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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 237 { 240ON A GENERAL SOLUTION OF FINITE ORDERDIFFERENCE EQUATION WITH CONSTANT COEFFICIENTSMarek PyciaAbstract. In the present paper we give new formulas for a general solution of thelinear di�erence equation of �nite order with constant complex coe�cients withoutnecessity of solving the characteristic equationIntroduction. In this paper we deal with the following di�erence equation oforder m:(1) xn+m = m
Xr=1 arxn+m�rwith constant complex coe�cients a1; : : : ; am. Our Theorem gives a simple formulafor the general solution depending only on the coe�cients a1; : : : ; am. We do nothave to solve the characteristic equation as it is usually done (cf for instance [1],[2]) and, in general, it is often impossible to �nd the exact solutions of it.To formulate our Theorem we adopt the following convention:(�1)! � 0 = 1 :Theorem. Let x0; : : : ; xm�1 be arbitrary complex numbers, let h1; : : : ; hm benonnegative integers. The general solution of equation (1) is of the form (2):xn = m�1

Xl=0 "

X1h1+���+mhm=n�l (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! m
Yi=1 ahii # xlfor n = 0; 1; : : : .Proof of the Theorem. The proof is by induction with respect to n.1991 Mathematics Subject Classi�cation : Scheme 1980 /1985 Revision/ Primary: 39A10.Key words and phrases: linear di�erence equation, constant coe�cient, general solution with-out characteristic equation.Received October 14, 1991. 237



238 MAREK PYCIAIn the �rst part we show that formula (2) holds for n = 0; : : : ;m � 1. Let ustake l 2 f0; : : : ;m� 1g and consider three cases depending on l is smaller, greaterthan n or equal to n.In the case l < n we have 1h1+ � � �+mhm = n� l > 0, and therefore h1+ � � �+hm � 1 � 0. Let us note that hm�l + � � �+ hm = 0. In fact, if hm�l + � � �+ hm > 0then would exist i 2 fm � l; : : : ;mg such that hi > 0. Consequently we wouldhave 1h1+ � � �+mhm � ihi � (m� l) > n� l; which is a contradiction. Thereforewe have: (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! = 0 :In the case l > n we have 1h1+ � � �+mhm = n� l < 0. Since the set of all suchsequences (h1; : : : ; hm) is empty, the sum over this set of indices is 0.For l = n we have 1h1+� � �+mhm = n�l = 0. Consequently h1 = � � � = hm = 0and, applying our convention, we get:(h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! = (�1)!01 � : : : � 1 = 1 :Summing up this three cases we can observe that formula (2) holds for n =0; : : : ;m� 1.Now, for an inductive step, we assume that Theorem is true for m consecutiveindices n; : : : ; n+m � 1.Substituting the right hand side of formula (2) into equality (1) (we changesimultaneously n for n+m� r in formula (2)) and changing the order of sumationwe get:(3) xn+m = m
Xr=1 ar m�1

Xl=0 "

X1h1+���+mhm=n�l �� (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! m
Yi=1 ahii # xl == m�1

Xl=0 " m
Xr=1 ar X1h1+���+mhm=n+m�r�l �� (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! m

Yi=1ahii # xl :Let us �x l 2 f0; : : : ;m � 1g, and consider the coe�cient standing before xl.Performing the indicated operations we obtain that this coe�cient is equal to:(4) X1g1+���+mgm=n+m�l cg1;:::;gm m
Yi=1 agii :



ON A GENERAL SOLUTION OF FINITE ORDER DIFFERENCE EQUATION 239where every cg1;:::;gm is uniquely de�ned coe�cient. We will determine the valueof it depending on g1; : : : ; gm. Let us �x g1; : : : ; gm.Since we get Q mi=1 agii as a product of admissible ar (i.e., such that gr > 0) andsuitable uniquely de�ned Q mi=1 ahii :(5) gi = � hi for i = 1; : : : ; r � 1; r + 1; : : : ;m;hi + 1 for i = r:Therefore to obtain the coe�cient cg1;:::;gm it is enough to add all the coe�cientsof the form: (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm!standing before admissible Q mi=1 ahii .Let us put: P (i; j) := fr : gr > 0g \ fi; : : : ; jg :We have: cg1;:::;gm = XP (1;m) (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! == XP (1;m�l�1) (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! ++ XP (m�l;m) (h1 + � � �+ hm � 1)!(hm�l + � � �+ hm)h1! � : : : � hm! :Because if r 2 fi; : : : ; jg � P (i; j) then gr = 0, it follows that P P (i;j) gr =
P jr=i gr . Applying formula (5), hence we get:cg1 ;:::;gm = XP (1;m�l�1) (g1 + � � �+ (gr � 1) + � � �+ gm � 1)!(gm�l + � � �+ gm)g1! � : : : � (gr � 1)! � : : : � gm! ++ XP (m�l;m)(g1 + � � �+ (gr � 1) + � � �+ gm � 1)!(gm�l + � � �+ (gr � 1) + � � �+ gm)g1! � : : : � (gr � 1)! � : : : � gm! == XP (1;m�l�1) gr (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm)(g1 + � � �+ gm � 1) � g1! � : : : � gm! ++ XP (m�l;m) gr (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm � 1)(g1 + � � �+ gm � 1) � g1! � : : : � gm! == " m�l�1

Xr=1 gr(g1 + � � �+ gm � 1) + m
Xr=m�l gr(gm�l + � � �+ gm � 1)(g1 + � � �+ gm � 1)(gm�l + � � �+ gm) # �� � (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm)g1! � : : : � gm! � =



240 MAREK PYCIA= � (g1 + � � �+ gm�l�1)(g1 + � � �+ gm � 1) + (gm�l + � � �+ gm)(gm�l + � � �+ gm � 1)(g1 + � � �+ gm � 1)(gm�l + � � �+ gm) � �� � (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm)g1! � : : : � gm! � == � (g1 + � � �+ gm�l�1) + (gm�l + � � �+ gm � 1)(g1 + � � �+ gm � 1) � �� � (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm)g1! : : : gm! � == (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm)g1! � : : : � gm! :Inserting this into (4) and then into (3) we obtain:xn+m = m�1
X l=0 2

4

X1g1+���+mgm=n�l (g1 + � � �+ gm � 1)!(gm�l + � � �+ gm)g1! � : : : � gm! m
Yi=1 agii 3

5 xl :Now induction concludes the proof. �Remark 1. It may be interesting to note here that formula (2) can be writtenas follows:xn = m�1
X l=0 2

4

Xfk1;:::;ks2f1;:::;mg:k1+���+ks=n�l; ks�m�l; s2Ng s
Yi=1 aki 3

5 xl :Remark 2. Theorem can be proved by some combinatorial reasoning.Acknowledgement. I would like to express my thanks to Professor Janusz Mat-kowski for suggestion the problem and his encouragement in writing this paper.References[1] Gelfond, A.O., Is�cislenije kane�cnych raznost�ej, Moskva, 1952.[2] Levy, H., Lessman, F., Finite di�erence equations, London, 1959.Marek PyciaRafowa 2143-300 Bielsko-Biala, Poland
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