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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 17 { 24METRICALLY REGULAR SQUARE OFMETRICALLY REGULAR BIGRAPHS IIVladim�ir Vetch�yDedicated to Professor M. Novotn�y on the occasion of his seventieth birthdayAbstract. Metrically regular bigraphs the square of which are metrically regulargraphs are investigated in the case of graphs with 6 distinct eigenvalues (theseeigenvalues can have variuos multiplicities).1. Terminology and notationWe use the same terminology as in [2]. Our graphs are �nite and undirectedand have no loops or multiple edges. The second power or equivalently the squareof a graph G is the graph G2 with the same vertex set as G and di�erent verticesare adjacent if and only if there is at least one path of length 2 or 1 in G betweenthem.The present paper deals with the metrically regular graphs (MRG) with 6 dis-tinct eigenvalues and having metrically regular squares and it extends the resultsobtained in [2].2. Metrically regular bipartite graphs with 6 distinct eigenvaluesLet �1 > �2 > �3 > �4 > �5 > �6 are the eigenvalues of MRGG with respectivemultiplicitiesm1;m2;m3;m4;m5;m6. As G is a bipartite graph we obtain from [2]Theorem 1.10 �1 = ��6; m1 = m6 = 1(1) �2 = ��5; m2 = m5�3 = ��4; m3 = m4and it holds for the structural constants of Gpkij = 0 for i; j; k 2 f0; 1; 2; 3;4; 5g ;(2) i+ j + k � 0 (mod 2) and also for i + j < k and ji� jj > k :1991 Mathematics Subject Classi�cation : 05C50.Key words and phrases: spectra of graphs, squares of graphs, bipartite graphs, metricallyregular graphs (MRG), association scheme.Received September 19, 1989. 17



18 VLADIM�IR VETCH�YAccording to [2] Theorem 1.3 �i(i = 1; 2; 3; 4; 5;6) is the solution of the equationj�I � P1j = 0 and we get�6 � �4[�1 + p112p211 + p213p312 + p314p413 + p415p514](3) +�2[p112p211p314p413 + p112p211p415p514 + p213p312p415p514++ �1(p213p312 + p314p413 + p415p514)]�� �1p213p312p415p514 = 0The condition for G to have the square G2 metrically regular gives the followingrelations for the structural constants 2pkij of G22p111 = 2p112 = p211 + p222(4) 2p112 = p123 = p213 + p224(5) 2p122 = 2p134 = p233 + p244(6) 2p123 = p145 = p235(7) 2p133 = p155 = p255 = 0(8) 2p211 = 2p312 = p422(9) 2p212 = p314 + p323 = p413 + p424(10) 2p213 = p325 = p415(11) 2p222 = 2p334 = p433 + p444(12) 2p223 = p345 = p435(13) 2p233 = p355 = p455 = 0(14) 2p312 = p523 + p514(15) 2p313 = p525(16) 2p322 = 2p534(17) 2p323 = p545(18) 2p333 = p555 = 0(19)If A denotes the adjacency matrix of G and A2 is the adjacency matrix of G2it is easy to see A2 = 1p211A2 + p211 � p111p211 A � �1p211 I :The eigenvalues of G2 are in regard of (2) in the form�i = �2i + p211�i � �1p211 ;(20) i 2 f1; 2; : : : ; 6g :



METRICALLY REGULAR SQUARE OF METRICALLY REGULAR BIGRAPHS II 19As G2 is a metrically regular graph with diameter 3 it must have just 4 distinctnumbers as its eigenvalues. So it must hold �i = �j = �k or �i = �j and �k = �l(for distinct numbers i; j; k; l; i; j; k; l 6= 1 because G2 is connected and thereforeits index �1 has the multiplicity 1).A. �i = �j = �kAccording to (20) we obtain�i + �j = �i + �k = �j + �k = �p211and we get the contradiction with �i 6= �j 6= �k 6= �i .B. �i = �j; �k = �1.As �2 > 0, p211 > 0 and �2 � j�tj; t 2 f3; 4; 5g, and �3 6= �4,there are only the following cases:a) �2 = �6; �3 = �5.From (20) we obtain �2 + �6 = �p211 = �3 + �5and from (1) we get �2 = �1 � p211,As(21) �3 > 0 it holds �1 > 2p211 :b) �2 = �6; �4 = �5:By the same way as in a) it follows from (1) and (20)�2 = �1 � p211; �3 = p211 � �2 = 2p211 � �1:As �2 > �3 > 0 it follows(22) 2p211 > �1 > 32p211c) �3 = �5; �4 = �6.From (1) and (20) we obtain �3 = p211 � �1 .As �1 > p211(v1 = �1 = Pj pk1j; see [1]) we get the contradiction with�3 > 0.d) �3 = �6; �4 = �5.In this case it follows from (1) and (20)�2 = 2p211 � �1; �3 = �1 � p211. As �2 > �3 > 0 we get(23) 32p211 > �1 > p211In the next part it will be shown that the conditions b) and d) cannot occur.We use the well-known relations for the structure constants of association schemes(see [1]) vi = p0ii =Xj pkij ;(24) vipikj = vkpkij :(25)



20 VLADIM�IR VETCH�Y(Let x is an arbitrary vertex, vi denotes the number of vertices y for which d(x; y) == i where d(x; y) is the distance from the vertex x to the vertex y.)From (24) (i = 1; k = 1; 2; 5) it follows(26) p112 = �1 � 1; p213 = �1 � p211; p514 = �1With respect to (8), (14) and (25) we getv5p525 = v2p255 = 0; p525 = 0(27) v5p545 = v4p455 = 0; p545 = 0(28)So, the relations (8), (24), (27), (28) givev5 = 5Xk=0p5k5 = 1(29) v5 = 5Xk=0p1k5 = p145 = 1(30) and v5 = 5Xk=0p2k5 = p235 = 1(31)From (25) we get v5p523 = v3p325 and because p523 6= 0 we obtain from (24) (i == 5; k = 3) - note that p325; p345 are non-negative integers and p325 > 0 -(32) p325 = 1; p345 = 0:As p514 6= 0 we get from (25) v5p514 = v4p415 and p415 6= 0. So, from (24) (i = 5; k = 4)we obtain(33) p415 = 1; p435 = 0:The relations (25), (26), (33) give(34) v5p514 = v4p415 and v4 = �1:With regard of (24)(i = 4; k = 1) it follows(35) p134 = �1 � 1and from (25) we get(36) v1p134 = v4p413; so p413 = �1 � 1With respect to (24) (i = 2; 4; k = 5), (26), (28) it follows(37) p523 = v2; p534 = 0



METRICALLY REGULAR SQUARE OF METRICALLY REGULAR BIGRAPHS II 21From (25) we get v3p325 = v5p523, so(38) v2 = v3and the relation (25) gives p213 = p312;(39) p233 = p323:(40)With regard of (1) we obtain from (3)(41) �21�22�23 = �1p213p312p415p514In the case d) we obtain from (26), (33), (39), (41)�21(2p211 � �1)2(�1 � p211)2 = �21p213p213so j2p211� �1j = 1:(42)As p211 2 N we get the contradiction with (23).By the same way we obtain the relation (42) in the cases a) and b).In the case b) we obtain with regard of (22)(43) �1 = 2p211 � 1; p211 > 2and from (25), (26), (43) it followsv1p112 = v2p211 and v2 = 2�1(�1 � 1)�1 + 1 = 2�1 � 4 + 4�1 + 1As v2 2 N we obtain �1 � 3, so p211 � 2 and we get the contadiction with (43).The relations (21) and (42) imply for the case a)�1 = 2p211 + 1 ;(44) p211 = �1 � 12 :(45)From (25) with respect to (26), (38) we get(46) v1p112 = v2p211 and v2 = v3 = 2�1The relations (24) (i = 1; k = 2) and (45) imply(47) p213 = �1 + 12



22 VLADIM�IR VETCH�Yand from (9), (26), (39), (47) we get(48) p422 = �1 + 1With respect to (24) (i = 2; k = 1), (2), (46) it follows(49) p123 = �1 + 1From (5), (47), (49) we obtain(50) p224 = �1 + 12and the relations (4), (26) and (45) imply(51) p222 = 3(�1 � 1)2 :The relation (24) (i = 4; k = 2) implies with respect to (34), (50)(52) p244 = �1 � 12From (6), (35), (38) and (52) we get(53) p233 = p323 = 32(�1 � 1)The relations (25), (34), (36) and (46) imply(54) v3p314 = v4p413 and p314 = �1 � 12and from (2), (24) (i = 4; k = 3), (32), (54) we obtain(55) p334 = �1 + 12From the relations (25), (34), (46), (52) and (55) we getv4p433 = v3p334 and p433 = �1 + 1(56) and v4p424 = v2p244 so p424 = �1 � 1:(57)(12), (55) and (57) imply(58) p444 = 0



METRICALLY REGULAR SQUARE OF METRICALLY REGULAR BIGRAPHS II 23Because of pkij 2 N and �1 > 1 the relations (45), (47), (50), (51), (52), (53), (54)and (55) imply(59) �1 = 2k + 1; k 2 Nand the nonzero structural constants of the considered metrically regular bigraphsare pii0 = p145 = p235 = p325 = p415 = 1;p211 = p244 = p314 = k;p213 = p224 = p312 = p334 = k + 1;p112 = p134 = p413 = p424 = 2k;p514 = 2k + 1;p123 = p422 = p433 = 2k + 2;(60) p222 = p233 = p323 = 3k;p523 = 2(2k + 1);v0 = v5 = 1; �1 = 2k+ 1 = ��6;v1 = v4 = 2k + 1; �2 = k + 1 = ��5;v2 = v3 = 2(2k + 1); �3 = 1 = ��4:For the eigenvalues �1; �2; : : : ; �6 and their corresponding multiplicitiesm1;m2; : : : ;m6 of the considered graphs it holdsm1 = 1, since the graph is connected,6Pi=1mi = 5Pj=0vj = n, the number of vertices,6Pi=1mi�i = 0, since the graph has no loops,6Pi=1mi�2i = n�1, since the graph is regular.So, with respect to (1), (2) and (60) we obtainm1 = 12m1 + 2m2 + 2m3 = 4(3k + 2);2m1(2k + 1)2 + 2m2(k + 1)2 + 2m3 = 4(3k + 2)(2k + 1) :These equations imply m2 = 8� 12k + 2 ;m3 = 6k� 5 + 12k + 2 :As m2;m3 2 N it must hold k 2 f1; 2; 4; 10g :So we have proved the following theorem:



24 VLADIM�IR VETCH�YTheorem. There are only four tables of the parameters of association schemesof the type (60) for k 2 f1; 2; 4; 10g so that the corresponding metrically regularbipartite graphs with 6 distinct eigenvalues have the metrically regular square.The realization of the table (60) for k = 1 is shown in the �gure below. In thecase k = 2 it is the 5-dimensional unit cube.
References[1] Bauer L., Association Schemes I, Arch. Math. (Brno) 17 (1981), 173-184.[2] Vetch�y V., Metrically regular square of metrically regular bigraphs I, Arch. Math. (Brno),Tomus 27b (1992), 183-197.Vladim�ir Vetch�yDepartment of MathematicsVA, PS 13612 00 Brno, Czechoslovakia
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