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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 121 { 138THE STRUCTURE TENSOR AND FIRST ORDERNATURAL DIFFERENTIAL OPERATORSPiotr KobakAbstract. The notion of a structure tensor of section of �rst order natural bundleswith homogeneous standard �bre is introduced. Properties of the structure tensoroperator are studied. The universal factorization property of the structure tensoroperator is proved and used for classi�cation of �rst order �-natural di�erentialoperators D : T � T ! T for n � 3.IntroductionIn this paper, in analogy to the structure tensor of a G-structure, we introducethe notion of a structure tensor for sections of �rst order natural bundles withhomogeneous standard �bre. In this approach, the structure tensor turns out tobe a natural di�erential operator of order � 1. We prove that it has the followinguniversal factorization property: �rst order natural di�erential operators D : F !G, where ord (F ) = 1, ord (G) � 1 and F has homogeneous �bre, are compositionsof the structure tensor and natural transformations (that is, operators of orderzero). Therefore the classi�cation of such n.d. operators can be reduced to theclassi�cation of L1n-equivariant maps K : HF0 ! G0, where HF is the bundle ofstructure tensors. We give explicit formulae for structure tensors of some naturalbundles. As an example of the application of this results, we give the classi�cationof �rst order �-n.d. operators D : T � T ! T for n � 3. All facts conserningnatural bundles, needed in this paper, can be found in [12] (see also [4], [6], [11]).Information on G-structures and the structure tensor can be found for example in[1], [3]. Another approach to the structure tensor (of order k) and its relation tonatural bundles is presented in [8].1991 Mathematics Subject Classi�cation : 53A55, 53C10.Key words and phrases: natural bundle, natural a�ne, vector bundle, natural di�erentialoperator, G-structure, structure tensor.Received November 11, 1988. 121



122 PIOTR KOBAK1. PreliminariesWe introduce here some basic notations and de�nitions. We will assume, if notstated otherwise, that all manifolds, bundles and maps are smooth. For a categoryC the class of morphism of C will be denoted by Mor(C) and the class of objectsof C by Ob(C). We will often write D 2 C instead of D 2Ob(C). The identityfunctor on C will be denoted by �C and �D will denote the identity morphism onD (D 2Ob(C)). HomC(D;E) or Hom(D;E) will denote the set of morphisms fromD to E, where D;E 2 Ob(C).Let Mn denote the category of n-dimensional manifolds and embeddings, andlet Fn be the category of libre bundles over objects ofMn and �bred maps whichare di�eomorphisms on �bres and cover morphisms ofMn. The projection functorFn !Mn will be denoted by �.1.1. De�nition. A natural bundle is a covariant functor F : Mn ! Fn suchthat � � F = �Mn and F is regular: if f : Rk � Rn ! Rn is smooth, thenF (f) : Rk � F (Rn) ! F (Rn) is smooth, where F (f) (t; �) = F (f(t; �)); t 2 Rk.For M 2Mn �F or � will denote the bundle projection F (M )!M .The category of natural bundles over n-dimensional manifolds with naturaltransformation of functors as morphisms will be denoted by NFn. Then f 2HomNFn (F;G) i� f = ff(M )gM2Mn ; 8M 2Mn, f(M ) 2Mor(Fn) and(1.1) 8� 2 Mor(Mn); � :M ! N; G(�) � f(M ) = f(N ) � F (�) :Let F 2 NFn. The smallest integer k, such that F (f) (x) depends only on jkxf ,for every f 2Mor(NFn), is called the order of F . We will write k = ord (F ).1.2. Remark. It is known (see for example [4], [12]), that every natural bundleF has �nite order and can be obtained as a bundle associated to the k-framebundle, with the standard �bre F0 = F (Rn)0. More precisely, let Lkn = fjk0' :' 2Di�(Rn;Rn); '(0) = 0g be the k-th order di�erential group and let F k(M ) =fjk0 f jf 2Di�(Rn;M )g denote the k-frame bundle on M 2 Mn. Then F k is aprincipal �bre bundle with the right action of Lkn given by composition of jets.The functor F determines a left action � : Lkn � F0 ! F0; �(jk0'; x) = F (') (x).Let F�(M ) be the quotient (F k � F0)=Lkn where Lkn acts on F k � F0 on the rightin the following way:(1.2) (F k(M )� F0) � Lkn 3 ((h; y); a)! (ha; �(a�1; y)) 2 F k(M )� F0 :Then F� is a natural functor, and is naturally equivalent (or isomorphic in thecategory NFn) to F . Further on we will identify F� with F .Note that if f 2 HomNFn (F;G) then f0 : F0 ! G0; f0 = f(Rn)jF0 is Lkn-equivariant. On the other hand Lkn-equivariant maps between Lkn-manifolds giverise to natural transformations of associated functors (see [6]). One can prove that,in fact, the category of Lkn-manifolds with Lkn-equivariant maps is equivalent tothe full subcategory of NFn, whose objects are functors of order � k.



THE STRUCTURE TENSOR 123Natural differential operatorsLet F 2 NFn. F (M ) will denote the set of local sections of F (M ) ! M ,and JrF 2 NFn the r-jet prolongation of F (J0F = F ). If G 2 NFn then theformula D : F ! G will mean that D = fD(M )gM2Mn is a family of mapsD(M ) : F (M ) ! G(M ). For N 2 Hom(F;G); N : F ! G will be de�ned so thatN (M ) : F (M ) 3 � ! N � � 2 G(M ).1.3. De�nition. D : F ! G is a natural di�erential operator if and only if(1.3) 9k 2 N 9Dk 2 Hom(JkF;G) : D = Dk � jkwhere jk : F ! JkF; jk(M )(�) = jk�. The smallest k satisfying (1.3) will becalled the order of D (we will write k = ord (D)).1.4. Remark. Let ' 2 HomMn(M;N ); � 2 F (M ). We put'�� = F (') � � � '�1 2 F (N ):It is not di�cult to check that if D : F ! G is a n.d. operator, then(1.4) 8' 2 Mor(Mn); ' : M ! N 8� 2 F (M ); D('��) = '�D(�) :Natural di�erential operators are often de�ned as families D : F ! G which sat-isfy (1.4) (throughout this paper such families will be called �-natural di�erentialoperators). If D : F ! G is a �-n.d. operator then for � 2 F (M ) and x 2 dom(�),D(�) depends only on j1x � (see [12]). If k = ord (D) <1 then D = Dk �jk whereDk : JkF ! G ful�ls the condition (1.1) but Dk(M ) is not necessarily continuous(see[2]). Natural affine bundlesSome natural bundles (for example jet bundles) have an additional a�ne struc-ture. We use them often in this paper, and to give our statements in a morecompact form, we introduce the notion of a natural a�ne bundle.We will denote by AFn (resp. V Fn) the category of a�ne (vector) bundles overobjects of Fn and a�ne (vector) bundle homomorphisms which cover morphismsof Fn. The projection functor from AFn(VFn) to Fn will be denoted by p.For A 2 AFn; LA will denote the vector bundle corresponding to A. If y 2 p(A)then LAy is the vector space of translations in Ay and we have the mapsAy � LAy 3 (a; v)! (a + v) 2 AyAy � Ay 3 (a; b)! (b� a) 2 LAy :For f 2 HomAFn(A;B); Lf 2 HomVFn(LA;LB) will denote the linear part of f ,i.e. f(a+ v) = f(a) +Lf(v). Then L is a covariant functor from AFn to VFn. Wewill regard VFn as a subcategory of AFn so L restricted to VFn is the identityfunctor.



124 PIOTR KOBAK1.5. De�nition. Let F 2 NFn. A natural bundle G : Mn ! AFn(G : Mn !VFn) will be called a natural a�ne (vector) bundle over F if and only if p�G = F .The category NAF of natural a�ne bundles over a functor F will be de�nedso that f = ff(M )gM2Mn 2Mor(NAF ) if and only if f 2Mor(NFn), 8M 2Mn,f(M ) 2 Mor(AFn) and p(f(M )) = �F (M). In a similar way one can de�ne thecategory NVF of natural vector bundles over F . In the case F = �MnNAF (NVF )will be denoted by NA (NV) and called the category of natural a�ne (vector)bundles.The functor L : AFn ! VFn induces a covariant functor from NAF to NVFwhich will be also denoted by L.1.6. Examples. Fix F 2 NFn.1. Let T denote the tangent bundle functor. Then T 2 NV and TF 2 NVF .2. Let K 2 NA. We de�ne K � F 2 NAF in the following way: K � F (M ) =K(M ) �M F (M ), K � F (�) = K(�)� F (�)jK�F (M).3. Let K 2 NV; G 2 NVF . We de�ne K 
 G 2 NVF so that K 
 G(M ) =K � F (M )
G(M ), K 
 F (�)
 G(�).4. T � 
 TF 2 NVF . Let j 2 HomNFn (J1F; T � 
 TF ) be such that(1.5) j(M ) : J1F (M ) 3 j1x� ! dx� 2 T � � TF (M ) :Since j(M ) is an immersionwe can identify J1F (M ) with im j(M ) � T �
TF (M ).Then(1.6) J1F (M ) = (�T� 
 d�F )�1(�TM ) :Therefore J1F 2 NAF and LJ1F (M ) = (�T� 
 d�F )�1 (0TM ) = T � 
 V F (M ),where V F (M ) denotes the vertical bundle of F (M ), V F 2 NVF , so LJ1F =T � 
 V F .1.7. Remark. If W 2 NVF and ord (W ) = k, then W0 is an Lkn-vector bundleover F0, i.e. Lkn acts on W0 so that for a 2 Lkn, �a : W0 ! W0 is a vectorbundle homomorphism and the bundle projection p : W0 ! F0 is Lkn-equivariant.If f 2 HomNVF (G;H) then f0 : G0 ! H0 is an Lkn-equivariant homomorphismof vector bundles over �F0 . Similarly, as in remark (1.2), this can be expressed asequivalence of suitable categories. An analogous statement is true for NAF .1.8. De�nition. Let G;H;K 2 NAF; � 2 Hom(G;H), � 2 Hom(H;K).1. The sequence G ��! H ��! K is exact if and only if 8M 2 Mn the sequenceLG(M ) L�(M)�! LH(M ) L�(M)�! LK(M ) is exact.2. We say that � is a monomorphism (an epimorphism) if and only if 8M 2Mn,



THE STRUCTURE TENSOR 125�(M ) is a monomorphism (an epimorphism). In the language of exact sequenceswe will express this fact by saying that the sequence 0 ! G �! H (G �! H ! 0)is exact.3. We say that the morphism � has constant rank if and only if 9K 2 N, 8M 2Mn, rank (L�(M )) = k.1.9. Proposition. Let F 2 NFn, ord (F ) = k. If F is homogeneous, that is , Lknacts transitively on F0, then rank(�) = const for every � 2Mor(NAF ).Proof. Let a 2 F (M ), b 2 F (N ). F is homogeneous, so there exists� 2 Hom(M;N ) such that F (�)a = b. Let � 2 HomNAF (G;H. Then (1.1) impliesthat H(�) ��(M )a = �(N )b �G(�). Since H(�), G(�) are isomorphisms on �bres,rank (�(M )a) = rank (�(N )b). �Morphisms of constant rank can be used to de�ne new natural a�ne bundles.Let G;H 2 NAF , � 2 Hom(G;H) and rank (�) =const. Then we can de�neim� 2 NAF , (im�)(M ) =im�(M ), (im�)(�) = H(�)jim�(M ). We also havecoker � 2 NVF where (coker �)(M ) = H(M )=im�(M ) and coker �(�) is de�nedby the commutative diagramH(M ) wH(�)u q(M ) H(N )u q(N )coker �(M ) wcoker �(�) coker �(N );(q(M ) and q(N) are the canonical projections). If � : G ! H is such that �(M )is an inclusion for every M 2 Mn, then G will be called a natural a�ne (vector,in the case G;H 2 NVF ) subbundle of H and coker � will be denoted by H=G.If H 2 NVF then one can de�ne ker � 2 NAF in the obvious way.1.10. Remark. It is easy to see that L(im�) = imL(�), L( ker �) = ker L(�),L( coker �) = coker L(�) and q, from the diagram above, is in Mor(NAF ).Natural vector bundlesLetW 2 NV. Then JkW (M ) has the structure of a vector bundle:aj1x�+bj1x� =j1x(a� + b�), a; b 2 R. Therefore JkW 2 NV. Note that J1W can be regarded asan element of NAW or of NV. This will not, however, lead to confusion becausewe will consider the category NAF only for �xed F 2 NFn.For W 2 NV we de�ne "kW 2 HomNV (SkT � 
W;JkW ) linearly extending theformula(1.7) "kW (M )(!1 � � � � � !k 
 s) = jkx(f1 � : : : � fk�) ;where f i 2 C1(M ), f i(x) = 0; dxf i = !i for i = 1; : : : ; k; � 2W (M ); �(x) = s. Itis not di�cult to check in coordinates that "kW (M ) is well de�ned and the following



126 PIOTR KOBAKsequence of natural vector bundles is exact:(1.8) 0! SkT � 
W "kW�! JkW �kk�1�! Jk�1W ! 0 ;where for F 2 NFn and r � k �rk 2 Hom(JrF; JkF ) denotes the canonical projec-tion, �rk(M ) : JrF (M ) 3 jrx� ! jkx� 2 JkF (M ). T; JkT 2 NV and �k0 : JkT ! Thas constant rank. We de�ne (JkT )0 = ker �k0 2 NV. Then we have the followingexact sequence:(1.9) 0! (JkT )0 ! JkT �k0�! T ! 0 :2. The action of Sk+1T � � T (M ) on J1F (M )In order to study this action we will introduce, following [12], the notion of aconnection of order k. Let F 2 NFn, M 2 Mn, X 2 T (M ). F (X) 2 TF (M ) willdenote the in�nitesimal lifting of X. Locally, F (X) is generated by (F ('t)) where('t) is the local 1-parameter group of di�eomorphisms of X. If ord (F ) = k thenfor every y 2 F (M ), F (X)y depends only on jkxX and we have a mapf(M ) : KkT � F (M ) 3 (jkxX; y)! F (X)y 2 TF (M ) :Then fM is a homomorphism of vector bundles and covers �F (M ) (see lemma2.4 in [12]). It is also possible to prove that f = ff(M )gM2Mn is a naturaltransformation of the functor JkT �F to TF (proof of prop. 2.9 in [12]). Using theterminology introduced in section 1, one can say that f 2 HomNVF (JkT �F; TF ).If W is a natural bundle then W (Rn) = W0 �Rn. This implies that (TF )0 =T (F0 �Rn)0 = TF0 �Rn. we can identify (JkT � F )0 with lknRn � F0 where lkndenotes the Lie algebra of Lkn. Then from the formulae in [12] p.24 one can get anexplicit formula for f0:(2.1) f0 : lkn �Rn � F0 3 (�; v; y)! (�0y(�); v) 2 TF0 �Rnwhere �0y : lkn ! Tyf0 is the di�erential of the orbital projection �y : Lkn 3 a !�(a; y) 2 F0 in the neutral element of Lkn. If F is homogeneous, then �y is asubmersion, so �0y is an epimorphism. Therefore we have the following2.1. Proposition. f 2 HomNVF (JkT � F; TF ). If F is homogeneous, then F isan epimorphism. Bundle of connectionsLet k � 1; M 2Mn. Then(2.2) Ck(M ) = (�T� 
 �k0)�1(�TM ) � T � 
 JkT (M )is a bundle of connections of order k. Ck is an a�ne subbundle of T � 
 JkT ,Ck 2 NA; LCk = T � 
 (JkT )0 and ord (Ck) = k + 1.



THE STRUCTURE TENSOR 127Covariant derivativeIf � is a global section of Ck(M ) then it is called a connection on M . ForX 2 T (M ); � 2 F (M ) (ord (F ) = k) the covariant derivative of � is de�ned inthe following way:(2.3) (rX�)(x) = dx�(X) � F�(x)(�(X)) 2 V F (M )Ck � F is an a�ne subbundle of T � 
 JkT � F . we will prove that �T� 
 f(Ck �F (M )) � J1F (M ) (k = ord (F )).Let � 2 T � 
 JkT (M )x y 2 F (M )x. From (2.2) and (1.6) we have:(�; y) 2 Ck � F (M )() 8X 2 TxM �k0(�(X)) = X�T� 
 f(�; y) 2 J1F (M )() 8X 2 TxM d�F (f(�(X); y)) = X :(2.4)Since d�F � f = �k0; d�F (f(�(X); y)) = �k0(�(X)); and (2.4) implies(2.5) (�; y) 2 Ck � F (M ), �T� 
 f(�; y) 2 J1F (M ) :Therefore one can de�ne h : Ck � F ! J1F so, that the diagram0 w Ck � F wu h T � 
 JkT � Fu �T�
f0 w J1F w T � 
 TFcommutes. Then, as a consequence of proposition 2.1, we get the following2.2. Proposition. h 2 HomNAF (Ck � F; J1F ). If F is homogeneous then h isan epimorphism.2.3. Remark. Let � be a connection on M;� 2 F (M ). Then from (1.5) and (2.3)we have:(2.6) r�(x) = j1x� � h(�x; �x) 2 T � 
 V F (M ) :Therefore, � is a �-connection (i.e. r� = 0) if and only if h � (�; �) = j1�.2.4. De�nition. Let Bk 2 NFn be such, that for M;N 2 Mn; � 2 hom(M;N )Bk(M ) = fjkx :  2 Di�(M ;x); jk�1x �M ; x 2Mgbk(�)(jkx ) = jkx(� �  � ��1) :Bk0 is a subgroup of Lkn and it can be identi�ed with Sk(Rn)� 
Rn:I : Bk0 3 jk0�! (tj1:::jk) = ( @k@xj1 : : :@xjk �i) 2 Sk(Rn)� 
Rn



128 PIOTR KOBAKis an isomorphism of groups. Lkn acts on Bk0 by the transformation Lkn � Bk0 3(a; b) ! aba�1 2 Bk0 and I : Bk0 ! Sk(Rn)� 
 Rn is Lkn-equivariant. Thereforenatural bundles Bk and Skt� are isomorphic and we will identify them.Let �1;k denote the canonical monomorphism Sk+1T � 
 T ! T � 
 SkT � 
 T .We de�ne �1;k = (�T� 
 �kt ) ��1;k. Then �1;k 2 HomNV (Sk+1T � 
 T; t� 
 (JkT )0)is a monomorphism. By using the formula [12]p. 42, which describes the rule oftransformation of a connection under the action of a di�eomorphism, we obtainthe formula for the action of Sk+1T � 
 T (M ) on Ck(M ):2.5. Lemma. If � 2 Ck(Mx); jk+1x � 2 Sk+1T�
T (M) then(2.7) Ck(�)� = �+ �1;k(jk+1x �) :Now we will describe the action of Sk+1T � 
 T (M ) on J1F (M ).2.6. Theorem. Let F 2 NFn, ord (F ) = k; z 2 J1F (M )xand jk+1x � 2 Sk+1T �
 T (M ). Then(2.8) J1F (�)z = z + �(jk+1x �; y)where � = Lh � �1;k 2 HomNVF (Sk+1T � 
 T; T � 
 V F ); y � �10(z).Proof. Let � 2 Ck(M )x. Since z�h(�; y) 2 T �
V F (M ) is an element of a k-thorder bundle,z � h(�; y) = T � 
 V F (�)(z � h(�; y)) == J1F (�)z � J1F (�)h(�; y) == J1F (�)z � h(Ck(�)�; y) == J1F (�)z � h(�+ �1;k(jk+1x �); y) == J1F (�)z � h(�; y) � Lh � �1;k(jk+1x �; y) :�3. The structure tensorWe will assume that F 2 NFn, ord (F ) = 1 and F is homogeneous. T �
T canbe identi�ed with im�1T = (J1T )0 (see 1.8, 1.9). Then LC1 = T � 
 (J1T )0 = T 12 .Let t : C1 ! ^2T �
T denote the torsion transformation: forM 2Mn; � 2 C1(M )t(M )(�) 2 ^2T � 
 T (M ) is a torsion tensor of the connection �.3.1. Lemma. Lt 2 HomNV (t12;^2T �
T ) is equal to �A where A(N ) is the skewsymmetrization: for X;Y 2 T (M )x, C 2 T 12 (M ), A(M )(C)(X;Y ) = C(X;Y ) �C(Y;X).Proof. Let � : U � M ! Rn be a coordinate system. Then C1(�) : C1(U ) !C1(Rn) = R3 � Rn is a coordinate system on C1(U ). It is proved in [12] that



THE STRUCTURE TENSOR 129C1(�)(�ijk = ��ijk) where �ijk are the Christo�el symbols of �, and if one calculatesin coordinates, one can easily see that Lt = �A. �SC1 will denote the natural bundle of torsion-free connections:SC1 = ker t.Then we have the following exact sequence of natural a�ne bundles:(3.1) 0! SC1 ! C1 ! ^T � 
 T ! 0and L(SC1) = L( ker t) = ker (�A) = S2T � 
 T . We will prove the following:3.2. Theorem. The following diagram is exact and commutative:(3.2) 0uS2T � 
 T � Fu S2T � 
 T � Fu � w 00 w kerLhu �@ w T 12 � Fu �A wLh T � 
 V Fu LS1 w 00 w im @u w ^2T � 
 T � Fu wq HFu w 00 0 0where @ denotes A restricted to ker Lh;HF = ^2T � 
 T � F=im@; q denotes thecanonical projection and S1 2 HomNAF (J1F;HF ) is de�ned so that S1 �h = q�t:(3.3) C1 � F whu t J1Fu S1^2T � 
 T � F wq HFProof. It is clear that the diagram (3.2) without the arrow LS1 is exact andcommutative.Therefore ker Lh � ker (q�(�A)). Since h in (3.3) is an epimorphism,there exists a unique S1 such that (3.3) is commutative. Now we will prove that thethird column in (3.2) is exact. We will use (3.2) with the LS1-arrow missing. Letp 2 T � 
 V F (M ), LS1(p) = 0. There exists l 2 T 12 � F (M ) such that Lh(l) = p.Then q � (�A)(l) = 0 and �A(l) 2ker q = im@. Let b 2 ker Lh(M );�@(b) =�A(l). Then l � b 2 ker (�A) = S2T � 
 T � F (M ), and p = Lh(l � b) = �(l �b) 2im�(M ). Therefore ker LS1(M ) �im�(M ). It is easy to see that LS1 � � = 0and consequently ker LS =im �. �



130 PIOTR KOBAK3.3. De�nition. S = S1 � j1 : F ! HF will be called the structure tensoroperator. For � 2 F (M )S� = S(M )(�) 2 HF (M ) will be called the structuretensor of �.3.4. Remark. HF is a natural bundle of order � 1 and S is a natural di�erentialoperator of order � 1.Now we will examine how S is related to the structure tensor of a G-structure.Since ord (F ) = 1, F (M ) = (F 1(M )�F0)=L1n, where the action of L1n is given byformula (1.2). Let � denote the canonical projection F 1(M )� F0 ! F (M ). For aglobal section � 2 F (M ), �� : F 1(M ) ! f0 will denote the tensorial 0-form of � :if x 2 M , h 2 F 1� (M ) then ��h = ��1h (�(x)). Let y 2 F0 and Gy be the isotropygroup of y. If � 2 F (M ) is a global section, then Qy(�) = ���1(y) � F 1(M ) isa Gy-structure (see [12], prop. 2.20). Replacing every bundle W by its standard�bre W0 and every morphism f by f0 we obtain from the diagram (3.2) an exactand commutative diagram of L1n-vector bundles over F0 and L1n-equivariant vectorbundle homomorphisms over �F0 (see remark 1.7). Then taking �bres over �xedy 2 F0 we get an exact and commutative diagram of Gy-vector spaces and Gy-equivariant linear maps (V = Rn and gy is the Lie algebra of Gy):0 w V � 
 gyu �@y w V � 
 V � 
 Vu �A w�V � 
 �0y V � 
 TyF0u LS1y w 00 w im @yu w ^2V � 
 Vu wqy (HF0)yu w 00 0 0Therefore (HF0)y = ^2V � 
 V =im@y = H0;2(gy) is the Spencer cohomologygroup. Let � 2 F (M ) be a global section, � 2 C1(M ) be a ��connection. We willdenote by cy : Qy(�)! H0;2(gy) the structure tensor of the Gy�structure Qy(�).Then cy = qy � �T , where T = t(�), �T is the tensorial 0-form of T . From remark2.3 and diagram (3.3) we get:S�(x) = S1(j1x�) = S1(h(�x; �x)) = q(t(�x); �x) = q(Tx; �x):If l 2 Qy(�), then ��(l) = y, and�S�(l) = q0( �T (l); ��(l)) = q0( �T (l); y) = qy( �T (l)) = cy(l):Therefore we have the following



THE STRUCTURE TENSOR 1313.5. Proposition. If � 2 F (M ) is a global section then �S�jQy(�) is the structuretensor of Qy(�).Now we will give an interpretation of the functor HF . In J1F (M ) we have thefollowing relationz1 � z2 $ �10(z1) = �10(z2) and z1 � z2 2 im �(M ):The theorem 2.6 implies that J1F (M )y=im�(M )y= � is the set of orbits ofS2T � 
 T (M )x(x = �(y)) in J1F (M )y. Since ker LS1 =im�; S1 induces a bi-jection J1F (M )=im�(M )! HF (M ):J1F (M )[[[] wS1(M ) HF (M )J1F (M )=im �(M )�where J1F (M )! J1F (M )=im�(M ) is the canonical projection. Since L(ker S1) =kerL(S1) = im�, from (3.3) we get the exact commutativediagram (h0 = hjSC1�F )0 w SC1 � Fu h0 w C1 � Fu h wt ^2T � 
 T � Fu q w 00 w kerS1u w J1Fu wS1 HFu w 00 0 0Let F l(M ) denote the set of �rst jets of 1-at sections of F (M ), i.e. j1x� 2 F l(M )if and only if there exists a map � : U ! Rn such that j10��� = j10�0 where �0 2F (Rn) is a constant section. Then (2.8) implies that im� = L ker S1 = S2T � 
T � L(F l(M )). But since 1-at sections locally admit torsion-free connections,F l(M ) � imh0 = ker S1, so F l(M ) = ker S1(M ). Therefore one can introduce avector bundle structure on the a�ne bundle J1F (M )=im�(M ) so that F l(M ) isthe 0 of J1F (M )=im�(M ), and then the functors J1F=im� andHF are isomorphic(in the category NVf). Since the theorem 2.6 was proved for arbitrary k 2N, onecan de�ne HF = J1F=im� and the structure tensor operator S : F ! HF alsowhen k > 1. Then HF may have only an a�ne structure.4. First order natural differential operators4.1. Theorem. Let F;G 2 NFn and let F be homogeneous, ord (F ) = 1, ord(G) � 1. If D 2 HomNFn(J1F;G), then there exists exactly one morphism K 2



132 PIOTR KOBAKHomNFn HF;G such that D = K � S1:J1F wD44446S1 GHFhhhhjKProof. Formula (1.1) implies that D(M ) is constant on orbits of S2T �
T (M ) inJ1F (M ). Therefore, from the remarks after proposition 3.5, it follows that thereexists a map K(M ) : HF (M )! G(M ) such that D(M ) = K(M ) � S1(M ). S1 isa epimorphism so K = fK(M )gM2Mn is unique and K 2Mor(NFn). �4.2. Corollary. Let F;G be as in theorem 4.1,D : F ! G be a natural di�erentialoperator, ord (D) = 1. Then there exists exactly one K 2 Hom(HF;G) such thatD = K � S.4.3. Remark. If we assume in 4.2 that D is a �-n.d.operator, then D can beuniquely factorized by S;D = K � S, where K : HF ! G satis�es the condition(1.1) but it is possible that K(M ) is not smooth.We have assumed in sections 32 and 4 that F is homogeneous. If this is not thecase, then F0 decomposes under action of Lkn into a set of orbits: F0 = fF�0 g�2A.F�0 are submanifolds (not necessarily regular) with an action of Lkn induced fromF0. This gives a family of homogeneous natural functors fF�g�2A. Then F�(M ) �F (M ).4.4 Remark. If F�0 is a regular submanifold of F0; � 2 F (M ), then � 2 F�(M )if and only if �(M ) � F�(M ). In particular, if G is a real algebraic subgroup ofL1n (for example when F is a tensor bundle), then F�0 is a regular submanifold ofF0 (see the remark after prop. II 3.1 in [3]).N.d. operators on F give n.d. operators on F�, which can be described with useof corollary 4.2. This could help to determine n.d. operators on F , but one shouldkeep in mind the fact that, in general, there are some operators on F� which donot come from operators on F .Examples of structure tensor operators4.5. Lemma. If K 2 NV, then V K is isomorphic to K �K.Proof. The isomorphism is given by the following formula:V K(M ) 2 [t! t]! ( ddtt(0); 0) 2 K �K(M ) :�



THE STRUCTURE TENSOR 133Let F be a tensor bundle functor. We will describe Lh : T 12 � F ! T � 
 V F .Lh = �T� 
 (f � �1T ). It is easy to calculate f using (2.1). Here we will use theformula for the Lie derivative from [12], def. 2.7: for X 2 T (M ); � 2 F (M )(4.1) LX� = d�(X) � f � (j1xX;�) :If A = dxf 
 Zx; f 2 C1(M ); f(x) = 0; Z 2 T (M ), then(4.2) f � �1T (A; �x) = f(j1x(fZ); �x) = �(LfZ�)x :1. Let F = T . Then T �
V F = T 11 �T . Using (4.2) we get: (� = X 2 T (M ))f � �1T (A;Xx) = �(LfZX)x = [X; fZ]x = dxf(X)Z = A(Xx)and consequently(4.3) Lh(M ) : T 12 � T (M ) 3 (C;X)! (C(_;X); X) 2 T 11 � T (M ) :2. F = T �; T �
V F = T2�T �. In (4.2) we take � = ! 2 T �(M ) and we get:(4.4) Lh(M ) : T 12 � T �(M ) 3 (C;!)! (�! �C;!) 2 T2 � T �(M ) :3. Using the formula for the Lie derivative of a tensor product, one canobtain the formula for Lh in any tensor bundle. In particular if F = T 11 thenT � 
 V F = T 12 � T 11 and we have:(4.5) Lh(M ) : T 12 � T 11 (M ) 3 (C; J)! (C � (_;J)� J �C; J) 2 T 12 � T 11 (M ) ;where C � (_;J)(X;Y ) = C(X; J(Y )) for X;Y 2 T (M ).Almost complex and almost product structuresLet F = T 11 and let F�0 denote the orbit of some y0 2 F0 = (Rn)� 
 Rn.Then F�0 is a regular submanifold of F0 (remark 4.4). Let P = ^2T � 
 T . wede�ne a natural di�erential operator N : F ! P � F by the formula N (M ) :T 11 (M ) 3 J ! (NJ ; J) 2 P = �T 11 (M ), where NJ is the Nijenhuis tensor of J : forX;Y 2 T (M ),(4.6) 12NJ (X;Y ) = [JX; JY ] + J2[X;Y ]� J [X; JY ]� J [JX; Y ] :Then ord (N ) = 1. Let N1 : J21F ! P�F satisfy N = N1�j1. We apply theorem4.1 to N1 restricted to J1F� and we get K : HF� ! P � F� which makes thefollowing diagram commute:(4.7) J1F�u S144446N1HF� wK P � F�From the de�nition of the torsion tensor, we have the following:



134 PIOTR KOBAK4.6. Lemma. If J 2 F (M ); � 2 C1(M ) is a J-connection, T = t(�), then(4.8) 12NJ (X;Y ) = �T (JX; JY )� J2T (X;Y ) + JT (X; JY ) + JT (JX; Y ) :Let p 2 HomNVF (^2T �
T �F; P�F ) be such that, when restricted to the �breover J 2 Fx, it is given by the following formula (C 2 ^2T � 
 T;X; Y 2 T (M )x):(4.9) p(C; J)(X;Y ) = 2(�C(JX; JY )�J2C(X;Y )+JC(X; JY )+JC(JX; Y )) :Then lemma 4.6 implies that p(Tx; Jx) = N (J)x. But N (J)x = N1(j1xJ) =N1(h(�x; Jx)) so N1 � h = p � t and from (3.3), (4.7) we obtain the followingcommutative diagram:(4.10) C1 � F�u t wh J1F�u S1���������N1^2T � 
 T � F�hhhhhhhhhj�wq HF�44446K P � F�Hence K 2 Mor(NVF ); N1 2Mor(NVF ).4.7. Proposition. If there exist k 2 Rnf0g such that y20 = k _�Rn then ker p =im @.Proof. It follows from (4.10) that K � q = p so im @ = ker q is a subbundle ofker p. Let (C; J) 2 ker p(M ). Then for X;Y 2 T (M ) we have(4.11) C(JX; JY ) + kC(X;Y ) � JC(X; JY ) � JC(JX; Y ) = 0 :We de�ne A 2 T 12 (M )x by the following formula:(4.12) A(X;Y ) = 12C(X;Y ) + 14kJ(C(X; JY ) +C(Y; JX)) :Then A(X; JY ) = 12C(X; JY ) + 14JC(X;Y )� 14kJC(JX; JY ) == J( 12kJC(X; JY ) + 14C(X;Y )� 14kC(JX; JY )) :Computing C(JX; JY ) from (4.11) we obtain from the formula above:A(X; JY ) = J( 12kJC(X; JY ) + 12C(X;Y ) � 14kJC(X; JY )� 14kJC(JX; Y )) == JA(X;Y ) :Then (4.5) implies that A 2 ker Lh(Mx). But @(A) = C so C 2 im @(M ). �Since ker p = im @ = ker q, we have (under the assumption of prop. 4.7) ker p =ker q. Consequently K, in diagram (4.10) is a monomorphism and we can identifyHF� with im K;S1 with N1 and q with p. In particular we have the following



THE STRUCTURE TENSOR 1354.8. Corollary. If J 2 T 11(M ) is an almost complex or almost product structure(J2 = ��TM or J2 = �TM) then its structure tensor SJ is equal to (NJ ; J) 2^2T � 
 T � T 11 (M ).4.9. Remark. If we identify im K =im p with HF�, we can get from (4.9) HF�in the explicit form:HF�(M ) = f(C; J) 2 ^2T � 
 T � F�(M ) : 8X;Y 2 T (M )C(X; JY ) == �JC(X;Y )g :4.10. De�nition. For W 2 NV F; k 2N we de�ne QkW 2 NVF :QkW (M ) = W (M )�M � � � �M W (M )| {z }k times :II Systems of linearly independent vector fieldsLet F = Qk T; k � n. Then F0 = (Rn)k. Let (e1; : : : ; en) denote the canonicalbasis of (Rn) and let F�0 be the orbit of (e1; : : : ; ek) 2 F0. Sections of F�(M ) aresystems of k linearly independent vector �elds. Taking suitable P 2 NV, a naturaldi�erential operator N : F ! P � F and p 2 HomN V F (^2T � 
 T � F; P � F ),one can see that the diagram (4.10) is commutative in this case. We take P =Qm T;m = k(k�1)2 . For (X1; : : : ; Xk) 2 F (M ) we put:(4.13) N(M )(X1; : : : ; Xk) = (([Xi; Xj ])1�i<j�kX1; : : : ; Xk) :For C 2 ^2T � 
 T � F (M ); X1; : : : ; Xk 2 T (M )x we de�ne(4.14) p(M )(C;X1; : : : ; Xk) = ((�C(Xi; Xj)1�i<j�k X1; : : : ; Xk)) :If � = (X1; : : : ; Xk) 2 F�(M ); � 2 C(M ) is a �-connection, T = t(�) is the torsiontensor of �, then [Xi; Xj] = �T (Xi; Xj) and, just as in example I, we obtain thediagram (4.10) (N1 and K are de�ned in the same way as in I). As before, wewill prove that ker p = im @. In this case T � 
 V V = Qk T 11 �Qk T . Then (4.3)implies that Lh(M ) : T 12 �Qk T (M )!Qk T (M ) is given by(4.15) Lh(M )(C;X1; : : : ; Xk) = (C(_;X1); : : : ; C(_;Xk); X1; : : : ; Xk) :If (C;X1; : : : ; Xk) 2 ker p(Mx) then (4.14) gives(4.16) C(Xi; Xj) = 0 for 1 � i < j � k :Let Xk+1; : : : ; Xn 2 T (Mx) be such that X1; : : : ; Xn are linearly independent. Wede�ne A 2 T 12 (M ) by the formulaA(Xi; Xj) = 8><>: C(Xi; Xj); for i � k; j > k;0; for j � k;12C(Xi; Xj); for i; j > k :Then (4.15) implies that A 2 ker Lh(M ) and (4.16) gives C = @(A).



136 PIOTR KOBAK4.11. Corollary. If � = (X1; : : : ; Xk) 2 Qk T (M ) is a system of k linearly inde-pendent vector �elds then its structure tensor S� can be identi�ed with([Xi; Xj ]1�i<j�k; X1; : : : ; Xk) 2 Qk+mT (M ):III Systems of linearly independent 1-formsLet F = Qk T �; k � n. Then F0 = ((Rn)�)k. we will denote by F00� the orbitof (e1; : : : ; ek). Sections of F�(M ) are systems of k linearly independent 1-forms.In this case we take P = Qk ^2T � and we de�ne a natural di�erential operatorN (M ) : F (M ) 3 (!1; : : : ; !k) ! (d!1; : : : ; d!k; !1; : : : ; !k) 2 P � F (M ). Letp 2 HomNVF (^2T � 
 T � F; P � F ) be de�ned so that(4.17) p(M )(C;!1; : : : ; !k) = (12!1 �C; : : : ; 12!k �C;!1; : : : ; !k) :If � = (!1; : : : ; !k) 2 F (M ) and � 2 C1(M ) is a �-connection, then d!i(X;Y ) =12!i�T (X;Y ); i = 1; : : : ; k. This implies that diagram (4.10) is commutative in thiscase. T �
V F = Qk T2�Qk T � and (4.4) implies that Lh(M ) : T 12 �Qk T �(M )!Qk T2 �Qk T �(M ) is given by(4.18) Lh(M )(C;!1; : : : ; !k) = (�!1 �C; : : : ;�!k �C;!1; : : : ; !k) :It follows immediately from (4.17) that ker p = im @ and we get the following4.12. Corollary. If � = (!1; : : : ; !k) 2 Qk T �(M ) is a system of linearly indepen-dent 1-forms, then its structure tensor S� is equal to (d!1; : : : ; d!k; !1; : : : ; !k) 2Qk ^2T � �Qk T �(M ).Let F;G 2 NFn, ord (F ) = 1; ord (G) � 1. owing to corollary 4.2, the classi-�cation of �rst order natural di�erential operators D : F ! G, for homogeneousF , can be reduced to the classi�cation of L1n-equivariant maps from HF0 to G0.Example. We will �nd all �-n.d. operators D : T � T ! T of order 1 for n �3. Let W � (Rn)3 be an orbit of e = (e1; e2; e3) and K : W ! Rn be L1n-equivariant. Then Ge � GK(e) (Gx denotes the isotropy group of x). ThereforeK(e) 2 span fe1; e2; e3g, so K(e) = �1e1 + �2e2 + �3e3, for some �i 2 R. Ify = (y1; y2; y3) 2 W then y = �(a; e) for some a 2 L1n, and K(y) = K(�(a; e)) =�(a;K(e)) = �(a; �1e1 + �2e2 + �3e3) = �1y1 + �2y2 + �3y3. Then remark 4.3 andcorollary 4.11 imply that, if D : T � T ! T is a �-n.d. operator, ord (D) = 1then there exist �1; �2; �3 2 R such that if X;Y 2 T (M ), x 2 dom X\ domY;Xx; Yx; [X;Y ]x are linearly independent , then D(X;Y )(x) = �1Xx + �2Yx +�3[X;Y ]x. If Xx; Yx[X;Y ]x are not linearly independent, we use the following



THE STRUCTURE TENSOR 1374.13. Lemma. There exist X̂; Ŷ 2 T (M ) de�ned on some neighbourhood U of xsuch that j1xX̂ = j1xX; j1xŶ = j1xY and there exists a sequence famgm2N , am 2 Usuch that limm!1 am = x and X̂am ; Ŷam ; [X̂; Ŷ ]am are linearly independent forevery m 2 N .Since ord (D) = 1, we have:D(X;Y )(x) = D(X̂; Ŷ )(x) = limm!1D(X̂; Ŷ )(am) == limm!1(�1X̂am + �2Ŷam + �3[X̂Ŷ ]am ) = �1Xx + �2Y2 + �3[X;Y ]xand we get the following4.14. Theorem. Let D : T � T ! T be a �-n.d. operator, ord D = 1; n � 3.Then exist �1; �2; �3 2 R such that for every X;Y 2 T (M )D(X;Y ) = �1X + �2Y + �3[X;Y ] :4.15. Corollary. If n � 3 then the Lie bracket is the only bilinear �rst order�-n.d. operator from T � T to T , up to a constant factor.In fact the assumption of bilinearity is very strong, and more general result canbe obtained (see [7], [5]).Proof. of lemma 4.13. It is su�cient to take M = Rn; x = 0. we de�neX̂ = X +Pni;j=1(xj @@xj Xijx=0)ei + (x1)2e2;Ŷ = Y +Pni;j=1(xj @@xj Y ijx=0)ei + (x1)2e1 + x1x2e3 :Let y = (y1; : : : ; yn) 2 Rn. we will denote by y a matrix 3 � 3 such that(My)i1 = X̂iy; (My)i2 = Ŷ iy ; (My)i3[X̂; Ŷ ]iy; i = 1 : : :3. Then det My = �(y1)7 +fterms of degree � 6g. Therefore, it is possible to �nd a sequence famg converg-ing to x with det Mam 6= 0 for m 2 N , and then Xam ; Yam ; [X;Y ]am are linearlyindependent. �References[1] Bernard, D., Sur la g�eometrie di�er�entiele des G-structures, Ann. Inst. Fourier 10 (1960).[2] Epstein, D.B.A., Natural tensors on Riemannian manifolds, J. Di�. Geom. 10 (1975), 631-645.[3] Fujimoto, A., Theory of G-structures, Publicationsof the Study Group of Geometry 1 (1972),Okayama.[4] Gancarzewicz, J., Liftings of functions and vector �elds to natural bundles, Diss. Math.CCXII (1983), Institute of Mathematics, Warszawa.
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