Archivum Mathematicum

Marek Pycia

On a general solution of finite order difference equation with constant coefficients

Archivum Mathematicum, Vol. 28 (1992), No. 3-4, 237--240

Persistent URL: http://dml.cz/dmlcz/107456

Terms of use:

© Masaryk University, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON A GENERAL SOLUTION OF FINITE ORDER DIFFERENCE EQUATION WITH CONSTANT COEFFICIENTS

Marek Pycia

Abstract

In the present paper we give new formulas for a general solution of the linear difference equation of finite order with constant complex coefficients without necessity of solving the characteristic equation

Introduction. In this paper we deal with the following difference equation of order m :

$$
\begin{equation*}
x_{n+m}=a_{r=1}^{m} a_{r} x_{n+m-r} \tag{1}
\end{equation*}
$$

with constant complex coefficients a_{1}, \ldots, a_{m}. Our Theorem gives a simple formula for the general solution depending only on the coefficients a_{1}, \ldots, a_{m}. We do not have to solve the characteristic equation as it is usually done (cf for instance [1], [2]) and, in general, it is often impossible to find the exact solutions of it.

To formulate our Theorem we adopt the following convention:

$$
(-1)!\cdot 0=1
$$

Theorem. Let x_{0}, \ldots, x_{m-1} be arbitrary complex numbers, let h_{1}, \ldots, h_{m} be nonnegative integers. The general solution of equation (1) is of the form (2):

$$
x_{n}=\sum_{l=0}^{m-1} \quad 1 h_{1}+\cdots+m h_{m}=n-l .\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right){ }_{i=1}^{m} a_{i}^{h_{i}!\cdot \ldots \cdot h_{m}!} x_{l}
$$

for $n=0,1, \ldots$.
Proof of the Theorem. The proof is by induction with respect to n.

[^0]In the first part we show that formula (2) holds for $n=0, \ldots, m-1$. Let us take $l \in\{0, \ldots, m-1\}$ and consider three cases depending on l is smaller, greater than n or equal to n.

In the case $l<n$ we have $1 h_{1}+\cdots+m h_{m}=n-l>0$, and therefore $h_{1}+\cdots+$ $h_{m}-1 \geq 0$. Let us note that $h_{m-l}+\cdots+h_{m}=0$. In fact, if $h_{m-l}+\cdots+h_{m}>0$ then would exist $i \in\{m-l, \ldots, m\}$ such that $h_{i}>0$. Consequently we would have $1 h_{1}+\cdots+m h_{m} \geq i h_{i} \geq(m-l)>n-l$; which is a contradiction. Therefore we have:

$$
\frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!}=0 .
$$

In the case $l>n$ we have $1 h_{1}+\cdots+m h_{m}=n-l<0$. Since the set of all such sequences $\left(h_{1}, \ldots, h_{m}\right)$ is empty, the sum over this set of indices is 0 .

For $l=n$ we have $1 h_{1}+\cdots+m h_{m}=n-l=0$. Consequently $h_{1}=\cdots=h_{m}=0$ and, applying our convention, we get:

$$
\frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!}=\frac{(-1)!0}{1 \cdot \ldots \cdot 1}=1
$$

Summing up this three cases we can observe that formula (2) holds for $n=$ $0, \ldots, m-1$.

Now, for an inductive step, we assume that Theorem is true for m consecutive indices $n, \ldots, n+m-1$.

Substituting the right hand side of formula (2) into equality (1) (we change simultaneously n for $n+m-r$ in formula (2)) and changing the order of sumation we get:
(3)

$$
\begin{aligned}
& x_{n+m}={ }_{r=1}^{m} \quad a_{r} \quad l=0 \quad 1 h_{1}+\cdots+m h_{m}=n-l \quad . \\
& \frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!}{ }_{i=1}^{m} a_{i}^{h_{i}} \quad x_{l}= \\
& ={ }_{l=0}^{m-1} \quad \begin{array}{l}
m \\
r=1
\end{array} a_{r} \quad 1 h_{1}+\cdots+m h_{m}=n+m-r-l . \\
& \cdot \frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!}{ }_{i=1}^{m} a_{i}^{h_{i}} x_{l} \text {. }
\end{aligned}
$$

Let us fix $l \in\{0, \ldots, m-1\}$, and consider the coefficient standing before x_{l}. Performing the indicated operations we obtain that this coefficient is equal to:

$$
\begin{equation*}
{ }_{1 g_{1}+\cdots+m g_{m}=n+m-l}^{c_{g_{1}, \ldots, g_{m}}}{ }_{i=1}^{m} a_{i}^{g_{i}} . \tag{4}
\end{equation*}
$$

where every $c_{g_{1}, \ldots, g_{m}}$ is uniquely defined coefficient. We will determine the value of it depending on g_{1}, \ldots, g_{m}. Let us fix g_{1}, \ldots, g_{m}.

Since we get ${ }_{i=1}^{m} a_{i}^{g_{i}}$ as a product of admissible a_{r} (i.e., such that $g_{r}>0$) and suitable uniquely defined ${\underset{i=1}{m} a_{i}^{h_{i}} \text { : }}_{\text {: }}$

$$
g_{i}=\begin{array}{ll}
h_{i} & \text { for } \quad i=1, \ldots, r-1, r+1, \ldots, m, \tag{5}\\
h_{i}+1 & \text { for } \quad i=r .
\end{array}
$$

Therefore to obtain the coefficient $c_{g_{1}, \ldots, g_{m}}$ it is enough to add all the coefficients of the form:

$$
\frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!}
$$

standing before admissible ${ }_{i=1}^{m} a_{i}^{h_{i}}$.
Let us put:

$$
P(i, j):=\left\{r: g_{r}>0\right\} \cap\{i, \ldots, j\} .
$$

We have:

$$
\begin{aligned}
c_{g_{1}, \ldots, g_{m}} & =\quad \frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!}= \\
& =\quad{ }_{P(1, m)} \quad \frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots h_{m}!}+ \\
& +{ }_{P(m-l, m)} \frac{\left(h_{1}+\cdots+h_{m}-1\right)!\left(h_{m-l}+\cdots+h_{m}\right)}{h_{1}!\cdot \ldots \cdot h_{m}!} .
\end{aligned}
$$

Because if $r \in\{i, \ldots, j\}-P(i, j)$ then $g_{r}=0$, it follows that ${ }_{P(i, j)} g_{r}=$ ${ }_{r=i}^{j} g_{r}$. Applying formula (5), hence we get:

$$
\begin{aligned}
& c_{g_{1}, \ldots, g_{m}}=\underset{P(1, m-l-1)}{ } \frac{\left(g_{1}+\cdots+\left(g_{r}-1\right)+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right)}{g_{1}!\cdot \ldots \cdot\left(g_{r}-1\right)!\cdot \ldots g_{m}!}+ \\
& +\underset{P(m-l, m)}{ } \frac{\left(g_{1}+\cdots+\left(g_{r}-1\right)+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+\left(g_{r}-1\right)+\cdots+g_{m}\right)}{g_{1}!\cdot \cdots\left(g_{r}-1\right)!\cdot \cdots \cdot g_{m}!}= \\
& =g_{P(1, m-l-1)} g_{r} \frac{\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right)}{\left(g_{1}+\cdots+g_{m}-1\right) \cdot g_{1}!\cdot \ldots g_{m}!}+ \\
& +\underset{P(m-l, m)}{ } g_{r} \frac{\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}-1\right)}{\left(g_{1}+\cdots+g_{m}-1\right) \cdot g_{1}!\cdot \cdots \cdot g_{m}!}= \\
& =g_{r=1}^{m-l-1} \frac{g_{r}}{\left(g_{1}+\cdots+g_{m}-1\right)}+{ }_{r=m-l}^{m} \frac{g_{r}\left(g_{m-l}+\cdots+g_{m}-1\right)}{\left(g_{1}+\cdots+g_{m}-1\right)\left(g_{m-l}+\cdots+g_{m}\right)} . \\
& \frac{\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right)}{g_{1}!\cdot \ldots \cdot g_{m}!}=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(g_{1}+\cdots+g_{m-l-1}\right)}{\left(g_{1}+\cdots+g_{m}-1\right)}+\frac{\left(g_{m-l}+\cdots+g_{m}\right)\left(g_{m-l}+\cdots+g_{m}-1\right)}{\left(g_{1}+\cdots+g_{m}-1\right)\left(g_{m-l}+\cdots+g_{m}\right)} . \\
& \cdot \frac{\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right)}{g_{1}!\cdot \cdots g_{m}!}= \\
& =\frac{\left(g_{1}+\cdots+g_{m-l-1}\right)+\left(g_{m-l}+\cdots+g_{m}-1\right)}{\left(g_{1}+\cdots+g_{m}-1\right)} . \\
& \cdot \frac{\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right)}{g_{1}!\ldots g_{m}!}= \\
& =\frac{\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right)}{g_{1}!\cdot \ldots \cdot g_{m}!} .
\end{aligned}
$$

Inserting this into (4) and then into (3) we obtain:

$$
x_{n+m}={ }_{l=0}^{m-1} \quad 1 g_{1}+\cdots+m g_{m}=n-l=\left(g_{1}+\cdots+g_{m}-1\right)!\left(g_{m-l}+\cdots+g_{m}\right) g_{i=1}^{m} a_{i}^{g_{i}!\cdots g_{m}!} x_{l}
$$

Now induction concludes the proof.
Remark 1. It may be interesting to note here that formula (2) can be written as follows:

$$
x_{n}={ }_{l=0}^{m-1} \quad\left\{k_{1}, \ldots, k_{s} \in\{1, \ldots, m\}: k_{1}+\cdots+k_{s}=n-l, k_{s} \geq m-l, s \in \mathrm{~N}\right\} i=1<a_{k_{i}} x_{l}
$$

Remark 2. Theorem can be proved by some combinatorial reasoning.
Acknowledgement. I would like to express my thanks to Professor Janusz Matkowski for suggestion the problem and his encouragement in writing this paper.

References

[1] Gelfond, A.O., Isčislenije kanec̆nych raznostĕj, Moskva, 1952.
[2] Levy, H., Lessman, F., Finite difference equations, London, 1959.

Marek Pycia
Rafowa 21
43-300 Bielsko-Biala, Poland

[^0]: 1991 Mathematics Subject Classification: Scheme 1980 /1985 Revision/ Primary: 39A10.
 Key words and phrases: linear difference equation, constant coefficient, general solution without characteristic equation.

 Received October 14, 1991.

