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SOME FACTORIZATIONS OF MATRIX
FUNCTIONS IN SEVERAL VARIABLES

JAROMIR SIMS$A
Dedicated to Professor M. Novotny on the occasion of his seventieth birthday

ABSTRACT. We establish some criteria for a nonsingular square matrix depending
on several parameters to be represented in the form of a matrix product of factors
which depend on the single parameters.

The purpose of the present work is to find functional and differential equations
for matrix-valued functions H that admit factorization

(1) H(z,y) = F(z)-G(y)

or, more generally,

(2) H(zy, 20, .. 05) = Fr(ey) - Fa(we) ... Fi(xg)

where - stands for the usual matrix multiplication. The history of the scalar version
of this problem goes back to the year 1747, when J. d’Alembert [d’Al] recognized

that each (smooth) scalar function h(z,y)= f(x)g(y) has to satisfy the following
partial differential equation

(3) hayh — hphy =0 .

In 1904, C. Stéphanos [St] announced a significant generalization of d’Alembert’s
result: scalar functions of the type

(4) h(z,y) = fr(@)gr(y)
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form the space of all solutions of the partial differential equation with the ”Wron-
skian” of order n+1

h  h, hyn
(5) A Ul=0

(for the more precise statement, applications, further extensions and related results
see [Neu 1], [Ra], [GR], [Neu 2], [CS 1], [NR] and [CS 2]).

Suppose that matrices H, F' and G in (1) are of type n x n and denote their
entries by h;;, fi; and g;;, respectively, where ¢,j€{1,2,...,n}. Then (1) repre-
sents a system of n? scalar equalities

zy €T y Zfzk gk] )

each of them is of type (4). Consequently, the above mentioned result of Stéphanos
yields a necessary (but not sufficient) condition for a (smooth) matrix function H
to have factorization (1): each entry hy; is a solution of the Wronski equation
(5). We will show here that criteria for factorization (1) can be stated in terms
of matrix operations, without taking single entries of the matrix H and without
using equations like (5). However, our procedure is not applicable unless the
values of H are nonsingular, i.e. det H(z,y) # 0 for all # and y. Let us finish
this introductory part by remarking that a smooth matrix H of type (1) need not
satisfy the equation

(6) Hypy-H—H, H, =0,

a formal matrix analogy of (3). (Equation (6) holds if the matrices F' and G in
(1) commute, which is rather an exceptional case.) The correct version of (6) is
given in Theorem 3 below.

Throughout the paper, GL,(K) denotes the group of all n x n nonsingular
matrices with elements from the field K, where K stands for R (reals) or € (complex
numbers). First we derive a functional equation that characterizes functions (1)
without any smoothness condition.

Theorem 1. Let H: X xY — GL,(K), where X and Y are arbitrary nonempty
sets. Choose elements x1 € X and y; €Y. Then the mapping H has a factorization
(1) if and only if it satisfies the functional equation

(7) H(x,y) = H(x,y1) - H Y(x1,y1) - H(zx1,y) foreach x€X and yeY .

Moreover, the factors F': X — GL,(K) and G:Y — GL,(K) from any represen-
tation (1) are exactly pairs of the form

(8) F(z)=H(x,yn)-C and G(y) =D H(x1,y),



FACTORIZATIONS OF MATRIX FUNCTIONS 87

where C', D€ GL,(IK) are arbitrary constant matrices satisfying C-D=H (1, y1).
Proof. Let I be asin (1). Setting first y=1; and then z =2, in (1), we find that

F(x)= H(x,y) -G () and G(y) = F~ (=) - H(x1,y)
for each x € X and y€Y. Multiplying these equalities and taking in account that
G ) - F @) = (F(a1) - G(n)) ™" = H @1, ),

we conclude that H satisfies (7) and (8) holds. Conversely, if H satisfies (7) and
if C, D€ GL,(K) are arbitrary matrices satisfying C'- D=H~*(x1,y1), then

(H(x, 1) C) - (D H(x1,y)) = H(z,y1) - H H(xy,y1) - H(wy,y) = H(z,y)
and the proof is complete.
Let us add to Theorem 1 a simple but important rule
(9) H is of type (1) = H(x1,y) - H '(x2,y) does not depend on y ,
which will be used in next proofs.

Now we turn our attention to the matrix functions H of type (1) which are
differentiable in one of both variables, say # in Theorem 2 (for the case of the
variable y see Remark 1). We show that such functions are characterized by a
mixed functional differential equation.

Theorem 2. Let H: X x Y — GL,(K), where X is an interval in R and Y is
a nonempty set. Suppose that the partial derivative H, exists at each point of
X x Y. Then the mapping H has a factorization (1) if and only if it satisfies

(10) Hy(x,y) - H Nx,y) = He(x,y1) - H ' (x,y1) for each x€ X and y, 1 €Y .

Proof. (i) If H is as in (1), then
Hy(x,y) - H ' (2,y) = (F'(2)G() - (GTH ) F~H(x)) = F'(x) - F~'(2)

for each y€Y, hence the both sides of (10) are equal to F'(x) - FF=1(z).
(ii) If H satisfies (10), then

S ) H (2, ) =

- H_l(x’ yl)Hx($’ yl)H_l(l" yl)H($’ y) + H_l(xa yl)Hx(l‘, y) =
H_l(a:, yl)[—Hx(x, yl)H_l(a:, y1) + Hy(x, y)H_l(x, y)]H(x, y)=0.
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Thus H~'(z,y1) - H(z,y) does not depend on z€ X, i.e.
H™ e, y) H(x,y) = H (x1,y1) - H(x1,y) for each 2 € X,

where 21 € X is a chosen point. Multiplying the last equality by H(z,y1) from the
left, we obtain factorization (7).

Remark 1. The reader can easily verify that
(11) H Yz, y)- Hy(z,y) = H™ (1, y) - Hy(z1,y) (z,m€X, yeY)
is the analogy of (10) for functions H differentiable in the variable y.

Now we state a differential criterion of (1) for mappings H which are smooth
in both variables x and y.

Theorem 3. Let H: X XY — GL,(K), where X and Y are two intervals in R.
Suppose that the partial derivatives H,, H, and Hyy,=(H), exist at each point
of X x Y. Then the mapping H has a factorization (1) if and only if it solves the
differential equation

(12) Hyy=H,- H! -Hy, on the rectangle X x Y.

Proof. If H is as in (1) and the derivatives H, and H, exist, then (8) implies
that the derivatives F’'= % and G'= % exist too. So we can write

H, - H - H,=(F'G)- (FG) ' (FG') = FGGT'F'FG' =
=F'G = Hyy,

which means that H satisfies (12). Conversely, let H be such that the derivatives
H,, Hy, Hyy = (Hy)y exist and satisfy (12). Then the product H, - H~! is
differentiable in y and

Q(Hx . H—l) =
dy
=HyyH ' - H,H'HyH ' = (Hpy— H,H ' H)H™ ' =0

on the set X x Y. Hence H, - H~! does not depend on y€Y, i.e. the mapping H
satisfies (10). In view of Theorem 2, H has a factorization (1).

Remark 2. In the statement of Theorem 3, the mixed derivative (H,), can be
replaced by (Hy)., because any solution of (Hy); = H, - H=' - H, satisfies (11).
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Now we will solve the problem when a smooth nonsingular matrix function H
in p+q variables is factorizable into the form

(13) H(z1, ... 2p;y1,- -5 ¥g) = Flaea, .o ) - Glyn, .., yg) -

Let us emphasize that if H: (X7 x ... x X;) x (Y1 x ... xY,) — GL,(K), then
Theorem 1 with vector variables ® = (z1,...,2,) andy = (y1,...,y,) yields
the following conclusion: the factors F' and G from any factorization (13) of the

function H are given by

Flay,...,2p) =H(z1,...,2p,01,...,04) - C

Gyr, .- ¥) =D -H(ui, ..., U491, ... ,Yq)
where the elements u; € X; and v; €Y; are chosen arbitrarily and the matrices
C,DeGL,(K) satisfy C- D= H  (uy, ... up;v1,...,0).

Theorem 4. Let X = X; x ... x X, and Y =Y x ... x Y, be the Cartesian
products of real intervals X1,..., X, and Y1,...,Y,, respectively. Suppose that a
mapping H: X xY — GL,(K) has the partial derivatives H, , H,, and Hy,, (in
some order of differentiation) on the set X x Y, 1 <é¢<pand 1< j<gq. Then
the mapping H has a factorization (13) if and only if it satisfies the system of pq
differential equations

(14) Hpw, =Hp, - H ' H, (1<i<p, 1<j<q)ontheset X xY.

Proof. Consider the partial functions H;; : X; x Y; — GL,(K) defined by
HZ]($Z’y]) = H($1a ey Tpi Yty ayq)

on condition that the other variables z1,... 21, ®iq1,...,2p and y1,... ,y;—1,
Yj+1,- .-, Yq are assumed to be fixed.

(1) If H is as in (13), then H;;(z;,y;)= Fi(x;) - G;j(y;), where
Fi(z;) = F(x1,...,2p) and G;(y;) = Gy, - -, ¥q) -

Applying Theorem 3 (or Remark 2) to each function H;;, we conclude that H
satisfies (14).

(ii) Suppose that H solves (14). Then Theorem 3 (or Remark 2) implies that
each partial function H;; is of type (1) on the set X; x Y;. Choose u; € X; and
v €Y and define a mapping ®1: X — GL,(K) by

Sy (x) = H(xy, ... ,J:p;v)~H_1(u1,x2,... L Ep; V)

for each ® = (z1,...,2,) € X. According to the rule (9) applied to Hy;, where
1 < j < ¢, the matrix product

H(Ila"'a$p;y1a"'ayq)'H_l(ulaxZa"'a$p;y1a"'ayq)
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does not depend on any of the variables y1,...  y,, i.e. it equals to ®(z1,..., ;).
This leads to the factorization

H(z;y)=®1(=) - H(ui, z2,...,2p;Y) ,

for each @ = (x1,...,2p) € X and y € Y. In the case when p > 1, we repeat
the previous procedure to the function H(zs, ..., 2p;y) = H(u1,22,...,2p;y) to
obtain the factorization

H(ui,22,...,2p;y) = @olza, ... ,2p) - H(u1,uz, 23, ... ,2p;Y)

(with a chosen us € X3), ete. After p repetitions we conclude that H is of the form
(13) in which

Flei,...,2p)=®1(x1, ..., 2p) Pola, ..., 2p) ... - Pp(zp)
and G(y1,...,¥g)=H(u1, ..., up;4,...,Ys). This completes the proof.
Now we start to deal with the factorization problem (2). To state an extension
of Theorem 1 as Theorem 5, we introduce the following notation. Given a function

H: X1 x Xox...x X — GLy(K) and chosen k elements u; € X;, 1 < i < k, we
define the k-tuple of partial functions H;: X; — GL,(K) by

(15) Hi(z) = H(uy, ... o1, 2,040, ... up) (2€X;, 1 <i<k).

Theorem 5. Let H:X; X ... x X — GL,(K), where X1,..., X}, are k>2 non-
empty sets. Consider partial functions (15) for a fixed k-tuple uy,... u;. Then
the mapping H has a factorization (2) if and only if it satisfies the equation

H(z) = Hy(x)  Hy' Ho(ws) - Hy' ... Hy' - Hy(zy)
for any = (x1,...,25)€X1 X ... X X,

(16)

where Hy = H(uy, ... ,u). Moreover, the factors Fy : X; — GL,(K) from any
factorization (2) are given by

Fl(l‘)IHl(l‘)Cl, Fl(l‘)IDz_lHZ(l‘)CZ (1<Z<k’)

(17) and Fy(x) = Dyp_y - Hyp(x),

where C;, D; € GL,(K) are arbitrary constant matrix satisfying
(18) Cy-Dy=Coy-Dy=--=Cyp_y Dp_y = Hy".

Proof. If H is as in (2), then one can check inductively that

Hl(l‘l)Ho_l . Ho_lHZ(l‘Z) = Fl(l‘l) . ~Fi($i)Fi+1(Ui+1) . Fk(uk),



FACTORIZATIONS OF MATRIX FUNCTIONS 91

for each i =2,3,... k. This equality with ¢ = k& proves (16). Conversely, if the
mapping H satisfies (16), then it is clearly of type (2), with factors Fy = H; and
Fi=Hy'H;, i=2,3,... k (as well as with factors (17) under condition (18)). So
it remains to show that the factors F; from any factorization must be of type (17).
Indeed, it follows from (2) that Fl(a:):Hl(x)Ho_lFl(ul),

Fi(x) = F b (wis ) P (wia) o Fr(uy) " H () Hy Py (wg ) Fo(us) - Fy(u;)

K3

fori=2,3,...,k—1and Fk(x):Fk__ll(uk_l) . Fy(u1)"tHg(z). So F; are of type
(17), with matrices

C’i:H(J_lFl(ul)Fz(uz) ... Fy(w;) and Di:FZ»_l(ui)F»__ll(ui_l) .. .Fl_l(ul)

K3

that satisfy (18). The proof is complete.

Comparing (16) with (7), the reader may analogously presume that
(19) Hoveyowp = Hey H™ ' - Hyy - H™' o H™V Hy,

is a good generalization of (12) for the factorization problem (2). We disprove this
conjecture in the following

Theorem 6. Let Xi,..., X be k > 2 intervals in R and let the mapping F; :
X; — GLy(K) be differentiable at each point of X;, 1 <i<k. Then the mapping
H defined by (2) is a solution of (19) on the set X; x ... x X;. However, in the
case when k> 3, equation (19) has such solutions which are not of the form (2).

Proof. If H is asin (2), with differential factors F;, then one can check inductively
that

H. H'H, H ' .. H'H, H'=FF,  FF_\F.  F!
for i=1,2,..., k—1 and, in the last step,
H, H'H,,H™ ... H'H, =F|Fy.. . Ff=Hg 0, o

Hence H solves (19). On the other side, a smooth mapping H = H(xa,...,zy)
(which does not depend on z7) is an example of a solution of (19), which is not of
type (2) in general (provided that k£ >3). The proof is complete.

We finish our paper by showing that the factorization problem (2) can be re-
duced to a family of problems (1). This reduction (described in Theorem 7) enables
to formulate differential criteria of factorizations (2), based on the preceding results
on factorizations (1) - see Remark 3. Given a mapping H : X7 x...x X}, — GLy(K),
let us introduce the families of (g) partial functions Hap: X0 x X — GL,(K),
where 1 <a <<k, defined by

(20) Hop(2o,25) = H(z1,...,2p) forany r,€X, and z5€ Xy

on condition that the other variables #; € X; (1 <i<k, i#« and i# 3) are assumed
to be fixed.
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Theorem 7. Let H: Xy x ... x X} — GL,(K), where X1,..., Xy are k>3
nonempty sets. The mapping H has a factorization (2) if and only if each partial
function Hap (1<a< <k, see (20)) is of the form

(21) Hop(za,25) = ®(za) - U(23) (va€Xo and z3€ X3),

for each (k—2)-tuple of the other variables #; € X; (1<i<k,i#a and i# ).

Proof. We will proceed in a similar way as in the proof of Theorem 4. If H is as

in (2) and 1 <a <<k, then (21) holds with

O(ro) = Fi(z1) ... Fa(zo) and ¥(2p) = Fay1(Tag1) - ... - Fr(zgp).
Conversely, suppose that each (g)—tuple of partial functions H,g of a given function
H satisfies (21). Choose fixed elements u; € X;, 1 <i<k—1. In view of the rule
(9) applied to each H,g, the relations

Fi(xg) = H(uy, .. w1, @i, eg) - H N ug, oo g, @ig, o) (1<i<k—1)

determine k—1 mappings F; : X; — GL,(K) (in a correct way). Moreover, the
identity Fy(z1) ... Fi(2;) = H(xy, ... ag) - H - u1, ..., 4, g1, ..., xp) holds
fori=1,2,...,k— 1L So putting Fj(xp)=H(u1,...,up_1, %), we get factorization
(2). This completes the proof.

Remark 3. A criterion for each factorization (21) can be stated by applying one
of Theorems 1 — 3 (or even Theorem 4 if some of the variables x,... 2 are
multidimensional). For example, if Xy,..., X} are real intervals, then (smooth)
mappings H: X1 X ... x X — GLy(K) of type (2) form the set of all solutions of
the differential system

Hypoo =Ho, H™' Hy, (1<a<f<k) on Xix...x Xg.

Ts
Remark 4. The reader may ask whether the system of (g) conditions (21) can
be reduced to a subsystem, say the subsystem of (k—1) conditions (21) with

(o, ) € {(1,2),(2,3),..., (k=1 k)}.

The negative answer follows from the following example. Given indices p and ¢
(1<p<q<k), define a mapping H = H(z1,...,2z) = ®(zp, 2,), where ® is a
matrix-valued function in two variables which does not permit factorization (1).
It is obvious that such a mapping H has (]2“) factorizations (21) excepting the only
one, that with e« =p and f=gq.

Remark 5. Let us mention an open problem which generalizes the subject of
the present paper: Given k surjective mappings ¢; : X — Y;, 1 <1<k, find
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some necessary and sufficient conditions for a« mapping H: X — GL,(K) to be
factorizable into

(22) H(z) = Fi(p1(2)) - Falpa(z)) .- Frlpr(2))

with some factors F;:Y; — GL,(K). We are able to solve it only in the case when
the mapping ¢: X — Y1 x Y3 X ... X Y} defined by

p(@) = (pr(x), p2(2), .. pr(2)) (2 € X)

is a bijection. Then (22) can be solved by transforming lff(y) = H(p71(y)) to
a problem treated here: H(y1,y2,...,yx) = F1i(y1) - Faly2) - ... - Fu(yr). As
an example of this procedure, we derive functional and differential equations for

matrix functions of the form

(23) H(z,y) = Flz+y) Gl —y) .

Corollary 1. (i) Let S be an abelian group divisible by 2. A given mapping
H:S xS — GL,(K) has a factorization (23) if and only if it satisfies the equation

r+y x+vy _ r—y y—x
H(x,y):H( 5 g )~H1(0,0)~H< 53 )

for any z,y€S.

(ii) Suppose that a mapping H :R x R — G L,(K) has the second order differ-
ential d*H at each point of the plane R x R. Then H has a factorization (23) if
and only if it satisfies the differential equation

Hepp— Hyy = (H, + Hy))-H™ ' - (H, — Hy)) onRxR.

Proof. Corollary 1 is an immediate consequence of Theorems 1 and 3 applied to

the mapping
ﬁ](u,v):H (u—;—v’u;v) :

Acknowledgement. I wish to thank to Prof. Jifi Vanzura who motivated me to
study the problem of matrix factorization (1).
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