < 0 (a(t) = 0) for 
teJ. 

Let /ii = /i2. Since g(t) + p(t) _ 0 for t G J, the equatin y" = (g(t) + g(t))y + 
A(<)y' is disconjugate on J and thus tD = 0. 

-tat /i1 < /i2 and let W(T) = 0, u/(r) ^ 0 for some r € (*i, t2). If to'(r) = 0 then 
using (30) we get W"(T) < 0 and thus w(t) < 0, w'(t) < 0 in a right neighbourhood 
of the point r, likewise as in the case, when W'(T) < 0. Since w"(£) < 0 in any 
point ( € (r,oo) where w(£) ^ 0, w'(£) = 0, we obtain w(t) < 0, w'(t) < 0 on 
(r,oo) which contradicting w(t2) = 0. Consequently, w(i) < 0, w'(t) < 0 for t > t2. 
Next, from (30) we get equality 

w(t)= / ( e x p / /»(T)dT)[ti;'(f2)+ 
J<a J<2 

/ ' ( e x p ( - f h(v) du)) ((q(r) + J ( T ) M T ) + a(T)) <*T] ds, t € 7, + 
and thus 

(31) w(t) £ / / ' (exp / ' h(v) dv) ((q(T) + ,(I)) W(T) + O(T)) JT ds, t^t2. 
JuJu Jr ft3 JU 

If m > 0 then for some <s, ts > 12 we obtain 

w(t)<ml I ( e x p / h(v) dv) w(T)dT ds <: mw(t3) I / exp(I(s - T))drds 
Jts J<3 Jr Jti Jt* 

for t > <3 and since / t ^ /t* exp(L(s—r)) dr ds = 00 we have lim u;(t) = 

—00. 
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If K > — oo, then using (31) we have 

™( ' ) ^ / / (exp / h(p)du)a(T)drds^eK f f a(T)drds 
Jt2 Jt2 JT Jt2 Jt2 

and since /t°° ff a(r) drds = —oo, we get lim w(t) = —oo. 

If a(t) ^ A < 0 for t ^ t2l where A is a negative constant, then 

ft [8 eS ft fS 

M O i l ^ / / (exP / h(v)dvds<kA I \ exp(L(s-T))dTds 
Jt2 Jt2 Jr Jt2 Jt2 

and lim w(t) = —oo. 
í—oo 

Thus we see if at least one from conditions (27)- (29) is fulfilled then lim w(t) = 

—oo contradicting ||uj|| ^ 2ri . This completes the proof. 
t—oo 

ft f 
Corollary 2. Assume assumption (7) is fulfilled for a positive constant r, -r— 6 

oy 
C°(D\ x I) and 

(32) *(0 + ^-(<.y>/0£o f°r (t,y^)eD\xi. 
oy 

Then there is at most one no G I such that equation (1) with p = /io has a 
solution y satisfying (14) and (16). In the positive case y is unique in the set 
{ y ; » € C a ( j ) , ll»ll = r} . 

Theorem 4. Let assumptions (10) - (13) be satisfied for positive constants r\, 
df2 df2 r2 and let -—, -z— € C(D2 x I). If assumptions (25), (26) and at least one from 
dy\ dy2 

conditions (27) - (29) hold, then there are unique no, H\ 6 I such that equation 
(2) with /i = /i0 and // = fi\ has a solution yo and a solution y\ satisfying (14) 
and (15), respectively, and (23). This solutions are unique in the set {y; y € 
c2{J), | |y ( i ) | | = r<+1, . = 0,1}. 

Proof. The proof folows from Theorem 2 and Lemma 3 (for y\ with an evident 
modification of the proof of Lemma 3). 

Theo rem 5. Let assumptions (6) - (8) be satisfied for a positive constant r and 
Q f 

let — G C°(D\ x I). If assumption (32) is satisfied, then there are unique /io, 

/ii € I such that equation (I) with ^ = /i0 and /u = i*\ has a solution yo and 
a solution y\ satisfying (14) and (15), respectively, and (16). This solutions are 
unique in the set {y; y € C2(J), \\y\\ ^ r } . 

Proof The proof follows from Theorem 1 and Corollary 2 (for y\ with an evident 
modification of the proof of Lemma 3). 
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Example 3. Consider the differential equation 

(33) y" - (exp(| sin(<)| - l))y = r 5 c o s ^ y ) + t~l arctan(i/) + A* 

on the interval J := (1,00), where /i 6 I := (—1 — —, 1 -h —). Assume 12 G (1,00) 
and ri, r2 are positive* constants, ri ^ (2 + ir)e, r2 ^ 3ri. It is easy to verify 
that assumptions (10) - (13), (29), (25) with m = 0 and (26) with L = 1 are 
fulfilled. Therefore by Theorem 4 there are unique fio, Pi e I such that equation 
(33) with /1 = fi0 (n = fi\) has a solution j/o (yi) satisfying y0(l) = yo(<2) = 0, 
yi(l) = yi(l) = 0 and ||ty|| = (2 + *)c, ||^|| ^ 3e(2 + 7r) for j = 0,1. This solutions 
yo, yi are unique even in the set {y; y G C2(J), \\y\\ + | | j / | | < 00}. 

4. BOUDEDNESS AND UNIQUENESS OF SOLUTIONS ON R 

In this part we shall assume J = R and t\ G R is arbitrary but fixed number. 

Theorem 6. Let assumptions (6) - (8) be fulfilled for a positive constant r. Then 
there is a no G / such that equation (1) with fi = /io has a solution y satisfying 

(34) y(*!) = 0 

and 

(35) Hvll ^ r. 

If, in additional, 

(36) IHI < 00, 

then 

(37) HJ/II^ 2v/(r||«|| + Ai)r, 

where A\ = sup {\f\(*,y,/i)|; (t,y,/i)GDi x / } . 

Proof. Let {an} be a decreasing sequence and let {6n} be an increasing sequence, 
lim an = —00, lim 6n = 00, a\ < t\ < b\. By Lemma 1 there is a sequence 

n—>oo n—>oo 
{/Jn},/** € I such that equation (1) with p — fin has a solution yniyn(an) = 
yn(ti) -= yn(M = 0 and |yn(f)| £ r for t G (an,in), n G N. Next we 
have |yg(<)| £ 2rQn for * G (an,bn), ne N9 where Qn = max {q(t); t G 
(<*n>&n)}- From the mean value theorem follows the existence of a £n G (a\,b\) 

2r 
such that yn(6i) - y„(ai) = i/n(M(b\ - <*i), consequently |i4(£n)| ^ b _ Q and 
the equality y^f) = y ^ ) + j £ ^'(s) ds impUes 

lyJiWI^ir^— +2Qmr(6m~am) for *G(am,6m), rn ̂  n. 
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Using the Ascoli's theorem and the Cauchy diagonal method we may choose a 
subsequence of {yn(t)}i for short we denote this subsequence again {y*(t)}> such 
that y(t) := lim yn(t) locally uniformly on R. Since I is a compact interval we 

n-+oo 

may assume that {fJtn} is a convergent sequence and lim /in = ^o- Analogous to 
n—*oo 

the proof of Theorem 1 it is posible to prove that y is a solution of (1) with /* = /i0 

having properties (34) and (35). 
If (36) holds then from the Landau's inequelity \\t/\\2 ^ 4||y||||y//|| and using the 

inequality ||y"|| ^ r||g|| + A\ we obtain (37). 
Theorem 7. Let assumptions (10) - (13) be satisfied for positive constants r\} 

r2. Then there exist a /i0 G / such that equation (2) with // = fio has a solution y 
satisfying (34) and 

(38) ||yW|| ^ r w for i = 0,1. 

Proof. Let {an}, {6n} be defined as in the proof of Theorem 6. Then by Lemma 2 
there is a sequence {/in}, /-n G I such that equation (2) with /* = fin has a solution 
yn, yn(an) = yn(t\) = yn(M = 0 and |y„l)(0l ^ rt+1 for t G (a„,6n), i = 0,1 and 
n e N. Since \r/n(t)\ ^ ri||g|| + A2 for < G (am,6m) and m ^ n, the next part of 
the proof is analogous to that of Theorem 2 and therefore it is omitted. 

Theorem 8. Let assumptions (10) - (13) be satisfied for positive constants r\, 

r2. Assume that -?£,-?£ e C°(D2 x 7), 
dyi dy2 

(39) q(t) + ^(tiyuy2iti) £ 0 for (*,yi,y2,/i) G D2 x I 

and 

(Kx:=) inf I-J* p^dT-^s ^ * i } > - o o , 

(40) (K2:=) infiJ P2(r)dT;h^s^t\ >-ooy 

where pi(t) = max|^(<,yi,y2,/i);(yi,y2,/i) G (~ri,ri) x (-r2)r2) x IV for 

t €(-<*>,h) andp2(t) = minl-~(t1yx,y2)u); (yu y2,/x) G (-nun) x {~r2»r2} * / j 

for t6(*i,oo). 
Then there is the unique /io G I such that equation (2) with \x = A*o A3-5 

a solution y satisfying (34) and (38).Thi$ solution is unique in the set {v\V € 
C2(i2),||y(*)|| < r i + 1 fori = 0,1}. 

• . • • • • . . - ', , . ' . . ; . ; ' . - V ' . '« 

Proof. By Theorem 7 there is some /to G I such that equation (2) with /i ss /*o ha* 
a solution y satisfying (34) and (38). Suppose that there is some /Ji € T^fiolkMl 
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such that equation (2) with ft = Hi has a solution yit yi(ti) = 0, \\y{ || £ r,-+1 for 
i* = 0,1. Setting w = y-yi then 
(41) w"(t) = (q(t) + g(t))w(t) + h(t)w'(t) + a(t) for t € R, 

where a , y, ft 6 C°(/e), ,(*) + g(t) Z 0 (by(39)), a(t) = 0 (by (11)) for t € /?, 
inf {- J*1 h(r)dT; « £ f t } 2 tfi, inf {J] ft(r)dr; <! g * g *} £ K2 

(by(40)) and if ii0 < m (/.o = /ii) then a(t) < 0 (a(f) = 0) for t g. #• Using (41) 
we have ' 

• w(t)= [ (exp ['h(v)dv)\w'(h)+ 
Jn Jti 

(42) + / ' (exp(- [ h(v)dv)((,(r) + y(r))u>(r) + a(r))dr] ds, t€R 
Jti Jti 

and 

u/(.) = (exp / ft(i/)di/)[u-'(.i)+ 
Jti 

(43) A e x p ( - / ' M") di/)) ((g(«) + *(«)M0 + o(»)) ds), t€ R. 
Jti JtX 

Let w'(tx) < 0. Then from (42) and (43) we get w(t) < 0, w'(t) < 0 for 
t € (*i,oo), consequently, 

w(t) = u/(*i) / (exp / h(u) dv) ds ^ w'(h)exp(K2)(t - h) for t = <x 
Jt! J<l 

and thus lim K;(*) = —oo contradicting 
t—>oo 

(44) IHI = 2ri. 
Let w'(ti) > 0. Then from (42) and (43) it follows w(t) < 0, w'(t) > 0 for 

t€ (—oo,<i), consequently, 
fti [U 

w(t) = -w'(tx) / (exp(- / h(u)du))ds <: -u/(«i)exp(/fi)(«i - t ) , t ^ *i 

and thus lim w(t) = —oo contradicting (44). 
t—•—•oo 

Let w'(t\) = 0. If po = A*i then a(t) = 0 for t € -ft and w = 0 by virtue of the 
uniqueness of the initial value problem for the equation y" = (q(t)+g(t))y+h(t)i/. 
If /*o < /*i then a(t) < 0 on R and from "(41) it follows w(t) < 0, ic/(t) < 0 for 
t € (*i,oo). Consequently, 

ti;(t)= / / (exp / h(v)dv((q(T) + g(T))w(T) + a(T))dTds£ 
Jti Jti JT 

£exp(K2) I I a(T)dTds 
Jti Jti 

and since ft Jt a(r)drds = —oo we obtain lim w(t) = —oo contradicting (44). 
This completes the proof of the theorem. 
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Corollary 4. Let assumptions (6) - (8) be fulfilled for a positive constant r. 

Assume that --—- G C°(DX x 7) and 
oy 

q(t) + j±(t,y,n)Z0 for (f ,y, / i)€Dix/. 

Then there is the unique /io G I such that equation (1) with fi '= /io lias a solution y 
satisfying (34) said (35). This solution y is unique in the set {y; y € C2(R), ||y|| <£ 
r>-

Example 4. Consider the differential equation 

(45) y" - q(t) y = exp(-y2)sin(t) + * . exp(-|t|) ln(l + (j/)2) + /irfl), 

where p, g G C°(7i), 1 ^ p(t) = 2, 8 = g(t) = 13 for t G -ft,/i G (-8,8) =: I and 
Ar G -ft, |*r| ^ 1. Let tx € A. Assumptions (10) - (13) hold with rx = 3 and r2 = 31. 
Putting /2(t,yi, y2, /i)

 := exp(-yj) sin(t) 4- A: . exp(-|t|)ln(l + y£) + /ip(t) for 

(*.yi>y2,A0 €R3xI, we have jl(tiyi)y2ifi) = -6 , q(t)+Q^(t,yuy7)fi) = 

2 for (^yi ,y 2 , / i )G#x(-3 ,3)x( - -31 ,31)x7, | ^ , y 1 , y 2 , / i ) | = exp(-|t|) 

for (yi,y2,/i) G (-3,3) x (-31,31) x 7, t G 7? and since /,*exp(-|r|)dr g 2 for 
5 ^ t, assumption (40) holds. By Theorem 8 there is the unique /io G 7 such that 
equation (45) with /i = /io has a solution y satisfying y(ti) = 0, ||y|| £j 3, |||/|| <i 31. 
This solution y is unique in the set {y; y G C2(7?), ||y|| ^ 3, HJ/H ^ 31}. 

REFERENCES 

[l] Bebernes, J.W. and Jackson, L.K, Infinite interval boundary value problem$ for yH = /(a?, y), 
Duke Math. J., vol 34,1967, 39-47. 

[2] Belova, M.M., Bounded solutions of non-linear differential equations of second order, Mate-
maticeskii Sbornik, vol 56, 1962, 469-503. 

[3] Corduneanu, C, Citeve probleme globale referitoare la ecuatiile diferentiale nelineare de or-
dinul al doilta, Studii fi Cercet&ri §tiin(ifice, Mathematica, vol 7,1956, Academia Republicii 
populare Romine, Filiala Iasi, 1-7. 

[4] Corduneanu, C , Existenta Bolutiilor marginite pentru unele ecuatii diferentiale de ordinul 
al dooilta, Studii si Cercet&ri §tiintiiice, Mathematica, vol 8, 1957, Academia Republicii 
populare Romine, Filiala Iasi, 127-134. 

[5] GreguS, M., Neuman, F. and Arscott, F.M., Three-point boundary value problems in differ
ential equations, J. London Math. Soc.(2), vol 3, 1971, 429-436. 

[6] Kiguradze, I.T., Boundary value problems for systems of ordinary differential equations,, 
Current problems in mathematics, Newest results, vol 30, 3-103, 204, Akad. Nauk SSSR, 
Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1987. (Russian) J . 

[7] StanSk, S., Three-point boundary value problem of nonlinear second-order differential equa
tion with parametr (to appear). 

SVATOSLAV STANEK 
DEPARTMENT OF MATHEMATICAL ANALYSIS 
FACULTY OF SCIENCE PALACKY UNIVERSITY 
Tft. SVOBODY 26 
771 46 OLOMOUC, CZECHOSLOVAKIA 


		webmaster@dml.cz
	2012-05-09T21:12:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




