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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 113 { 120PRINCIPAL SOLUTIONS AND TRANSFORMATIONSOF LINEAR HAMILTONIAN SYSTEMSOnd�rej Do�sl�yDedicated to Professor M. Novotn�y on the occasion of his seventieth birthdayAbstract. Su�cient conditions are given which guarantee that the linear trans-formation converting a given linear Hamiltonian system into another system of thesame form transforms principal (antiprincipal) solutions into principal (antiprinci-pal) solutions.1. Introduction.Consider a linear Hamiltonian system(1.1) Y 0 = A(t)Y + B(t)Z; Z0 = �C(t)Y �AT (t)Z;where A; B; C are n � n matrices of continuous, real valued functions, t 2 I =[a;1),B; C are symmetric, i. e., BT = B; CT = C; and Y; Z are n�n matrices. Ifthe matrices B;C are nonnegative de�nite, it is known that (1.1) is nonoscillatoryat 1 (for terminology see Section 2) if and only if the so-called reciprocal system(1.2) U 0 = �AT (t)U + C(t)V; V 0 = �B(t)U +A(t)Vis nonoscillatory at 1, see [2,5,8,9].Recently the author established a more general duality in oscillation behaviourof various linear Hamiltonian systems which may be described in the followingway. If we set(1.3) U = H(t)Y +M (t)Z; V = K(t)Y + N (t)Z;where H;K;M;N are n � n matrices of continuously di�erentiable real-valuedfunctions such that M (t) is nonsingular on I and the 2n� 2n matrix(1.4) R(t) = �H(t) M (t)K(t) N (t) �1991 Mathematics Subject Classi�cation : 34C10.Key words and phrases: principal solution, linear Hamiltonian system, reciprocal system.Received October 2, 1991. 113



114 OND�REJ DO�SL�Yis J-unitary, i.e.,(1.5) RT (t)JR(t) = J;where J = � 0 In�In 0 � ; In being the n � n identity matrix, then (U; V ) is alsoa solution of a linear Hamiltonian system which is under certain additional as-sumptions (corresponding to nonnegativeness of B and C in the case of reciprocalsystems) nonoscillatiory at 1. Obviously, if H = 0 = N; M = In; K = �In,the duality in oscillation behaviour of mutually reciprocal systems (1.1) and (1.2)follows from this result.Ahlbrandt derived in [1] conditions under which a principal (antiprincipal) so-lution (Y; Z) of (1.1) at 1 is also coprincipal (anticoprincipal) at 1, i. e., thesolution (U; V ) = (Z;�Y ) is a principal (antiprincipal) solution of (2.1) at 1.Here we generalize this result giving conditions which quarantee that a principal(antiprincipal) solution of (1.1) is transformed by (1.3) into a principal ( antiprin-cipal ) solution of the new Hamiltonian system.2. De�nitions and preliminary results.Simultaneously with the matrix system (1.1) consider its vector modi�cation(2.1) y0 = A(t)y +B(t)z; z0 = �C(t)y � AT (t)z;where y; z are n-dimensional vectors. Throughout the paper we shall suppose thatall di�erential systems are identically normal on I (a linear Hamiltonian systemof the form (2.1) is said to be identically normal on I whenever the trivial solution(y; z) � (0; 0) is the only solution for which y(t) � 0 on a nondegenerate subintervalof I).Oscillation and nonoscillation of (2.1) are de�ned by means of the concept ofconjugate points. Two points t1; t2 are said to be conjugate relative to (2.1) ifthere exists a solution (y; z) of (2.1) such that y(t1) = 0 = y(t2) and y(t) is notidentically zero between t1 and t2. System (2.1) is said to be conjugate on aninterval I whenever there exist t1; t2 2 I which are conjugate relative to (2.1), inthe opposite case (2.1) is said to be disconjugate on I. If there exists c 2 I suchthat (2.1) is disconjugate on (c;1) then (2.1) is said to be nonoscillatory at 1,in the opposite case (2.1) is said to oscillatory at 1. In the sequel the conceptsoscillatory and nonoscillatory mean always oscillatory or nonoscillatory at 1.A solution (Y; Z) of (1.1) is said to be self-conjugate (another terminology is pre-pared [7], self-conjoined [9], isotropic [4]) if Y T (t)Z(t) � ZT (t)Y (t). Two solutions(Y1; Z1), (Y2; Z2) are said to be linearly independent if any solution (Y; Z) of (2.1)can be expressed in the form (Y; Z) = (Y1C1+ Y2C2; Z1C1+ Z2C2), where C1; C2are constant n � n matrices. If (Y1; Z1); (Y2; Z2) are self-conjugate then they arelinearly independent if and only if the (constant) matrix Y T1 (t)Z2(t)� ZT1 (t)Y2(t)is nonsingular. A self-conjugate solution (Y0; Z0) is said to be principal at 1 ifY0(t) is nonsingular for large t and for any solution (Y; Z), linearly idependent of



PRINCIPAL SOLUTIONS AND TRANSFORMATIONS LHS 115(Y0; Z0), with Y nonsingular for large t, we have limt!1 Y �1(t)Y0(t) = 0: Anysolution linearly idependent of (Y0; Z0) is said to be antiprincipal at b (anotherterminology is nonprincial, see [7]). Equivalently, the solutions (Y0; Z0), (Y1; Z1)are principal resp. antiprincipal at 1 if Y0; Y1 are nonsingular for large t andlimt!1�Z t Y �10 (s)B(s)Y T�10 (s)ds��1 = 0resp. limt!1�Z t Y �11 (s)B(s)Y T�11 (s)ds��1 = L;L being a nonsingular n� n matrix.Recall that a principal resp. nonprincipal solution of (1.1) at1 exist whenever(2.1) is nonoscillatory at 1 and the principal solution is determined uniquely upto a right multiple by a constant nonsingular n� n matrix.Lemma 1. Let (Y; Z) be a self-conjugate solution of (1.1) such that Y (t) is non-singular on I0 � I. Then~Y (t) = Y (t) Z tc Y �1(s)B(s)Y T�1(s)ds; c 2 I0~Z(t) = Z(t) Z tc Y �1(s)B(s)Y T�1(s)ds + Y T�1(t)is also a self-conjugate solution of (1.1) which is linearly independent of (Y; Z). If(Y; Z) is antiprincipal at 1 thenY0(t) = Y (t) Z 1t Y �1(s)B(s)Y T�1(s)dsZ0(t) = Z(t) Z 1t Y �1(s)B(s)Y T�1(s)ds � Y T�1(t)is the principal solution at 1.Proof. [4, Chap. II]Let (Y; Z) be a solution of (1.1) such that Y is nonsingular on I thenW = ZY �1is a solution of the Riccati equation(2.2) W 0 +WB(t)W +WA(t) + AT (t)W +C(t) = 0:If (Y; Z) is principal at 1 then W is said to be distinquished solution of (2.2)at 1, this solution is determined uniquely. If ~W is another solution of (2.2)which exists on the whole interval [c;1), c � a, then ~W (t) � W (t) on [c;1) (thisinequality means that the matrix ~W (t) �W (t) is nonnegative de�nite).



116 OND�REJ DO�SL�YLemma 2. Let W0 and ~W be distinquished solutions at 1 of (2.2) and(2.3) W 0 +WB(t)W +WA(t) + AT (t)W + ~C(t) = 0;respectively. If ~C(t) � C(t) on I then ~W (t) � W0(t) on I.Proof. [4, Chap. II]Now recall some results concerning transformations of linear Hamiltonian sys-tems. Let R(t) be a 2n� 2n J-unitary matrix of the form (1.4), then substitutinginto (1.5) and the equivalent relation RJRT = J we get(2.4) HTK = KTH; MTN = NTM; HTN �KTM = In;HMT = MHT ; KNT = NKT; HNT �MKT = In:The transformation (1.3) transforms (1.1) into the system(2.5) U 0 = �A(t)U + �B(t)V; V 0 = � �C(t)U � �AT (t)Vand the matrices �A; �B; �C are related to A;B;C by the equalities(2.6) A = NT (�H0 + �AH + �BK) +MT (K0 + �CH + �ATK);B = NT (�M 0 + �AM + �BN ) +MT (N 0 + �CM + �ATN );C = HT (K0 + �CH + �ATK) +KT (�H0 + �AH + �BK);see, e.g., [3].The main results of [6] are summarized in the next theorem.TheoremA. Suppose that the matrixR(t) given by (1.4) is J-unitary, the matrixM is nonsingular on I and the matrices B(t), �B(t) are nonnegative de�nite on I.Then system (1.1) is nonoscillatory if and only (2.5) is nonoscillatory.Finally, for the later comparison, recall the results of [1] which were the mainmotivation for our investigation.Theorem B. Let D(t) be the fundamental matrix of the equation D0 = A(t)D.Suppose that the matrices B(t); C(t) are nonnegative de�nite in I, both systems(1.1) and (1.2) are identically normal on this interval andlimt!1�Z tD�1(s)B(s)DT�1 (s)ds��1 = 0:If (Y0; Z0) is the principal solution of (1.1) at 1 then (U0; V0) = (Z0;�Y0) isthe principal solution of (1.2) at 1. Moreover, a solution (Y1; Z1) of (1.1) isantiprincipal at 1 if and only if (U1; V1) = (Z1;�Y1) is an antiprincipal solutionof (1.2) at 1.



PRINCIPAL SOLUTIONS AND TRANSFORMATIONS LHS 1173. Main results.Our main results are based on the following lemma which generalizes a similarresult of [1].Lemma 3. Let (Y; Z) and (U; V ) be self-conjugate solutions of (1.1) and (1.2),respectively, related by (1.3), such that Y and U are nonsingular. If M (t) isnonsingular and (2.4) holds (i.e., R(t) given by (1.4) is J-unitary in I), then[(Y TM�1U )�1]0 = �Y �1BY T�1 + U�1 �BUT�1Proof. We have[(Y TM�1U )�1]0 =� (Y TM�1U )�1[Y T 0M�1U � Y TM�1M 0M�1U + Y TM�1U 0](Y TM�1U )�1 =� (Y TM�1U )�1[Y TAT + ZTB)M�1(HY +MZ)� Y TM�1M 0M�1(HY+BZ) + Y TM�1( �AU + �BV )](Y TM�1U )�1 = �(Y TM�1U )�1[Y TATM�1HY+Y TATZ + ZTBM�1HY + ZTBZ � Y TM�1M 0M�1HY � Y TM�1M 0M�1BZ+Y TM�1 �A(HY +MZ) + Y TM�1 �B(KY + NZ)� UTMT�1BM�1U+UTMT�1BM�1U ](Y TM�1U )�1 = �(Y TM�1U )�1[Y T (ATM�1H�M�1M 0M�1H +M�1 �AH +M�1 �BNHTMT�1 �HTMT�1BM�1H)Y +Y T (AT �M�1M 0 +M�1 �AM +M�1 �BN �HTMT�1B)Z + ZT (�BM�1H+BM�1H)Y + ZT (B � B)Z](Y TM�1U )�1 � (Y TM�1U )�1[UTMT�1BM�1U�Y TM�1BMT�1Y ](Y TM�1U )�1 = �U�1(MAT �M 0 + �AM + �BN�HB)HTUT�1 � (MAT �M 0 + �AM + �BN �HB)ZY �1MTUT�1�Y �1BY T�1 + U�1 �BUT�1;where the relations (2.4) and the symmetry of the matrixY TM�1U = Y T (M�1H+ZY �1)Y has been used. Computing the expressionMAT �M 0+ �AM+ �BN�HB,using (2.5) and (2.6), we getMAT �M 0 + �AM + �BN �HB = M (�HT 0 +HT �AT +KT �B)N +M (KT 0+HT �C +KT �A)M + �AM + �BN �M 0 �HNT (�M 0 + �AM + �BN )�HMT (N 0+�CM + �ATN ) = M (�HT 0 +HT �AT +KT �B)N +M (KT 0 +HT �C+KT �A)M + �AM + �BN �M 0 +M 0 �MKTM 0 +MHTN 0 �MKT �AM�MKT �BN �HMT �CM �HMT �ATN � �AM � �BN = M (�HT 0 +HT �AT+KT �B)N +M (KT 0 +HT �C +KT �A)M +M (�KT 0N +HT 0N )�MKT �AM�MKT �BN �HMT �CM �HMT �ATN = M (�HT 0 +HT �AT +KT �B)N+M (KT 0 +HT �C +KT �A)M �M (�HT 0 +HT �AT +KT �B)N+M (KT 0 +HT �C +KT �A)M = 0



118 OND�REJ DO�SL�Ywhich completes the proof.Theorem 1. Let D be the fundamental matrix of the equation(3.2) D0 = (�B(t)M�1(t)H(t) + A(t))D:Suppose that the matrices B(t); �B(t) are nonnegative de�nite,(3.3) limt!1 �Z tD�1(s)B(s)DT�1(s) ds��1 = 0and both systems (1.1) and (1.2) are identically normal on I. If (Y; Z) is a principalsolution of (1.1) at 1, then (U; V ) given by (1.3) is a principal solution of (2.5)at 1.Proof. By Lemma 3Z ta Y �1(s)B(s)Y T�1(s) ds + (Y T (s)M�1(s)U (s))�1jta =(3.4) Z ta U�1 �B(s)UT�1(s) dsIf (Y; Z) is a principal solution, by de�nitionlimt!1�Z ta Y �1BY T�1 ds��1 = 0;hence all eigenvalues of the matrix R ta Y �1BY T�1ds tend to 1 as t!1. Conse-quently, to prove the theorem it su�ces to show that the (symmetric) matrixY T�1(t)M�1(t)U (t)is nonnegative de�nite for large t, i. e., the matrixM�1H+ZY �1 = M�1H+W0,W0 being the distinquished solution of (2.2) at 1, has this property. Since thematrix �B is nonnegative de�nite, by (2.6)MCMT � �HMT 0+HAMT�HBNT+MHT 0+MATNT , hence C � �M�1HMT 0MT�1+M�1HA�M�1HBNTMT�1+HT 0MT�1 + ATNTMT�1 =: ~C. Using the symmetry of the matrix M�1H, onecan directly verify that ~W = �M�1H is a solution of (2.3). Let D be a so-lution of (3.2) and F = ~WD. Then (F;D) is a solution of (1.1) with ~C in-stead of C and (3.3) implies that this solution is principal at 1. Consequently,~W = FD�1 = �M�1H is the distinquished solution of (2.3) at1 and by Lemma2 W0 � �M�1H, i. e., the matrix Y TM�1U is nonnegative de�nite for large tand the proof is complete.



PRINCIPAL SOLUTIONS AND TRANSFORMATIONS LHS 119Lemma 4. Let the assumptions of Theorem 1 hold. If (Y; Z) is an antiprincipalsolution of (1.1) and U is given by (1.3), then(3.5) limt!1U�1(t)M (t)Y T�1(t) = 0Proof. Let Y2(t) = Y (t) Z 1t Y �1(s)B(s)Y T�1(s) ds;Z2(t) = Z(t) Z 1t Y �1(s)B(s)Y T�1(s) ds � Y T�1(t):According to Lemma 1 (Y2; Z2) is the principal solution of (1.1) at 1 and byTheorem 1 (U2; V2) = (HY2+MZ2;KY2+NZ2) is the principal solution of (2.5).It follows limt!1 U�1(t)U2(t) = 0. Substituting for U2, we haveU�1U2 =U�1HY Z 1t Y �1BY T�1 ds� U�1MY T�1 + U�1MZ Z 1t Y �1BY T�1 ds;hence U�1MY T�1 = �U�1U2 + U�1(HY +MZ) Z 1t Y �1BY T�1 ds =� U�1U2 + Z 1t Y �1BY T�1 ds;i. e., (3.5) holds.Theorem 2. Suppose that the assumptions of Theorem 1 hold. A solution (Y; Z)of (1.1) is antiprincipal at 1 if and only if the solution (U; V ) of (2.5) given by(1.3) is antiprincipal at 1.Proof. The statement follows immediately from (3.4), the previous lemma andthe de�nition of the antiprincipal solution.4. Remarks. i) If H(t) � 0 in Theorems 1,2, then the statements of thesetheorems comply with the results of Ahlbrandt [1] given in Theorem B.ii) Consider the second order system(4.1) (R(t)Y 0)0 + P (t)Y = 0;where R;P are symmetric n � n matrices, R is positive de�nite and let � be aconstant symmetric n � n matrix such that P (t) + �R(t)� =: Q(t) is positivede�nite. Then the combination U = RY 0 + �Y is a solution of the system(4.2) [Q�1U 0 +Q�1PR�1�Q�1U ]0 �Q�1�R�1PQ�1U 0+Q�1[PR�1P � �(R�1)0P � P (R�1)0� + �R�1PR�1� + PR�1�(P 0+�(R�1)0�Q�1 +Q�1(P 0 + �(R�1)0�)PR�1��(�R�1P � PR�1�)Q(PR�1�� �R�1P )]Q�1U = 0



120 OND�REJ DO�SL�Ywhich is nonoscillatory if and only if (4.1) is nonoscillatory, see [6]. If Y is theprincipal solution of (4.1) and � is such that W0 = �� is the distinquishedsolution of the Riccati equation W 0+WR�1W ��R�1� = 0 then U = RY 0+�Yis the principal solution of (4.2).iii) Let (Y; Z) be the principal solution of (1.1) at1, i. e., all eigenvalues of thematrix R t Y �1(s)B(s)Y T�1(s) ds tend to 1 as t!1. In order to show that thematrix R t U�1(s) �B(s)UT�1(s) ds also has this property (i. e., that (U; V ) givenby (1.3) is the principal solution of (2.5)), we used the idea suggested in [1], weproved that under the assumptions of Theorem 1 the matrix U�1(t)M (t)Y T�1(t)is nonnegative de�nite for large t. To the same end it su�ces to prove that the lastmatrix is "bounded below", i. e., cTU�1(t)M (t)Y T�1(t)c is bounded from bellowfor every c 2 Rn. We hope to follow this more general (but also more di�cult)idea elsewhere. References[1] Ahlbrandt C.D., Principal and antiprincipal solutions of selfadjoint diferential systems andtheir reciprocals, Rocky Mountain J. Math. 2 (1972), 169-189.[2] Ahlbrandt C.D., Equivalent boundary value problems for self-adjoint di�erential systems, J.Di� Equations 9 (1971), 420-435.[3] Ahlbrandt C.D., Hinton D.B., Lewis R.T., The e�ect of variable change on oscillation anddisconjugacy criteria with application to spectral theory and asymptotic theory, J. Math.Anal. Appl. 81 (1981), 234-277.[4] Coppel W.A., Disconjugacy, Lecture Notes in Math. No. 220 (1971), Berlin { New York {Heidelberg.[5] Do�sl�y O., On transformation of self-adjoint linear di�erential systems and their reciprocals,Annal. Pol. Math. 50 (1990), 223-234.[6] Do�sl�y O., Transformations of linear Hamiltonian system preserving oscillatory behaviour,Arch. Math. 27 (1991), 211-219.[7] HartmanP., Self-adjoint, non-oscillatory systems of ordinary, second order linear di�erentialequations, Duke J. Math. 24 (1956), 25-35.[8] Rasmussen C.H., Oscillation and asymptotic behaviour of systems of ordinary linear di�er-ential equations, Trans. Amer. Math. Soc. 256 (1979), 1-49.[9] Reid W.T., Sturmian Theory for Ordinary Di�erential Equations, Springer Verlag, NewYork { Berlin { Heidelberg, 1980.Ond�rej Do�sl�yDepartment of MathematicsFaculty of Science, Masaryk UniversityJan�a�ckovo n�am. 2a662 95 Brno, Czechoslovakia
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