Archivum Mathematicum

Svatoslav Staněk

On the boundedness of solutions of nonlinear second-order differential equations with parameter

Archivum Mathematicum, Vol. 27 (1991), No. 3-4, 229--241
Persistent URL: http://dml.cz/dmlcz/107426

Terms of use:

© Masaryk University, 1991
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON THE BOUNDEDNESS OF SOLUTIONS OF NONLINEAR SECOND - ORDER DIFFERENTIAL EQUATIONS WITH PARAMETR

Svatoslav Staněk

(Received May 19, 1989)

Abstract. This paper establishes sufficient conditions for the boundedness of solutions of a one-parameter differential equation $y^{\prime \prime}-q(t) y=f\left(t, y, y^{\prime \prime}, \mu\right)$ either on a halfine $\left\langle t_{1}, \infty\right)$ or on R satisfying conditions either $y\left(t_{1}\right)=y\left(t_{2}\right)=0\left(t_{2}>t_{1}\right)$ or $y\left(t_{1}\right)=0$, respectively.

1. Introduction

We consider the second-order differential equations

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=f_{1}(t, y, \mu) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=f_{2}\left(t, y, y^{\prime}, \mu\right) \tag{2}
\end{equation*}
$$

with $q \in C^{0}(J), f_{1} \in C^{0}(J \times R \times I), f_{2} \in C^{0}\left(J \times R^{2} \times I\right), q(t)>0$ for $t \in J$, where $J \subset R$ is either a halfline $\left\langle t_{1}, \infty\right)$ or $R, I=\langle\alpha, \beta\rangle(-\infty<\alpha<\beta<\infty)$, containing a parameter μ.

For $y \in C^{0}(J)$ define $\|y\|:=\sup \{|y(t)| ; t \in J\}$. If $J=\left\langle t_{1}, \infty\right)$ is a halfline and $t_{2}>t_{1}$ is a number, the problem is considered to determine sufficient conditions on g, f_{1}, f_{2} such that it is possible to choose the parameter μ so that there exists a solution $y_{1}\left(y_{2}\right)$ of (1) ((2)) satisfying either the boundary conditions

$$
\begin{equation*}
y_{1}\left(t_{1}\right)=y_{1}\left(t_{2}\right)=0 \quad\left(y_{2}\left(t_{1}\right)=y_{2}\left(t_{2}\right)=0\right) \tag{3}
\end{equation*}
$$

or the initial conditions

$$
y_{1}\left(t_{1}\right)=y_{1}^{\prime}\left(t_{1}\right)=0 \quad\left(y_{2}\left(t_{1}\right)=y_{2}^{\prime}\left(t_{1}\right)=0\right)
$$

[^0]and
\[

$$
\begin{equation*}
\left\|y_{1}\right\|<\infty \quad\left(\left\|y_{2}\right\|+\left\|y_{2}^{\prime}\right\|<\infty\right) \tag{4}
\end{equation*}
$$

\]

If $J=R$ and $t_{1} \in R$ is a number, the problem is considered to determine sufficient conditions on q, f_{1}, f_{2} for the existence of a $\mu_{0} \in I$ such that equation (1) ((2)) with $\mu=\mu_{0}$ has a solution $y_{1}\left(y_{2}\right)$ satisfying

$$
\begin{equation*}
y_{1}\left(t_{1}\right)=0 \quad\left(y_{2}\left(t_{1}\right)=0\right) \tag{5}
\end{equation*}
$$

and (4).
It is discussed also the uniqueness of solutions y_{1} and y_{2} satisfying either (3) (4) for a halfline J or (4), (5) for $J=R$.

By using the technique of the two-point boundary value problem Bebernes and Jackson [1], Belova [2] and Corduneanu [3], [4] have been studied the existence (and uniqueness) of bounded solutions of the equation $y^{\prime \prime}=f(x, y)$ and Kiguradze [6] of a system of differential equations either on the halfline $\langle 0, \infty)$ or on R and in the case of the halfline $\langle 0, \infty)$ with the further condition $y(0)=y_{0}$. In contradiction to them in this paper there are studied second-order differential equations (1) and (2) depending on the parameter μ and using the technique of the three-point boundary value problem it is investigated boundary solutions satisfying the above conditions. The three-point boundary value problem $y(a)=y(b)=y(c)=0$ only for homogeneous second-order linear differential equations with two parameters has been investigated in [5].

2. Lemmas

Lemma 1. Let r be a positive constant. If the assumptions
(6) $\left|f_{1}(t, y, \mu)\right| \leq r q(t)$. for $\quad(t, y, \mu) \in D_{1} \times I$, where $D_{1}:=J \times\langle-r, r\rangle$,

$$
\begin{equation*}
f_{1}(t, y, \cdot) \text { is an increasing function on } I \text { for every fixed }(t, y) \in D_{1} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
f_{1}(t, y, \alpha) f_{1}(t, y, \beta) \leqq 0 \quad \text { for } \quad(t, y) \in D_{1} \tag{8}
\end{equation*}
$$

hold, then for any three numbers $a, b, c \in J, a<b<c$ there exist $\mu_{0}, \mu_{1} \in I$ such that equation (1) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1}, respectively, satisfying

$$
\begin{align*}
& y_{0}(a)=y_{0}(b)=y_{0}(c)=0 \tag{9}\\
& y_{1}(a)=y_{1}^{\prime}(a)=y_{1}(c)=0
\end{align*}
$$

and

$$
\left|y_{i}(t)\right| \leqq r \quad \text { for } \quad t \in\langle a, c\rangle \quad \text { and } \quad i=0,1
$$

[^1]Lemma 2. Let r_{1}, r_{2} be positive constants. If the assumptions

$$
\begin{align*}
& \left|f_{2}\left(t, y_{1}, y_{2}, \mu\right)\right| \leq r_{1} q(t) \text { for }\left(t, y_{1}, y_{2}, \mu\right) \in D_{2} \times I \text {, where } \\
& D_{2}:=J \times\left\langle-r_{1}, r_{1}\right\rangle \times\left\langle-r_{2}, r_{2}\right\rangle \tag{10}\\
& f_{2}\left(t, y_{1}, y_{2}, .\right) \text { is an increasing function on } I \quad \text { for every fixed } \\
& \left(t, y_{1}, y_{2}\right) \in D_{2}, \tag{11}\\
& f_{2}\left(t, y_{1}, y_{2}, \alpha\right) f_{2}\left(t, y_{1}, y_{2}, \beta\right) \leqq 0 \text { for }\left(t, y_{1}, y_{2}\right) \in D_{2}, \tag{12}\\
& 2 \sqrt{r_{1}} \sqrt{A_{2}+r_{1}\|q\|} \leqq r_{2}, \text { where } A_{2}:=\sup \left\{\left|f_{2}\left(t, y_{1}, y_{2}, \mu\right)\right|\right. \\
& \left.\left(t, y_{1}, y_{2}, \mu\right) \in D_{2} \times I\right\}, \tag{13}
\end{align*}
$$

hold, then for any $a, b, c \in J, a<b<c$ there exist $\mu_{0}, \mu_{1} \in I$ such that equation (2) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1}, respectively, satisfying (9) and

$$
\left|y_{j}^{(i)}(t)\right| \leqq r_{i+1} \quad \text { for } \quad t \in\langle a, c\rangle \quad \text { and } \quad i, j=0,1
$$

For the proof see [7].
Remark 1. It follows from Lemma 2: Assume $A_{2}:=\sup \left\{\left|f_{2}\left(t, y_{1}, y_{2}, \mu\right)\right| ;\left(t, y_{1}\right.\right.$, $\left.\left.y_{2}, \mu\right) \in J \times\left\langle-r_{1}, r_{1}\right\rangle \times R \times I\right\}<\infty$ for a positive constant r_{1}. If $\|q\| \leqq \infty$ and assumptions (10) - (12) are fulfilled for $D_{2}=J \times\left\langle-r_{1}, r_{1}\right\rangle \times R$, then for any three numbers $a, b, c \in J, a<b<c$ there are $\mu_{0}, \mu_{1} \in I$ such that equation (2) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1}, respectively, satisfying (9),

$$
\left|y_{i}(t)\right| \leqq r_{1} \quad \text { for } \quad t \in\langle a, c\rangle, \quad i=0,1
$$

and, of course, $\left|y_{i}^{\prime}(t)\right| \leqq 2 \sqrt{r_{1}} \sqrt{A_{2}+r_{1} \sup \{q(t) ; t \in\langle a, c\rangle\}}$ for $t \in\langle a, c\rangle$, $i=0,1$.

3. Boundedness and uniqueness of solutions on halfline

In this part we shall assume that $J=\left\langle t_{1}, \infty\right)$ is a halfline on R and $t_{2} \in\left(t_{1}, \infty\right)$ is an arbitrary but fixed number.
Theorem 1. Assume that assumptions (6) - (8) are fulfilled for a positive constant r. Then there are $\mu_{0}, \mu_{1} \in I$ such that equation (1) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1}, respectively, satisfying

$$
\begin{align*}
& y_{0}\left(t_{1}\right)=y_{0}\left(t_{2}\right)=0 \tag{14}\\
& y_{1}\left(t_{1}\right)=y_{1}^{\prime}\left(t_{1}\right)=0 \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|y_{i}\right\| \leqq r \quad \text { for } \quad i=0,1 \tag{16}
\end{equation*}
$$

If, in additional,

$$
\begin{equation*}
\|q\|<\infty \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|y_{i}^{\prime}\right\| \leqq 2 \sqrt{2 r\left(r\|q\|+A_{1}\right)} \text { for } i=0,1 \tag{18}
\end{equation*}
$$

where $A_{1}:=\sup \left\{\left|f_{1}(t, y, \mu)\right| ;(t, y, \mu) \in D_{1} \times I\right\} \quad(\leqq r\|q\|)$.
Proof. Let $\left\{a_{n}\right\}$ be an increasing sequence, $a_{1}>t_{2} \lim _{n \rightarrow \infty} a_{n}=\infty$. Then, by Lemma 1, there is $\left\{\mu_{n}\right\}, \mu_{n} \in I$ such that equation (1) with $\mu=\mu_{n}$ has a solution y_{n} satisfying

$$
\begin{equation*}
y_{n}\left(t_{1}\right)=y_{n}\left(t_{2}\right)=y_{n}\left(a_{n}\right)=0 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|y_{n}(t)\right| \leqq r \quad \text { for } \quad t \in\left\langle t_{1}, a_{n}\right\rangle \tag{20}
\end{equation*}
$$

Setting $Q_{n}:=\max \left\{q(t) ; t \in\left\langle t_{1}, a_{n}\right\rangle\right\}$, then $\left|y_{n}^{\prime \prime}(t)\right| \leqq 2 r Q_{m}$ for $t \in\left\langle t_{1}, a_{m}\right\rangle, m \leqq n$. Let $\xi_{n} \in\left(t_{1}, t_{2}\right)$ be a such number that $y_{n}^{\prime}\left(\xi_{n}\right)=0$. From the equalities

$$
y_{n}^{\prime}(t)=\int_{\xi_{n}}^{t} y_{n}^{\prime \prime}(s) d s \quad \text { for } \quad t \in\left\langle t_{1}, a_{n}\right\rangle, \quad n \in N
$$

we get

$$
\left|y_{n}^{\prime}(t)\right| \leqq 2 r Q_{m}\left(a_{m}-t_{1}\right) \quad \text { for } \quad t \in\left\langle t_{1}, a_{m}\right\rangle, \quad m \leqq n
$$

Consequently, $\left\{y_{n}^{(i)}(t)\right\}_{n=k}^{\infty}$ is equicontinuous and uniformly bounded on $\left\langle t_{1}, a_{k}\right\rangle$ for $k \in N$ and $i=0,1$. Thus by the Ascoli's theorem we may choose a "diagonal" subsequence of $\left\{y_{n}(t)\right\}$ which for short we denote again $\left\{y_{n}(t)\right\}$ such that $\left\{y_{n}^{(i)}(t)\right\}$ locally uniformly convergent on J for $i=0,1$. Since I is a compact interval without any loss of generality we may assume $\left\{\mu_{n}\right\}$ is a convergent sequence, $\lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}$. From the equalities

$$
\begin{equation*}
y_{n}^{\prime \prime}(t)=q(t) y_{n}(t)+f_{1}\left(t, y_{n}(t), \mu_{n}\right) \quad \text { for } \quad t \in\left\langle t_{1}, a_{n}\right\rangle, \quad n \in N \tag{21}
\end{equation*}
$$

we see $\left\{y_{n}^{\prime \prime}(t)\right\}$ is locally uniformly convergent on J and for $y_{0}(t):=\lim _{n \rightarrow \infty} y_{n}(t)$, $t \in J$, we have $\lim _{n \rightarrow \infty} y_{n}^{(i)}(t)=y_{0}^{(i)}(t)$ locally uniformly on J for $i=0,1,2$. If we pass to the limit for $n \rightarrow \infty$ in (21), we get

$$
y_{0}^{\prime \prime}(t)=q(t) y_{0}(t)+f_{1}\left(t, y_{0}(t), \mu_{0}\right), \quad t \in J
$$

and therefore y_{0} is a solution of (1) with $\mu=\mu_{0}$ satisfying (14) and (16) for $i=0$.
Let assumption (17) be satisfied. Then $\left\|y_{0}^{\prime \prime}\right\| \leqq r\|q\|+A_{1}$ and from the Landau's inequality $\left\|y_{0}^{\prime}\right\|^{2} \leqq 8\left\|y_{0}\right\|\left\|y_{0}^{\prime \prime}\right\|$ we obtain (18).

The proof of the existence of a solution y_{1} having the properties demanded in Theorem 1 is very similar to that above and therefore it is omitted.

Example 1. Let ν, m be positive constants and let $k \in R$. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}=q(t) y+\frac{k}{1+t^{2}}|y|^{\nu}+\varphi(t)+\mu \tag{22}
\end{equation*}
$$

with $q, \varphi \in C^{0}(J),|q(t)| \geqq 2(m+|k|),|\varphi(t)| \leqq m$ for $t \in J$ and $\mu \in$ $\langle-| k|-m,|k|+m\rangle=: I_{1}$. Equation (22) satisfies the assumptions of Theorem 1 with $r=1$ and thus there are $\mu_{0}, \mu_{1} \in I_{1}$ such that equation (22) with $\mu=\mu_{0}\left(\mu=\mu_{1}\right)$ has a solution $y_{0}\left(y_{1}\right)$ satisfying (14) ((15)) and $\left\|y_{i}\right\| \leqq 1$ for $i=0,1$. If, in additional, $\|q\|<\infty$ then with respect to the inequality

$$
\sup \left\{\left.\left.\left|\frac{k}{1+t^{2}}\right| y\right|^{\nu}+\varphi(t)+\mu \right\rvert\, ;(t, y, \mu) \in J \times\langle-1,1\rangle \times I_{1}\right\} \leqq 2(m+|k|)
$$

we obtain $\left\|y_{i}^{\prime}\right\| \leqq 2 \sqrt{2(\|q\|+2(m+|k|))}$ for $i=0,1$.
Theorem 2. Let assumptions (10) - (13) be fulfilled for positive constants r_{1}, r_{2}. Then there are $\mu_{0}, \mu_{1} \in I$ such that equation (2) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1} satisfying (14) and (15), respectively, and

$$
\begin{equation*}
\left\|y_{j}^{(i)}\right\| \leqq r_{i+1} \quad \text { for } \quad i, j=0,1 \tag{23}
\end{equation*}
$$

Proof. Since the proofs of the existence of solutions y_{0}, y_{1} are very similar we shall prove only the existence of y_{0}. Let $\left\{a_{n}\right\}$ be defined as in the proof of Theorem 1. By Lemma 2 there is a sequence $\left\{\mu_{n}\right\}, \mu_{n} \in I$ such that equation (2) with $\mu=\mu_{n}$ admits a solution y_{n} satisfying (19), $\left|y_{n}^{(i)}(t)\right| \leqq r_{i+1} \quad$ for $t \in\left\langle t_{1}, a_{n}\right\rangle, n \in N$, $i=0,1$ and $\left|y_{n}^{\prime \prime}(t)\right| \leqq r_{1}\|q\|+A_{2}$ for $t \in\left\langle t_{1}, a_{n}\right\rangle, n \in N$. Using the Ascoli's theorem and the Cauchy's diagonal method we may assume $\left\{y_{n}^{(i)}(t)\right\}$ locally uniformly convergent on J for $i=0,1$ and (since I is a compact interval) $\left\{\mu_{n}\right\}$ is a convergent sequence, $\lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}$. From the equalities

$$
y_{n}^{\prime \prime}(t)=q(t) y_{n}(t)+f_{2}\left(t, y_{n}(t), y_{n}^{\prime}(t), \mu_{n}\right), \quad t \in\left\langle t_{1}, a_{n}\right\rangle, \quad n \in N
$$

we obtain that $\left\{y_{n}^{\prime \prime}(t)\right\}$ locally uniformly convergent on J. Thus the function y_{0}, $y_{0}(t):=\lim _{n \rightarrow \infty} y_{n}(t)$ for $t \in J$, is a solution of (2) with $\mu=\mu_{0}$ satisfying (14) and (23).

Remark 2. Let $\|q\| \leqq \infty$ and let $\sup \left\{\left|f_{2}\left(t, y_{1}, y_{2}, \mu\right)\right| ; \quad\left(t, y_{1}, y_{2}, \mu\right) \in J \times\left\langle-r_{1}, r_{1}\right\rangle \times\right.$ $R \times I\}<\infty$, where r_{1} is a positive constant. If assumptions (10) - (12) are fulfilled for r_{1} and an arbitrary positive constant r_{2} then there exist $\mu_{1}, \mu_{2} \in I$ such that equation (2) with $\mu=\mu_{1} \quad\left(\mu=\mu_{2}\right)$ has a solution $y_{1}\left(y_{2}\right)$ such that $y_{1}\left(t_{1}\right)=y_{1}\left(t_{2}\right)=0,\left\|y_{1}\right\| \leqq r_{1}\left(y_{2}\left(t_{1}\right)=y_{2}^{\prime}\left(t_{1}\right)=0,\left\|y_{2}\right\| \leqq r_{1}\right)$. This follows immediately from Remark 1 and the proofs of Theorems 1 and 2.

Example 2. Let $\nu>0$ be a positive constant and let $m>0$ be a positive integer. The differential equation

$$
\begin{equation*}
y^{\prime \prime}=q(t) y+|y|^{\nu} \sin \left(y^{\prime}\right)+\frac{\arctan (t)}{1+\left(y^{\prime}\right)^{2 m}}+\mu \tag{24}
\end{equation*}
$$

with $q \in C^{0}(J), q(t) \geqq 2+\pi$ for $t \in J,\|q\| \leqq \infty$, where $\mu \in\left\langle-1-\frac{\pi}{2}, 1+\frac{\pi}{2}\right\rangle=: I_{1}$, satisfies assumptions (10) - (12) with $r_{1}=1$ and an arbitrary $r_{2}>0$. Thus by Remark 2 there are $\mu_{1}, \mu_{2} \in I_{1}$ such that equation (24) with $\mu=\mu_{1}\left(\mu=\mu_{2}\right)$ has a solution $y_{1}\left(y_{2}\right), y_{1}\left(t_{1}\right)=y_{1}\left(t_{2}\right)=0,\left\|y_{1}\right\| \leqq 1\left(y_{2}\left(t_{1}\right)=y_{2}^{\prime}\left(t_{1}\right)=0\right.$, $\left\|y_{2}\right\| \leqq 1$). Assume $\|q\|<\infty$. Since $\left.\|\left. y_{1}\right|^{\nu} \sin \left(y_{2}\right)+\frac{\arctan (t)}{1+y_{2}^{2 m}}+\mu \right\rvert\, \leqq 2+\pi$ for $\left(t, y_{1}, y_{2}, \mu\right) \in J \times\langle-1,1\rangle \times R \times I_{1}$, assumption (13) holds for $r_{2}=2 \sqrt{2+\pi+\|q\|}$ and thus by Theorem 2 we have $\left\|y_{i}^{\prime}\right\| \leqq 2 \sqrt{2+\pi+\|q\|}$ for $i=1,2$.

Theorem 3. Let r_{1}, r_{2} be positive constants and let

$$
\left|f_{2}\left(t, y_{1}, y_{2}, \mu\right)-f_{2}\left(t, z_{1}, z_{2}, \mu\right)\right| \leqq h_{1}(t)\left|y_{1}-z_{1}\right|+h_{2}(t)\left|y_{2}-z_{2}\right|
$$

for $\left(t, y_{1}, y_{2}, \mu\right),\left(t, z_{1}, z_{2}, \mu\right) \in\left\langle t_{1}, t_{2}\right\rangle \times\left\langle-r_{1}, r_{1}\right\rangle \times\left\langle-r_{2}, r_{2}\right\rangle \times I$, where $h_{i} \in$ $C^{0}\left(\left\langle t_{1}, t_{2}\right\rangle\right), i=1,2$. Let the initial problem (2), $y^{(i)}\left(t_{0}\right)=\lambda_{i}$ has the (locally) unique solution for all $t_{0} \in\left\langle t_{2}, \infty\right)$ and $\left|\lambda_{i}\right| \leqq r_{i+1}(i=0,1)$. Moreover, assume that at least one from the following conditions

$$
\begin{aligned}
& \left.\int_{t_{1}}^{t_{2}} \exp \int_{t_{1}}^{s} h_{2}(\nu) d \nu\right) \int_{t_{1}}^{s}\left(q(\tau)+h_{1}(\tau)\right) d \tau d s \leqq 1 \\
& \int_{t_{1}}^{t_{2}}\left[\left(q(s)+h_{1}(s)\right)\left(s-t_{1}\right)+h_{2}(s)\right] d s \leqq 1 \\
& \int_{t_{1}}^{t_{2}}\left(\exp \int_{s}^{t_{2}} h_{2}(\nu) d \nu\right) \int_{s}^{t_{2}}\left(q(\tau)+h_{1}(\tau)\right) d \tau d s \leqq 1 \\
& \int_{t_{1}}^{t_{2}}\left[\left(q(s)+h_{1}(s)\right)\left(t_{2}-s\right)+h_{2}(s)\right] d s \leqq 1
\end{aligned}
$$

holds.
If there exists a $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has a solution y_{0} satisfying (14) and (23), then this solution is unique in the set $\left\{y: y \in C^{2}(J),\left\|y^{(i)}\right\| \leqq\right.$ r_{i+1} for $\left.\boldsymbol{i}=0,1\right\}$.

Proof. If y_{1} is a further solution of (2) with $\mu=\mu_{0}, y_{1}\left(t_{1}\right)=y_{1}\left(t_{2}\right)=0,\left\|y_{1}^{(i)}\right\| \leqq$ $r_{i+1}(i=0,1)$ then analogous to [7] we may prove $y_{0}(t)=y_{1}(t)$ for $t \in\left\langle t_{1}, t_{2}\right\rangle$. The locally uniqueness of solutions implies $y_{0}(t)=y_{1}(t)$ for $t \in J$.

Corollary 1. Let

$$
\left|f_{1}(t, y, \mu)-f_{1}(t, z, \mu)\right| \leqq h(t)|y-z|
$$

for $(t, y, \mu),(t, z, \mu) \in\left\langle t_{1}, t_{2}\right\rangle \times\langle-r, r\rangle \times I$, where $h \in C^{0}\left(\left\langle t_{1}, t_{2}\right\rangle\right)$, be satisfied for a positive constant r. Let the initial problem (1), $y^{(i)}\left(t_{0}\right)=\lambda_{i}$ has the (locally) unique solution for all $t_{0} \in\left\langle t_{2}, \infty\right),\left|\lambda_{0}\right| \leqq r$ and $\lambda_{1} \in R$. Finally, let at least one from the following conditions

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} \int_{t_{1}}^{s}(q(\tau)+h(\tau)) d \tau d s \leqq 1 \\
& \int_{t_{1}}^{t_{2}}(q(s)+h(s))\left(s-t_{1}\right) d s \leqq 1 \\
& \int_{t_{1}}^{t_{2}} \int_{s}^{t_{2}}(q(\tau)+h(\tau)) d \tau d s \leqq 1 \\
& \quad \int_{t_{1}}^{t_{2}}(q(s)+h(s))\left(t_{2}-s\right) d s \leqq 1
\end{aligned}
$$

be satisfied.
If for a $\mu_{0} \in I$ equation (1) with $\mu=\mu_{0}$ has a solution y_{0} satisfying (14) and (16) then this solution is unique in the set $\left\{y ; y \in C^{2}(J),\|y\| \leqq r\right\}$.

Lemma 3. Let assumption (11) be fulfilled for positive constants r_{1}, r_{2} and let $\frac{\partial f_{2}}{\partial y_{1}}, \frac{\partial f_{2}}{\partial y_{2}} \in C^{0}\left(D_{2} \times I\right)$. Assume

$$
\begin{equation*}
q(t)+\frac{\partial f_{2}}{\partial y_{1}}\left(t, y_{1}, y_{2}, \mu\right) \geqq m \quad \text { for } \quad\left(t, y_{1}, y_{2}, \mu\right) \in D_{2} \times I \tag{25}
\end{equation*}
$$

where $m \geqq 0$ is a non-negative constant and

$$
\begin{equation*}
(L:=) \inf \left\{\frac{\partial f_{2}}{\partial y_{2}}\left(t, y_{1}, y_{2}, \mu\right) ; \quad\left(t, y_{1}, y_{2}, \mu\right) \in D_{2} \times I\right\}>-\infty \tag{26}
\end{equation*}
$$

If at least one from the conditions

$$
\begin{gather*}
m>0, \tag{27}\\
(K:=) \inf \left\{\int_{z}^{t} p(s) d s ; \quad t_{2} \leqq z \leqq t\right\}>-\infty, \quad \text { where } p(t)= \\
=\min \left\{\frac{\partial f_{2}}{\partial y_{2}}\left(t, y_{1}, y_{2}, \mu\right) ; \quad\left(y_{1}, y_{2}, \mu\right) \in\left\langle-r_{1}, r_{1}\right\rangle \times\left\langle-r_{2}, r_{2}\right\rangle \times I\right\} \\
\text { for } t \in\left\langle t_{2}, \infty\right), \\
\inf \left\{\left|f_{2}\left(t, y_{1}, y_{2}, \mu_{1}\right)-f_{2}\left(t, y_{1}, y_{2}, \mu_{2}\right)\right| ; \quad\left(t, y_{1}, y_{2}\right) \in D_{2}\right\}>0 \tag{29}\\
\text { for } \mu_{1}, \mu_{2} \in I, \mu_{1} \neq \mu_{2},
\end{gather*}
$$

holds, then there is at most one $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has a solution y_{0} satisfying (14) and (23). In the positive case the solution y_{0} is unique in the set $\left\{y ; y \in C^{2}(J),\left\|y^{(i)}\right\| \leqq r_{i+1}, \quad i=0,1\right\}$.

Proof. Assume y_{1} and y_{2} are solutions of (2) with $\mu=\mu_{1}$ and $\mu=\mu_{2}$, respectively, $\mu_{1}, \mu_{2} \in I, \mu_{1} \leqq \mu_{2}, y_{j}\left(t_{1}\right)=y_{j}\left(t_{2}\right)=0,\left\|y_{j}^{(i)}\right\| \leqq r_{i+1}$ for $i=0,1$ and $j=1,2$. Putting $w=y_{1}, y_{2}$ then

$$
\begin{aligned}
w^{\prime \prime}(t) & =q(t) w(t)+\left(f_{2}\left(t, y_{1}(t), y_{1}^{\prime}(t), \mu_{1}\right)-f_{2}\left(t, y_{2}(t), y_{1}^{\prime}(t), \mu_{1}\right)\right)+ \\
& +\left(f_{2}\left(t, y_{2}(t), y_{1}^{\prime}(t), \mu_{1}\right)-f_{2}\left(t, y_{2}(t), y_{2}^{\prime}(t), \mu_{1}\right)\right)+ \\
& +\left(f_{2}\left(t, y_{2}(t), y_{2}^{\prime}(t), \mu_{1}\right)-f_{2}\left(t, y_{2}(t), y_{2}^{\prime}(t), \mu_{2}\right)\right)
\end{aligned}
$$

consequently,

$$
\begin{equation*}
w^{\prime \prime}(t)=(q(t)+g(t)) w(t)+h(t) w^{\prime}(t)+a(t) \quad \text { for } \quad t \in J \tag{30}
\end{equation*}
$$

where $g, h, a \in C^{0}(J), q(t)+g(t) \geqq m(\geqq 0)$ (by (25)), $h(t) \geqq L$ (by (26)) and $a(t) \leqq 0(b y(11))$ for $t \in J$. If $\mu_{1}<\mu_{2}\left(\mu_{1}=\mu_{2}\right)$ then $a(t)<0(a(t)=0)$ for $t \in J$.

Let $\mu_{1}=\mu_{2}$. Since $q(t)+g(t) \geqq 0$ for $t \in J$, the equatin $y^{\prime \prime}=(q(t)+g(t)) y+$ $h(t) y^{\prime}$ is disconjugate on J and thus $w=0$.

Let $\mu_{1}<\mu_{2}$ and let $w(\tau)=0, w^{\prime}(\tau) \leqq 0$ for some $\tau \in\left\langle t_{1}, t_{2}\right)$. If $w^{\prime}(\tau)=0$ then using (30) we get $w^{\prime \prime}(\tau)<0$ and thus $w(t)<0, w^{\prime}(t)<0$ in a right neighbourhood of the point τ, likewise as in the case, when $w^{\prime}(\tau)<0$. Since $w^{\prime \prime}(\xi)<0$ in any point $\xi \in(\tau, \infty)$ where $w(\xi) \leqq 0, w^{\prime}(\xi)=0$, we obtain $w(t)<0, w^{\prime}(t)<0$ on (τ, ∞) which contradicting $w\left(t_{2}\right)=0$. Consequently, $w(t)<0, w^{\prime}(t)<0$ for $t>t_{2}$. Next, from (30) we get equality

$$
\begin{aligned}
w(t) & =\int_{t_{2}}^{t}\left(\exp \int_{t_{2}}^{s} h(\tau) d \tau\right)\left[w^{\prime}\left(t_{2}\right)+\right. \\
& \left.+\int_{t_{2}}^{s}\left(\exp \left(-\int_{t_{2}}^{\tau} h(\nu) d \nu\right)\right)((q(\tau)+g(\tau)) w(\tau)+a(\tau)) d \tau\right] d s, t \in J
\end{aligned}
$$

and thus

$$
\begin{equation*}
w(t) \leqq \int_{t_{2}}^{t} \int_{t_{2}}^{s}\left(\exp \int_{\tau}^{s} h(\nu) d \nu\right)((q(\tau)+g(t)) w(\tau)+a(\tau)) d \tau d s, \quad t \geqq t_{2} \tag{31}
\end{equation*}
$$

If $m>0$ then for some $t_{3}, t_{3}>t_{2}$ we obtain
$w(t)<m \int_{t_{3}}^{t} \int_{t_{3}}^{s}\left(\exp \int_{\tau}^{s} h(\nu) d \nu\right) w(\tau) d \tau d s \leqq m w\left(t_{3}\right) \int_{t_{3}}^{t} \int_{t_{3}}^{s} \exp (L(s-\tau)) d \tau d s$
for $t>t_{3} \quad$ and since $\quad \int_{t_{3}}^{\infty} \int_{t_{3}}^{s} \exp (L(s-\tau)) d \tau d s=\infty$ we have $\lim _{t \rightarrow \infty} w(t)=$ $-\infty$.

If $K>-\infty$, then using (31) we have

$$
w(t) \leqq \int_{t_{2}}^{t} \int_{t_{2}}^{s}\left(\exp \int_{\tau}^{s} h(\nu) d \nu\right) a(\tau) d \tau d s \leqq e^{K} \int_{t_{2}}^{t} \int_{t_{2}}^{s} a(\tau) d \tau d s
$$

and since $\quad \int_{t_{2}}^{\infty} \int_{t_{2}}^{s} a(\tau) d \tau d s=-\infty$, we get $\lim _{t \rightarrow \infty} w(t)=-\infty$.
If $a(t) \leqq A<0$ for $t \geqq t_{2}$, where A is a negative constant, then

$$
w(t) \leqq A \int_{t_{2}}^{t} \int_{t_{2}}^{s}\left(\exp \int_{\tau}^{s} h(\nu) d \nu d s \leqq A \int_{t_{2}}^{t} \int_{t_{2}}^{s} \exp (L(s-\tau)) d \tau d s\right.
$$

and $\lim _{t \rightarrow \infty} w(t)=-\infty$.
Thus we see if at least one from conditions (27)-(29) is fulfilled then $\lim _{t \rightarrow \infty} w(t)=$ $-\infty$ contradicting $\|w\| \leqq 2 r_{1}$. This completes the proof.

Corollary 2. Assume assumption (7) is fulfilled for a positive constant $r, \frac{\partial f_{1}}{\partial y} \in$ $C^{0}\left(D_{1} \times I\right)$ and

$$
\begin{equation*}
q(t)+\frac{\partial f_{1}}{\partial y}(t, y, \mu) \geqq 0 \quad \text { for } \quad(t, y, \mu) \in D_{1} \times I \tag{32}
\end{equation*}
$$

Then there is at most one $\mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has a solution y satisfying (14) and (16). In the positive case y is unique in the set $\left\{y ; y \in C^{2}(J),\|y\| \leqq r\right\}$.

Theorem 4. Let assumptions (10) - (13) be satisfied for positive constants r_{1}, r_{2} and let $\frac{\partial f_{2}}{\partial y_{1}}, \frac{\partial f_{2}}{\partial y_{2}} \in C\left(D_{2} \times I\right)$. If assumptions (25), (26) and at least one from conditions (27) - (29) hold, then there are unique $\mu_{0}, \mu_{1} \in I$ such that equation (2) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1} satisfying (14) and (15), respectively, and (23). This solutions are unique in the set $\{y ; y \in$ $\left.C^{2}(J),\left\|y^{(i)}\right\| \leqq r_{i+1}, \quad i=0,1\right\}$.

Proof. The proof folows from Theorem 2 and Lemma 3 (for y_{1} with an evident modification of the proof of Lemma 3).

Theorem 5. Let assumptions (6) - (8) be satisfied for a positive constant r and let $\frac{\partial f}{\partial y} \in C^{0}\left(D_{1} \times I\right)$. If assumption (32) is satisfied, then there are unique μ_{0}, $\mu_{1} \in I$ such that equation (1) with $\mu=\mu_{0}$ and $\mu=\mu_{1}$ has a solution y_{0} and a solution y_{1} satisfying (14) and (15), respectively, and (16). This solutions are unique in the set $\left\{y ; y \in C^{2}(J),\|y\| \leqq r\right\}$.

Proof. The proof follows from Theorem 1 and Corollary 2 (for y_{1} with an evident modification of the proof of Lemma 3).

Example 3. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-(\exp (|\sin (t)|-1)) y=t^{-5} \cos \left(e^{-1} y\right)+t^{-1} \arctan \left(y^{\prime}\right)+\mu \tag{33}
\end{equation*}
$$

on the interval $J:=\langle 1, \infty)$, where $\mu \in I:=\left\langle-1-\frac{\pi}{2}, 1+\frac{\pi}{2}\right\rangle$. Assume $t_{2} \in(1, \infty)$ and r_{1}, r_{2} are positive constants, $r_{1} \geqq(2+\pi) e, r_{2} \geqq 3 r_{1}$. It is easy to verify that assumptions (10) - (13), (29), (25) with $m=0$ and (26) with $L=1$ are fulfilled. Therefore by Theorem 4 there are unique $\mu_{0}, \mu_{1} \in I$ such that equation (33) with $\mu=\mu_{0} \quad\left(\mu=\mu_{1}\right)$ has a solution $y_{0}\left(y_{1}\right)$ satisfying $y_{0}(1)=y_{0}\left(t_{2}\right)=0$, $y_{1}(1)=y_{1}^{\prime}(1)=0$ and $\left\|y_{j}\right\| \leqq(2+\pi) e,\left\|y_{j}^{\prime}\right\| \leqq 3 e(2+\pi)$ for $j=0,1$. This solutions y_{0}, y_{1} are unique even in the set $\left\{y ; y \in C^{2}(J),\|y\|+\left\|y^{\prime}\right\|<\infty\right\}$.

4. Boudedness and uniqueness of solutions on R

In this part we shall assume $J=R$ and $t_{1} \in R$ is arbitrary but fixed number.
Theorem 6. Let assumptions (6) - (8) be fulfilled for a positive constant r. Then there is a $\mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has a solution y satisfying

$$
\begin{equation*}
y\left(t_{1}\right)=0 \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\|y\| \leqq r . \tag{35}
\end{equation*}
$$

If, in additional,

$$
\begin{equation*}
\|q\|<\infty \tag{36}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|y^{\prime}\right\| \leqq 2 \sqrt{\left(r\|q\|+A_{1}\right) r} \tag{37}
\end{equation*}
$$

where $A_{1}=\sup \left\{\left|f_{1}(t, y, \mu)\right| ;(t, y, \mu) \in D_{1} \times I\right\}$.
Proof. Let $\left\{a_{n}\right\}$ be a decreasing sequence and let $\left\{b_{n}\right\}$ be an increasing sequence, $\lim _{n \rightarrow \infty} a_{n}=-\infty, \lim _{n \rightarrow \infty} b_{n}=\infty, a_{1}<t_{1}<b_{1}$. By Lemma 1 there is a sequence $\left\{\mu_{n}\right\}, \mu_{n} \in I$ such that equation (1) with $\mu=\mu_{n}$ has a solution $y_{n}, y_{n}\left(a_{n}\right)=$ $y_{n}\left(t_{1}\right)=y_{n}\left(b_{n}\right)=0$ and $\left|y_{n}(t)\right| \leqq r \quad$ for $t \in\left\langle a_{n}, b_{n}\right\rangle, \quad n \in N$. Next we have $\left|y_{n}^{\prime \prime}(t)\right| \leqq 2 r Q_{n}$ for $t \in\left\langle a_{n}, b_{n}\right\rangle, \quad n \in N$, where $Q_{n}=\max \{q(t) ; \quad t \in$ $\left\langle a_{n}, b_{n}\right\rangle$. From the mean value theorem follows the existence of a $\xi_{n} \in\left(a_{1}, b_{1}\right)$ such that $y_{n}\left(b_{1}\right)-y_{n}\left(a_{1}\right)=y_{n}^{\prime}\left(\xi_{n}\right)\left(b_{1}-a_{1}\right)$, consequently $\left|y_{n}^{\prime}\left(\xi_{n}\right)\right| \leqq \frac{2 r}{b_{1}-a_{1}}$ and the equality $y_{n}^{\prime}(t)=y_{n}^{\prime}\left(\xi_{n}\right)+\int_{\xi_{n}}^{t} y_{n}^{\prime \prime}(s) d s$ implies

$$
\left|y_{n}^{\prime}(t)\right| \leqq \frac{2 r}{b_{1}-a_{1}}+2 Q_{m} r\left(b_{m}-a_{m}\right) \text { for } t \in\left\langle a_{m}, b_{m}\right\rangle, \quad m \leqq n
$$

Using the Ascoli's theorem and the Cauchy diagonal method we may choose a subsequence of $\left\{y_{n}(t)\right\}$, for short we denote this subsequence again $\left\{y_{n}(t)\right\}$, such that $y(t):=\lim _{n \rightarrow \infty} y_{n}(t)$ locally uniformly on R. Since I is a compact interval we may assume that $\left\{\mu_{n}\right\}$ is a convergent sequence and $\lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}$. Analogous to the proof of Theorem 1 it is posible to prove that y is a solution of (1) with $\mu=\mu_{0}$ having properties (34) and (35).

If (36) holds then from the Landau's inequelity $\left\|y^{\prime}\right\|^{2} \leqq 4\|y\|\left\|y^{\prime \prime}\right\|$ and using the inequality $\left\|y^{\prime \prime}\right\| \leqq r\|q\|+A_{1}$ we obtain (37).

Theorem 7. Let assumptions (10) - (13) be satisfied for positive constants r_{1}, r_{2}. Then there exist a $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has a solution y satisfying (34) and

$$
\begin{equation*}
\left\|y^{(i)}\right\| \leqq r_{i+1} \quad \text { for } \quad i=0,1 \tag{38}
\end{equation*}
$$

Proof. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be defined as in the proof of Theorem 6. Then by Lemma 2 there is a sequence $\left\{\mu_{n}\right\}, \mu_{n} \in I$ such that equation (2) with $\mu=\mu_{n}$ has a solution $y_{n}, y_{n}\left(a_{n}\right)=y_{n}\left(t_{1}\right)=y_{n}\left(b_{n}\right)=0$ and $\left|y_{n}^{(i)}(t)\right| \leqq r_{i+1}$ for $t \in\left\langle a_{n}, b_{n}\right\rangle, i=0,1$ and $n \in N$. Since $\left|y_{n}^{\prime \prime}(t)\right| \leqq r_{1}\|q\|+A_{2}$ for $t \in\left\langle a_{m}, b_{m}\right\rangle$ and $m \leqq n$, the next part of the proof is analogous to that of Theorem 2 and therefore it is omitted.

Theorem 8. Let assumptions (10) - (13) be satisfied for positive constants r_{1}, r_{2}. Assume that $\frac{\partial f_{2}}{\partial y_{1}}, \frac{\partial f_{2}}{\partial y_{2}} \in C^{0}\left(D_{2} \times I\right)$,

$$
\begin{equation*}
q(t)+\frac{\partial f_{2}}{\partial y_{1}}\left(t, y_{1}, y_{2}, \mu\right) \geqq 0 \quad \text { for } \quad\left(t, y_{1}, y_{2}, \mu\right) \in D_{2} \times I \tag{39}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(K_{1}:=\right) \inf \left\{-\int_{s}^{t_{1}} p_{1}(\tau) d \tau ; s \leqq t_{1}\right\}>-\infty \\
& \left(K_{2}:=\right) \inf \left\{\int_{s}^{t} p_{2}(\tau) d \tau ; t_{1} \leqq s \leqq t\right\}>-\infty \tag{40}
\end{align*}
$$

where $p_{1}(t)=\max \left\{\frac{\partial f_{2}}{\partial y_{2}}\left(t, y_{1}, y_{2}, \mu\right) ;\left(y_{1}, y_{2}, \mu\right) \in\left\langle-r_{1}, r_{1}\right\rangle \times\left\langle-r_{2}, r_{2}\right\rangle \times I\right\}$ for $t \in\left(-\infty, t_{1}\right)$ and $p_{2}(t)=\min \left\{\frac{\partial f_{2}}{\partial y_{2}}\left(t, y_{1}, y_{2}, \mu\right) ;\left(y_{1}, y_{2}, \mu\right) \in\left\langle-r_{1}, r_{1}\right\rangle \times\left\langle-r_{2}, r_{2}\right\rangle \times I\right\}$ for $t \in\left\langle t_{1}, \infty\right)$.

Then there is the unique $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has a solution y satisfying (34) and (38). This solution is unique in the set $\{y ; y \in$ $C^{2}(R),\left\|y^{(i)}\right\| \leq r_{i+1}$ for $\left.i=0,1\right\}$.

Proof. By Theorem 7 there is some $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has a solution y satisfying (34) and (38). Suppose that there is some $\mu_{1} \in I, \mu_{0} \leqq \mu_{1}$,
such that equation (2) with $\mu=\mu_{1}$ has a solution $y_{1}, y_{1}\left(t_{1}\right)=0,\left\|y_{1}^{(i)}\right\| \leqq r_{i+1}$ for $i=0,1$. Setting $w=y-y_{1}$ then

$$
\begin{equation*}
w^{\prime \prime}(t)=(q(t)+g(t)) w(t)+h(t) w^{\prime}(t)+a(t) \quad \text { for } \quad t \in R, \tag{41}
\end{equation*}
$$

where $a, g, h \in C^{0}(R), q(t)+g(t) \geqq 0 \quad(b y(39)), a(t) \leqq 0$ (by (11)) for $t \in R$, $\inf \left\{-\int_{s}^{t_{1}} h(\tau) d \tau ; s \leqq t_{1}\right\} \geqq K_{1}, \inf \left\{\int_{s}^{t} h(\tau) d \tau ; t_{1} \leqq s \leqq t\right\} \geqq K_{2}$
(by (40)) and if $\mu_{0}<\mu_{1}\left(\mu_{0}=\mu_{1}\right)$ then $a(t)<0(a(t)=0)$ for $t \in R$. Using (41) we have

$$
\begin{align*}
w(t) & =\int_{t_{1}}^{t}\left(\exp \int_{t_{1}}^{s} h(\nu) d \nu\right)\left[w^{\prime}\left(t_{1}\right)+\right. \\
& +\int_{t_{1}}^{s}\left(\exp \left(-\int_{t_{1}}^{\tau} h(\nu) d \nu\right)((q(\tau)+g(\tau)) w(\tau)+a(\tau)) d \tau\right] d s, \quad t \in R \tag{42}
\end{align*}
$$

and

$$
\begin{align*}
w^{\prime}(t)= & \left(\exp \int_{t_{1}}^{t} h(\nu) d \nu\right)\left[w^{\prime}\left(t_{1}\right)+\right. \\
& \left.\int_{t_{1}}^{t}\left(\exp \left(-\int_{t_{1}}^{s} h(\nu) d \nu\right)\right)((q(s)+g(s)) w(s)+a(s)) d s\right], \quad t \in R \tag{43}
\end{align*}
$$

Let $w^{\prime}\left(t_{1}\right)<0$. Then from (42) and (43) we get $w(t)<0, w^{\prime}(t)<0$ for $t \in\left(t_{1}, \infty\right)$, consequently,

$$
w(t) \leqq w^{\prime}\left(t_{1}\right) \int_{t_{1}}^{t}\left(\exp \int_{t_{1}}^{s} h(\nu) d \nu\right) d s \leqq w^{\prime}\left(t_{1}\right) \exp \left(K_{2}\right)\left(t-t_{1}\right) \quad \text { for } \quad t \geqq t_{1}
$$

and thus $\lim _{t \rightarrow \infty} w(t)=-\infty$ contradicting

$$
\begin{equation*}
\|w\| \leqq 2 r_{1} \tag{44}
\end{equation*}
$$

Let $w^{\prime}\left(t_{1}\right)>0$. Then from (42) and (43) it follows $w(t)<0, w^{\prime}(t)>0$ for $t \in\left(-\infty, t_{1}\right)$, consequently,

$$
w(t) \leqq-w^{\prime}\left(t_{1}\right) \int_{t}^{t_{1}}\left(\exp \left(-\int_{0}^{t_{1}} h(\nu) d \nu\right)\right) d s \leqq-w^{\prime}\left(t_{1}\right) \exp \left(K_{1}\right)\left(t_{1}-t\right), \quad t \leqq t_{1}
$$

and thus $\lim _{t \rightarrow-\infty} w(t)=-\infty$ contradicting (44).
Let $w^{\prime}\left(t_{1}\right)=0$. If $\mu_{0}=\mu_{1}$ then $a(t)=0$ for $t \in R$ and $w=0$ by virtue of the uniqueness of the initial value problem for the equation $y^{\prime \prime}=(q(t)+g(t)) y+h(t) y^{\prime}$. If $\mu_{0}<\mu_{1}$ then $a(t)<0$ on R and from (41) it follows $w(t)<0, w^{\prime}(t)<0$ for $t \in\left(t_{1}, \infty\right)$. Consequently,

$$
\begin{aligned}
w(t) & =\int_{t_{1}}^{t} \int_{t_{1}}^{s}\left(\exp \int_{\tau}^{s} h(\nu) d \nu((q(\tau)+g(\tau)) w(\tau)+a(\tau)) d \tau d s \leqq\right. \\
& \leqq \exp \left(K_{2}\right) \int_{t_{1}}^{t} \int_{t_{1}}^{s} a(\tau) d \tau d s
\end{aligned}
$$

and since $\int_{t_{1}}^{\infty} \int_{t_{1}}^{s} a(\tau) d \tau d s=-\infty$ we obtain $\lim _{t \rightarrow \infty} w(t)=-\infty$ contradicting (44). This completes the proof of the theorem.

Corollary 4. Let assumptions (6) - (8) be fulfilled for a positive constant r. Assume that $\frac{\partial f_{1}}{\partial y} \in C^{0}\left(D_{1} \times I\right)$ and

$$
q(t)+\frac{\partial f_{1}}{\partial y}(t, y, \mu) \geqq 0 \quad \text { for } \quad(t, y, \mu) \in D_{1} \times I
$$

Then there is the unique $\mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has a solution y satisfying (34) and (35). This solution y is unique in the set $\left\{y ; y \in C^{2}(R),\|y\| \leqq\right.$ $r\}$.

Example 4. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=\exp \left(-y^{2}\right) \sin (t)+k \cdot \exp (-|t|) \ln \left(1+\left(y^{\prime}\right)^{2}\right)+\mu p(t) \tag{45}
\end{equation*}
$$

where $p, q \in C^{0}(R), 1 \leqq p(t) \leqq 2,8 \leqq q(t) \leqq 13$ for $t \in R, \mu \in\langle-8,8\rangle=: I$ and $k \in R,|k| \leqq 1$. Let $t_{1} \in R$. Assumptions (10)-(13) hold with $r_{1}=3$ and $r_{2}=31$. Putting $f_{2}\left(t, y_{1}, y_{2}, \mu\right):=\exp \left(-y_{1}^{2}\right) \sin (t)+k \cdot \exp (-|t|) \ln \left(1+y_{2}^{2}\right)+\mu p(t)$ for $\left(t, y_{1}, y_{2}, \mu\right) \in R^{3} \times I$, we have $\quad \frac{\partial f_{2}}{\partial y_{1}}\left(t, y_{1}, y_{2}, \mu\right) \geqq-6, \quad q(t)+\frac{\partial f_{2}}{\partial y_{1}}\left(t, y_{1}, y_{2}, \mu\right) \geqq$ 2 for $\left(t, y_{1}, y_{2}, \mu\right) \in R \times\langle-3,3\rangle \times\langle-31,31\rangle \times I, \quad\left|\frac{\partial f_{2}}{\partial y_{2}}\left(t, y_{1}, y_{2}, \mu\right)\right| \leqq \exp (-|t|)$ for $\left(y_{1}, y_{2}, \mu\right) \in\langle-3,3\rangle \times\langle-31,31\rangle \times I, t \in R$ and since $\int_{3}^{t} \exp (-|\tau|) d \tau \leqq 2$ for $s \leqq t$, assumption (40) holds. By Theorem 8 there is the unique $\mu_{0} \in I$ such that equation (45) with $\mu=\mu_{0}$ has a solution y satisfying $y\left(t_{1}\right)=0,\|y\| \leqq 3,\left\|y^{\prime}\right\| \leqq 31$. This solution y is unique in the set $\left\{y ; y \in C^{2}(R),\|y\| \leqq 3,\left\|y^{\prime}\right\| \leqq 31\right\}$.

References

[1] Bebernes, J.W. and Jackson, L.K, Infinite interval boundary value problems for $y^{\prime \prime}=f(x, y)$, Duke Math. J., vol 34, 1967, 39-47.
[2] Belova, M.M., Bounded solutions of non-linear differential equations of second order, Matematičeskii Sbornik, vol 56, 1962, 469-503.
[3] Corduneanu, C., Citeve probleme globale referitoare la ecuatiile diferentiale nelineare de ordinul al doilea, Studii şi Cercetǎri Ştiinṭifice, Mathematica, vol 7, 1956, Academia Republicii populare Romine, Filiala Iasi, 1-7.
[4] Corduneanu, C., Existenta solutiilor marginite pentru unele ecuatii diferentiale de ordinul al dooilea, Studii ṣi Cercetări Ştiinṭifice, Mathematica, vol 8, 1957, Academia Republicii populare Romine, Filiala Iaṣi, 127-134.
[5] Greguš, M., Neuman, F. and Arscott, F.M., Three-point boundary value problems in differential equations, J. London Math. Soc.(2), vol 3, 1971, 429-436.
[6] Kiguradrte, I.T., Boundary value problems for systems of ordinary differential equations," Current problems in mathematics, Newest results, vol 30, 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1987. (Russian)
[7] Staněk, S., Three-point boundary valse problem of nonlinear second-order differentiel equation with parametr (to appear).

Svatoslav Stanek

Department of Mathematical Analysis
faculty of Science Palacký University
TR. SvOBODY 26
77146 Olomouc, Czechoslovakia

[^0]: 1991 Mathematics Subject Classification: 34C11, 34B15.
 Key words and phrases: bounded solution, nonlinear second-order differential equation with a one parameter, tree-point boundary value problem, Ascoli theorem..

[^1]: For the proof see [7].

