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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 85 { 94SOME FACTORIZATIONS OF MATRIXFUNCTIONS IN SEVERAL VARIABLESJarom��r �Sim�saDedicated to Professor M. Novotn�y on the occasion of his seventieth birthdayAbstract. We establish some criteria for a nonsingular square matrix dependingon several parameters to be represented in the form of a matrix product of factorswhich depend on the single parameters.The purpose of the present work is to �nd functional and di�erential equationsfor matrix-valued functions H that admit factorization(1) H(x; y) = F (x) �G(y)or, more generally,(2) H(x1; x2; : : : ; xk) = F1(x1) � F2(x2) � : : : �Fk(xk) ;where � stands for the usual matrixmultiplication. The history of the scalar versionof this problem goes back to the year 1747, when J. d'Alembert [d'Al] recognizedthat each (smooth) scalar function h(x; y)=f(x)g(y) has to satisfy the followingpartial di�erential equation(3) hxyh� hxhy = 0 :In 1904, C. St�ephanos [St] announced a signi�cant generalization of d'Alembert'sresult: scalar functions of the type(4) h(x; y) = nXk=1 fk(x)gk(y)1991 Mathematics Subject Classi�cation : 39B42, 26B40.Key words and phrases: separation of variables, matrix-valued functions, functional and dif-ferential equations for factorizable functions.Received February 14, 1992. 85



86 JAROM�IR �SIM�SAform the space of all solutions of the partial di�erential equation with the "Wron-skian" of order n+1(5) �������� h hy : : : hynhx hxy : : : hxyn... ... . . . ...hxn hxny : : : hxnyn �������� = 0(for the more precise statement, applications, further extensions and related resultssee [Neu 1], [Ra], [GR], [Neu 2], [CS 1], [NR] and [CS 2]).Suppose that matrices H;F and G in (1) are of type n � n and denote theirentries by hij , fij and gij, respectively, where i; j2f1; 2; : : :; ng. Then (1) repre-sents a system of n2 scalar equalitieshij(x; y) = nXk=1fik(x)gkj(y) ;each of them is of type (4). Consequently, the above mentioned result of St�ephanosyields a necessary (but not su�cient) condition for a (smooth) matrix function Hto have factorization (1): each entry hij is a solution of the Wronski equation(5). We will show here that criteria for factorization (1) can be stated in termsof matrix operations, without taking single entries of the matrix H and withoutusing equations like (5). However, our procedure is not applicable unless thevalues of H are nonsingular, i.e. detH(x; y) 6= 0 for all x and y. Let us �nishthis introductory part by remarking that a smooth matrix H of type (1) need notsatisfy the equation(6) Hxy �H �Hx �Hy = 0 ;a formal matrix analogy of (3). (Equation (6) holds if the matrices F and G in(1) commute, which is rather an exceptional case.) The correct version of (6) isgiven in Theorem 3 below.Throughout the paper, GLn(K) denotes the group of all n � n nonsingularmatrices with elements from the �eld K, where K stands forR(reals) or C (complexnumbers). First we derive a functional equation that characterizes functions (1)without any smoothness condition.Theorem 1. Let H : X �Y ! GLn(K), where X and Y are arbitrary nonemptysets. Choose elements x12X and y12Y . Then the mappingH has a factorization(1) if and only if it satis�es the functional equation(7) H(x; y) = H(x; y1) �H�1(x1; y1) �H(x1; y) for each x2X and y2Y :Moreover, the factors F : X ! GLn(K) and G : Y ! GLn(K) from any represen-tation (1) are exactly pairs of the form(8) F (x) = H(x; y1) � C and G(y) = D �H(x1; y) ;



FACTORIZATIONS OF MATRIX FUNCTIONS 87where C;D2GLn(K) are arbitrary constant matrices satisfying C�D=H�1(x1; y1).Proof. Let H be as in (1). Setting �rst y=y1 and then x=x1 in (1), we �nd thatF (x) = H(x; y) �G�1(y1) and G(y) = F�1(x1) �H(x1; y)for each x2X and y2Y . Multiplying these equalities and taking in account thatG�1(y1) � F�1(x1) = (F (x1) �G(y1))�1 = H�1(x1; y1) ;we conclude that H satis�es (7) and (8) holds. Conversely, if H satis�es (7) andif C;D2GLn(K) are arbitrary matrices satisfying C �D=H�1(x1; y1), then�H(x; y1)C� � �DH(x1; y)� = H(x; y1) �H�1(x1; y1) �H(x1; y) = H(x; y)and the proof is complete.Let us add to Theorem 1 a simple but important rule(9) H is of type (1)) H(x1; y) �H�1(x2; y) does not depend on y ;which will be used in next proofs.Now we turn our attention to the matrix functions H of type (1) which aredi�erentiable in one of both variables, say x in Theorem 2 (for the case of thevariable y see Remark 1). We show that such functions are characterized by amixed functional di�erential equation.Theorem 2. Let H : X � Y ! GLn(K), where X is an interval in R and Y isa nonempty set. Suppose that the partial derivative Hx exists at each point ofX � Y . Then the mapping H has a factorization (1) if and only if it satis�es(10) Hx(x; y) �H�1(x; y) = Hx(x; y1) �H�1(x; y1) for each x2X and y; y12Y :Proof. (i) If H is as in (1), thenHx(x; y) �H�1(x; y) = �F 0(x)G(y)� � �G�1(y)F�1(x)� = F 0(x) � F�1(x)for each y2Y , hence the both sides of (10) are equal to F 0(x) �F�1(x).(ii) If H satis�es (10), then@@x �H�1(x; y1)H(x; y)� =�H�1(x; y1)Hx(x; y1)H�1(x; y1)H(x; y) +H�1(x; y1)Hx(x; y) =H�1(x; y1)��Hx(x; y1)H�1(x; y1) +Hx(x; y)H�1(x; y)�H(x; y) = 0 :



88 JAROM�IR �SIM�SAThus H�1(x; y1) �H(x; y) does not depend on x2X, i.e.H�1(x; y1) �H(x; y) = H�1(x1; y1) �H(x1; y) for each x2X ;where x12X is a chosen point. Multiplying the last equality by H(x; y1) from theleft, we obtain factorization (7).Remark 1. The reader can easily verify that(11) H�1(x; y) �Hy(x; y) = H�1(x1; y) �Hy(x1; y) (x; x12X; y2Y )is the analogy of (10) for functions H di�erentiable in the variable y.Now we state a di�erential criterion of (1) for mappings H which are smoothin both variables x and y.Theorem 3. Let H : X � Y ! GLn(K), where X and Y are two intervals in R.Suppose that the partial derivatives Hx, Hy and Hxy=(Hx)y exist at each pointof X � Y . Then the mapping H has a factorization (1) if and only if it solves thedi�erential equation(12) Hxy = Hx �H�1 �Hy on the rectangle X � Y .Proof. If H is as in (1) and the derivatives Hx and Hy exist, then (8) impliesthat the derivatives F 0= dFdx and G0= dGdy exist too. So we can writeHx �H�1 �Hy = (F 0G) � (FG)�1 � (FG0) = F 0GG�1F�1FG0 == F 0G0 = Hxy ;which means that H satis�es (12). Conversely, let H be such that the derivativesHx, Hy, Hxy = (Hx)y exist and satisfy (12). Then the product Hx � H�1 isdi�erentiable in y and@@y �Hx �H�1� == HxyH�1 �HxH�1HyH�1 = (Hxy �HxH�1Hy)H�1 = 0on the set X � Y . Hence Hx �H�1 does not depend on y2Y , i.e. the mapping Hsatis�es (10). In view of Theorem 2, H has a factorization (1).Remark 2. In the statement of Theorem 3, the mixed derivative (Hx)y can bereplaced by (Hy)x, because any solution of (Hy)x=Hx �H�1 �Hy satis�es (11).



FACTORIZATIONS OF MATRIX FUNCTIONS 89Now we will solve the problem when a smooth nonsingular matrix function Hin p+q variables is factorizable into the form(13) H(x1; : : : ; xp; y1; : : : ; yq) = F (x1; : : : ; xp) �G(y1; : : : ; yq) :Let us emphasize that if H : (X1 � : : :� Xp) � (Y1 � : : :� Yq) ! GLn(K), thenTheorem 1 with vector variables x = (x1; : : : ; xp) and y = (y1; : : : ; yq) yieldsthe following conclusion: the factors F and G from any factorization (13) of thefunction H are given byF (x1; : : : ; xp) = H(x1; : : : ; xp; v1; : : : ; vq) � CG(y1; : : : ; yq) = D �H(u1; : : : ; up; y1; : : : ; yq)where the elements ui 2Xi and vj 2 Yj are chosen arbitrarily and the matricesC;D2GLn(K) satisfy C �D = H�1(u1; : : : ; up; v1; : : : ; vq) :Theorem 4. Let X = X1 � : : :� Xp and Y = Y1 � : : : � Yq be the Cartesianproducts of real intervals X1; : : : ; Xp and Y1; : : : ; Yq, respectively. Suppose that amapping H :X � Y ! GLn(K) has the partial derivatives Hxi, Hyj and Hxiyj (insome order of di�erentiation) on the set X � Y , 1 � i � p and 1 � j � q. Thenthe mapping H has a factorization (13) if and only if it satis�es the system of pqdi�erential equations(14) Hxiyj = Hxi �H�1 �Hyj (1 � i � p; 1 � j � q) on the set X � Y .Proof. Consider the partial functions Hij :Xi � Yj ! GLn(K) de�ned byHij(xi; yj) = H(x1; : : : ; xp; y1; : : : ; yq)on condition that the other variables x1; : : : ; xi�1, xi+1; : : : ; xp and y1; : : : ; yj�1,yj+1; : : : ; yq are assumed to be �xed.(i) If H is as in (13), then Hij(xi; yj)=Fi(xi) �Gj(yj), whereFi(xi) = F (x1; : : : ; xp) and Gj(yj) = G(y1; : : : ; yq) :Applying Theorem 3 (or Remark 2) to each function Hij, we conclude that Hsatis�es (14).(ii) Suppose that H solves (14). Then Theorem 3 (or Remark 2) implies thateach partial function Hij is of type (1) on the set Xi � Yj . Choose u1 2X1 andv2Y and de�ne a mapping �1 :X ! GLn(K) by�1(x) = H(x1; : : : ; xp;v) �H�1(u1; x2; : : : ; xp;v) ;for each x = (x1; : : : ; xp) 2X. According to the rule (9) applied to H1j, where1 � j � q, the matrix productH(x1; : : : ; xp; y1; : : : ; yq) �H�1(u1; x2; : : : ; xp; y1; : : : ; yq)



90 JAROM�IR �SIM�SAdoes not depend on any of the variables y1; : : : ; yq, i.e. it equals to �(x1; : : : ; xp).This leads to the factorizationH(x;y) = �1(x) �H(u1; x2; : : : ; xp;y) ;for each x = (x1; : : : ; xp) 2 X and y 2 Y . In the case when p > 1, we repeatthe previous procedure to the function ~H(x2; : : : ; xp;y) = H(u1; x2; : : : ; xp;y) toobtain the factorizationH(u1; x2; : : : ; xp;y) = �2(x2; : : : ; xp) �H(u1; u2; x3; : : : ; xp;y)(with a chosen u22X2), etc. After p repetitions we conclude that H is of the form(13) in whichF (x1; : : : ; xp)=�1(x1; : : : ; xp) � �2(x2; : : : ; xp) : : : ��p(xp)and G(y1; : : : ; yq)=H(u1; : : : ; up; y1; : : : ; yq). This completes the proof.Now we start to deal with the factorization problem (2). To state an extensionof Theorem 1 as Theorem 5, we introduce the following notation. Given a functionH :X1 �X2 � : : :�Xk ! GLn(K) and chosen k elements ui2Xi, 1 � i � k, wede�ne the k-tuple of partial functions Hi :Xi ! GLn(K) by(15) Hi(x) = H(u1; : : : ; ui�1; x; ui+1; : : : ; uk) (x2Xi; 1 � i � k) :Theorem 5. Let H :X1� : : :�Xk ! GLn(K), where X1; : : : ; Xk are k�2 non-empty sets. Consider partial functions (15) for a �xed k-tuple u1; : : : ; uk. Thenthe mapping H has a factorization (2) if and only if it satis�es the equation(16) H(x) = H1(x1) �H�10 �H2(x2) �H�10 � : : : �H�10 �Hk(xk)for any x=(x1; : : : ; xk)2X1 � : : :�Xk ;where H0 = H(u1; : : : ; uk). Moreover, the factors Fi : Xi ! GLn(K) from anyfactorization (2) are given by(17) F1(x) = H1(x) � C1; Fi(x) = Di�1 �Hi(x)�Ci (1 < i < k)and Fk(x) = Dk�1 �Hk(x) ;where Ci; Di2GLn(K) are arbitrary constant matrix satisfying(18) C1 �D1 = C2 �D2 = � � � = Ck�1 �Dk�1 = H�10 :Proof. If H is as in (2), then one can check inductively thatH1(x1)H�10 : : :H�10 Hi(xi) = F1(x1) : : :Fi(xi)Fi+1(ui+1) : : :Fk(uk);



FACTORIZATIONS OF MATRIX FUNCTIONS 91for each i = 2; 3; : : : ; k. This equality with i = k proves (16). Conversely, if themapping H satis�es (16), then it is clearly of type (2), with factors F1=H1 andFi=H�10 Hi, i=2; 3; : : : ; k (as well as with factors (17) under condition (18)). Soit remains to show that the factors Fi from any factorization must be of type (17).Indeed, it follows from (2) that F1(x)=H1(x)H�10 F1(u1),Fi(x) = F�1i�1(ui�1)F�1i�2(ui�2) : : : F1(u1)�1Hi(x)H�10 F1(u1)F2(u2) : : :Fi(ui)for i=2; 3; : : : ; k� 1 and Fk(x)=F�1k�1(uk�1) : : : F1(u1)�1Hk(x). So Fi are of type(17), with matricesCi=H�10 F1(u1)F2(u2) : : : Fi(ui) and Di=F�1i (ui)F�1i�1(ui�1) : : : F�11 (u1)that satisfy (18). The proof is complete.Comparing (16) with (7), the reader may analogously presume that(19) Hx1x2:::xk = Hx1 �H�1 �Hx2 �H�1 � : : : �H�1 �Hxkis a good generalization of (12) for the factorization problem (2). We disprove thisconjecture in the followingTheorem 6. Let X1; : : : ; Xk be k � 2 intervals in R and let the mapping Fi :Xi ! GLn(K) be di�erentiable at each point of Xi, 1� i�k. Then the mappingH de�ned by (2) is a solution of (19) on the set X1 � : : :�Xk. However, in thecase when k� 3, equation (19) has such solutions which are not of the form (2).Proof. IfH is as in (2), with di�erential factors Fi, then one can check inductivelythat Hx1H�1Hx2H�1 : : : H�1HxiH�1 = F 01F 02 : : :F 0iF�1i�1F�1i�2 : : :F�11for i=1; 2; : : :; k�1 and, in the last step,Hx1H�1Hx2H�1 : : : H�1Hxk = F 01F 02 : : :F 0k = Hx1x2:::xk :Hence H solves (19). On the other side, a smooth mapping H =H(x2; : : : ; xk)(which does not depend on x1) is an example of a solution of (19), which is not oftype (2) in general (provided that k�3). The proof is complete.We �nish our paper by showing that the factorization problem (2) can be re-duced to a family of problems (1). This reduction (described in Theorem 7) enablesto formulate di�erential criteria of factorizations (2), based on the preceding resultson factorizations (1) - see Remark 3. Given a mappingH :X1�: : :�Xk ! GLn(K),let us introduce the families of �k2� partial functions H�� :X� � X� ! GLn(K),where 1��<��k, de�ned by(20) H��(x�; x�) = H(x1; : : : ; xk) for any x�2X� and x�2X�on condition that the other variables xi2Xi (1� i�k, i 6=� and i 6=�) are assumedto be �xed.



92 JAROM�IR �SIM�SATheorem 7. Let H : X1 � : : : � Xk ! GLn(K), where X1; : : : ; Xk are k � 3nonempty sets. The mapping H has a factorization (2) if and only if each partialfunction H�� (1��<��k, see (20)) is of the form(21) H��(x�; x�) = �(x�) �	(x�) (x�2X� and x�2X�) ;for each (k�2)-tuple of the other variables xi2Xi (1� i�k, i 6=� and i 6=�).Proof. We will proceed in a similar way as in the proof of Theorem 4. If H is asin (2) and 1��<��k, then (21) holds with�(x�) = F1(x1) � : : : �F�(x�) and 	(x�) = F�+1(x�+1) � : : : �Fk(xk) :Conversely, suppose that each �k2�-tuple of partial functionsH�� of a given functionH satis�es (21). Choose �xed elements ui2Xi, 1� i� k�1. In view of the rule(9) applied to each H��, the relationsFi(xi) = H(u1; : : : ; ui�1; xi; : : : ; xk) �H�1(u1; : : : ; ui; xi+1; : : : ; xk) (1� i�k� 1)determine k�1 mappings Fi :Xi ! GLn(K) (in a correct way). Moreover, theidentity F1(x1) � : : : � Fi(xi) = H(x1; : : : ; xk) �H�1(u1; : : : ; ui; xi+1; : : : ; xk) holdsfor i=1; 2; : : : ; k� 1. So putting Fk(xk)=H(u1; : : : ; uk�1; xk), we get factorization(2). This completes the proof.Remark 3. A criterion for each factorization (21) can be stated by applying oneof Theorems 1 { 3 (or even Theorem 4 if some of the variables x1; : : : ; xk aremultidimensional). For example, if X1; : : : ; Xk are real intervals, then (smooth)mappings H :X1 � : : :�Xk ! GLn(K) of type (2) form the set of all solutions ofthe di�erential systemHx�x� = Hx� �H�1 �Hx� (1��<��k) on X1 � : : :�Xk :Remark 4. The reader may ask whether the system of �k2� conditions (21) canbe reduced to a subsystem, say the subsystem of (k�1) conditions (21) with(�; �) 2 �(1; 2); (2; 3); : : : ; (k�1; k)	 :The negative answer follows from the following example. Given indices p and q(1 � p < q � k), de�ne a mapping H =H(x1; : : : ; xk) = �(xp; xq), where � is amatrix-valued function in two variables which does not permit factorization (1).It is obvious that such a mappingH has �k2� factorizations (21) excepting the onlyone, that with �=p and �=q.Remark 5. Let us mention an open problem which generalizes the subject ofthe present paper: Given k surjective mappings 'i : X ! Yi, 1 � i � k, �nd



FACTORIZATIONS OF MATRIX FUNCTIONS 93some necessary and su�cient conditions for a mapping H :X ! GLn(K) to befactorizable into(22) H(x) = F1('1(x)) � F2('2(x)) � : : : � Fk('k(x)) ;with some factors Fi :Yi ! GLn(K). We are able to solve it only in the case whenthe mapping ' :X ! Y1 � Y2 � : : :� Yk de�ned by'(x) = ('1(x); '2(x); : : : ; 'k(x)) (x 2 X)is a bijection. Then (22) can be solved by transforming ~H(y) = H('�1(y)) toa problem treated here: ~H(y1; y2; : : : ; yk) = F1(y1) � F2(y2) � : : : � Fk(yk) . Asan example of this procedure, we derive functional and di�erential equations formatrix functions of the form(23) H(x; y) = F (x+ y) �G(x� y) :Corollary 1. (i) Let S be an abelian group divisible by 2. A given mappingH :S�S ! GLn(K) has a factorization (23) if and only if it satis�es the equationH(x; y) = H �x+ y2 ; x+ y2 � �H�1(0; 0) �H �x� y2 ; y � x2 �for any x; y2S.(ii) Suppose that a mapping H :R�R! GLn(K) has the second order di�er-ential d2H at each point of the plane R�R. Then H has a factorization (23) ifand only if it satis�es the di�erential equationHxx �Hyy = (Hx +Hy) �H�1 � (Hx �Hy) on R�R :Proof. Corollary 1 is an immediate consequence of Theorems 1 and 3 applied tothe mapping ~H(u; v) = H �u+ v2 ; u� v2 � :Acknowledgement. I wish to thank to Prof. Ji�r�� Van�zura who motivated me tostudy the problem of matrix factorization (1).
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