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METRICALLY REGULAR SQUARE OF METRICALLY
REGULAR BIPARTITE GRAPHS OF DIAMETER D = 6

VLADIMIR VETCHY

ABSTRACT. The present paper deals with the spectra of powers of metrically regular
graphs. We prove that there is only one table of the parameters of an association
scheme so that the corresponding metrically regular bipartite graph of diameter
D = 6 (7 distinct eigenvalues of the adjacency matrix) has the metrically regular
square. The results deal with the graphs of the diameter D < 6 see [7] and [8].

1. INTRODUCTION AND NOTATION

The theory of metrically regular graphs originates from the theory of association
schemes first introduced by R.C. Bose and Shimamoto [2]. All graphs will be
undirected, without loops and multiple edges.

1.1. Definition [1]. Let X be a finite set, n := |X| > 2. For an arbitrary natural
number D let R= {Ry, R1,..., Rp} be a system of binary relations on X. A pair
(X,R) will called an association scheme with n classes if and only if it satisfies
the axioms A1 — A4:

Al. The system R forms a partition of the set X? and Ry is the diagonal
relation, i.e. Ry = {(z,z); 2 € X }.
A2. For each i € {0,1,..., D} it holds R;* € R.
A3. For each ¢,j,k € {0,1,..., D} it holds
(z,y) € R A(21,y1) € Ry = pij(x,y) = pij(z1,v1),
where p;;(z,y) = |{#;(x,2) € Ry A(2,y) € R;}|.
Then define pfj = p;ij(z,y) where (z,y) € Ry.
A4. For each i,7,k € {0,1,..., D} it holds pfj = pfl
The set X will be called the carrier of the association scheme (X,R). Especially,
Pl = bk, p% = v;6;;, where &;; is the Kronecker-Symbol and v; := p{;, and define
P = (pfj), 0<14,j,k<D.
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Given a graph G = (X, F) of diameter D we may define Ry = {(#,y);d(z,y) =
k}, where d (z,y) is the distance from the vertex  to the vertex y in the standard
graph metric. If (X,R), R = {Rg, R1,..., Rp}, gives rise to an association scheme,
the graph is called metrically reqular and the pfj are said to be its parameters or
its structural constants. Especially, metrically regular graphs with the diameter
D = 2 are called strongly regular.

1.2. Definition. Let G = (X, F) be an undirected graph without loops and
multiple edges. The second power (or the square) of i is the graph G? = (X, E)
with the same vertex set X and in which different vertices are adjacent if and only
if there is at least one path of the length 2 or 1 in G between them.

1.3. Definition. Let G be a graph with an adjacency matrix A. The characteristic
polynomial |A] — A| of the adjacency matrix A is called the characteristic polyno-
mial of G and denoted by Pg(A). The eigenvalues of A and the spectrum of A are
called the eigenvalues and the spectrum of GG, respectively. If Ay > Ao > - > A,
are the eigenvalues of (¢, the whole spectrum is denoted by S,(G) and A; is called
the indez of .

Define (0, 1)-matrices Ag,..., Ap by Ag = I and (4;);z = 1 if and only if the
distance from the vertex j to the vertex kin G is d (j, k) = 4. Using these notations
it follows:

1.4. Theorem [3]. For a metrically regular graph G with diameter D and for
any real numbers r1, ..., rp the distinct eigenvalues of ZZ»D:l r; A; and ZZ»D:l ri P;
are the same. In particular the distinct eigenvalues of a metrically regular graph
are the same as those of P;.

1.5. Theorem [6]. A metrically regular graph with diameter D has D+1 distinct
eigenvalues.

1.6. Theorem [5]. The number of components of a regular graph G is equal to
the multiplicity of its index.

1.7. Theorem [4, p.87]. A graph containing at least one edge is bipartite if and
only if its spectrum, considered as a set of points on the real axis, is symmetric
with respect to the zero point.

1.8. Theorem [4, p.82]. A strongly connected digraph G with the greates eigen-
value r has no odd cycles if and only if —r is also an eigenvalue of GG

1.9. Theorem [7]. For every k € N, k > 2 there is one and only one metrically
regular bipartite graph G = (X, F') with diameter D = 3, n = |X| = 2k + 2, so
that G2 is a strongly regular graph. Its nonzero structural constants are:

p(lJl =1 sz =1 p83 =1 Vo =1 /\1 =k = ms
pa=k—1  piy=k—1  p},=k v =k Ao =1
p%B =1 p%B =1 my =1 vy =k Az =—1

mo =k pgz =k—-1 mg =1 vy =1 A =—k
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1.10. Theorem [7]. There is only one table of the parameters of an association
scheme so that the corresponding metrically regular bipartite graph with 5 distinct
eigenvalues has the strongly regular square. The table of the nonzero parameters
is following:

P(ln =1 sz =1 PgB =1 P34 =1 vo =1

P%z =3 P%1 =2 P?z =3 P%B =4 vp =4 = v3
P%B =3 P%B =2 P?z} =1 P%z =6 Az =0

phy =1 psy =4 phs =3 Ay =—2 msz =6 = vs
A =4 p§4 =1 Ay =2 mg =4 As =—4
my =1 p§3 =2 my =4 vy =1 ms =1

The realization of this table is the 4-dimensional unit cube.

1.11. Theorem [8]. There are only four tables of the parameters of association
schemes for k € {1,2,4,10} so that the corresponding metrically regular bipartite
graphs with 6 distinct eigenvalues have the metrically regular square. The nonzero
structural constants of the graphs are following:

Pgozp};s:Pgs:Pgs:P%s:l vg =vs =1

Pl = pia =Pl =k vi =vg = 2k + 1
Pls =P =Pl =p3s =k +1 vy =v3 = 2(2k + 1)
Pla = P3a = Pls = Dog = 2k A =2k+1=—-X
pla=2k+1 Ao =k +1 = —Xs
P33 = D3z = Pz = 2k +2 As=1= )4

Pay = P33 = Pay = 3k Pl =2(2k + 1)

The realization of the table for k = 2 is the 5-dimensional unit cube.

1.12. Remark. Theorems 1.9., 1.10. and 1.11. show that for ¥ = 3,4,5 the &-
dimensional unit cubes have the metrically regular square.

Further, we use some of the known relations from the theory of associations
schemes [1]

_ k
m w= Y
J

(1.2) vipj»k =v;pl,
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2. MAIN RESULT

2.1. Theorem. There is only one table of the parameters of an association scheme
with 6 classes so that the corresponding metrically regular bipartite graph of di-
ameter D = 6 (7 distinct eigenvalues of the adjacency matrix) has the metrically
regular square.

Proof. Let Ay > Ay > -+ > A7 be the distinct eigenvalues of a metrically regular
bigraph G and my,ms, ..., m; are the corresponding multiplicities. As G is a
bipartite graph it holds according to Theorems 1.7. and 1.8.:

(2.1) pi=0, i+j+k=1(mod?2), ijke{l,2,...,6}

I ST VD V| RS VS VO
(22) SP(G)_{ 1 ms M3 My ms mo 1 }

According to Theorem 1.4 it holds for these eigenvalues
(2.3) AT — P1| =0
So we obtain

AT =AML+ piopli + Plspis + Plapls + Pispia + Plepis)+
+ 22 [p1opt 1 (Plapts + Pispia + Pepls) 4+ piapla(pispia + Plepls)+
+ pLapiapTepts + M (piapls + plapis + pispla + piepts)]—
—A[piopT 1 Plaptspients + Mpiapia(pispia + Plepls) + Mplapiapiepts).

Because of (2.2) we get

24) MAA A=
. = AL+ plopiy + PlsPis + Plapls + Plspia + Plepls
MAZ AN =
1.2 4.3 4 4 5 5 .6 2 .3 /.4 5 5 .6
(2.5) = P12P11(P1aPTs + PisPla + PlePis) + P1sP12(PisPia + PieP1s)+
3 4 5 6 2 .3 3 4 4 5 5 .6
+P14P13P16P15 + AM(P13P12 + PlaPis + PisPia + PiePis)-

AZAZNZ =

1.2 3. 4 5 6 2 3,4 5 5 .6 3 4 5 6
= P1aP11P1aP13P16P15 + A1 [P13P12(P15P14 + P16P15) + PlaPisPiePis]:
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If A resp. As denotes the adjacency matrix of a metrically regular bigraph G
resp. its square G? it is easy to see that

1 A
(2.6) Ay= A"+ A—- ST
Piy Piy

and according to (2.6) we get the eigenvalues of G? in the form

_ /\Z2 +p%1/\i -\

5 ,ied{l, ... T}
P11

(2.7) i

Because of p3y(p1 — p;) = p?1 (A1 — X)) (A1 + A +p3y) > 0 it holds py is the
index of G?.

As the diameter of G2 is D = 3 we obtain according to Theorem 1.5. that the
graph G? has 4 distinct eigenvalues. So it must hold one the following posibilities
L. pi = ptj = p = P iJk,med{2,...,ThH

Because of (2.7) we get

LTI D I T T P T VI AL TPV IR S W PR W

and we obtain a contradiction with A; # Ay for s £¢; s,t € {2,...,7}.

20 Wi =y = He e = By L4 k,mon e {200 T

Because of (2.7) we get

—ph =X+ = =+ T = A+ A

So, we again obtain a contradiction with A; # Ay for s #¢; s, € {2,...,7}.
3. Wi =y PE = Hms fhs = Hes GG k,my s, t€{2,..., T}

Ko = p implies Ay + A; = —p?,, so je{7}.

13 = Hr implies A3z + A\ = —p?,, so ke{6,7}.

fa = i implies Ay + A, = —p?), so me€ {5,6,7}.

s = [in implies A5 + A\, = —piy, so ne€{4,56,7}

He = fs implies A + A\, = —p7y, so s€{3,4,5,6,7}.
7 = iy implies A7 + A\ = —p?,, so 1€42,3,4,5,6,7}.

So, it must hold ps = p7, s = i, pta = ps  and according to (2.2) we obtain
Ao =X —piy, A=A —piy, Aa = A3 —piy.

So, we get the spectrum of G in the form

1, mz, M3, M4, M3, ma, 1

2 2 2 2 2 2
3ri,  2p11, pi, O, -pi1,  —2pi1s —3P11}

(28)  S,(0) = {

On the other hand if G? is metrically regular, the parameters of G? are
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(2.9) i = 2p1y = ph + P
(2.10) pr, = P33 = pls + P
(2.11) b3 = 2p34 = pi + Pl
(2.12) b3z = Pas = p3 + P
(2.13) b3z = 2p3 = pss + P
(2.14) 2P%1 = 21’:1))2 sz

(2.15) P = Pl + Pl = Pl 4+ P
(2.16) vy = s = pis + P
(2.17) Py, = 2p3, = Py + P
(2.18) Py = Pis + Pls = P+ Pag
(2.19) pis = 2pi = P55+ Pes
(2.20) e = Pl + P oy

(2.21) Mls = pis + Py = Pis + P
(2.22) P, = 2p34 = pss + Pl
(2.23) Py = Py + Pis = P35+ Pl
(2.24) p3s = 2p = pss + P

From (1.1) (i=1, k=1) and (2.8) we get A; = 1+ pl,, so

(2.25) pio = 3p7; — L.
(1.2) (i=1, j=2, k=1) implies A1pi, = vap?, and

(2.26) vy = 3(3p7, — 1).

From (1.1) (i=2, k=1) we obtain vz = pi, +pi; and

(2.27) P2s = 203p1, — 1),
so (1.2) (i=1, j=2, k=3) it implies A1pis = vap?s
(2.28) pis = 2pi;.
The relation (1.1) (i=1, k=6) gives A; = pS5, so
(2.29) pis = 3p1

and from (1.1) (i=6, k=1) we get

(2.30) Vs = Pag-

and
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The relations (2.9) and (2.25) give
(2.31) p3s = 5pf; — 2
and from (2.10), (2.27) and (2.28) we obtain
(2.32) Pia = 2(2p1; — 1)

From (1.2) (i=2, j=4, k=2), (2.14), (2.26) and (2.32) we get

2 _ 4 3
V2P54 = V4Poy = Va2P74,

SO

(2~33) 3(317%1 - 1)(217%1 - 1) = U4P:1))2~

(1.2) (i=2, j=3, k=1) implies vap?s = v3p?,, so from (2.26) and (2.28) it follows

(2.34) 3(3pt, — D(2p11) = vapls.
. U3 2])%1
(2.33) and (2.34) give o W1 0
(2.35) vy = 2piyt, wy=(2pi, —1)t, tEN.

The relations (1.1) (i=1; k=3,4,5), (2.4), (2.8), (2.25), (2.28) and (2.29) imply

14(p11)” = 3pi, + (3piy — D)ply + 2071005 + (307, — plo)pis+

+(3p11 — Pia)pia + 30113071 — pla),
0

(2~36) 21’%1(17%1 -1- P?z) = P%3(3P%1 - P?z) - P%Bpi’&
From (1.1) (i=1; k=3,4,5), (2.5), (2.8), (2.25), (2.28) and (2.29) we get
49(1)%1)4 =
= (3p1, — Dphh[(3p1) — pla)pis + (3p1) — pia)pia + (3piy — pia)3pii]+

+2p7107:[(3p11 — Pis)pia + (3pTy — PLa)3pTh] + (3piy — plo)pis(3pT) — pra)3pi+
+3p71 1207107 + (3pT) — Plo)pls + (3piy — pis)pla + (371 — pia)3pT],

and we obtaln

(2.37) 2p7,[(3p7, — 1)piy — (97, — 2)(p7, + D] = plapispia.
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From (2.37) +p3,(2.36) we obtain
2P%1[_(P:1%2)2 + 2(217%1 - 1)1’:1))2 - (P%l - 2)(17%1 + 1)] = P%3P?2(3P%1 - P?2)~

Because of D = 6 it implies p3, # 0. (1.1) (i=1, k=3) gives p?, < 3p?, and we get

(p72)? = 2(2p7, — Dpfs + (p11 — 2)(p1, + 1)

(2.38) Pis = 2p7
' H (p12)? = 3p71p3,

From (1.2) (i=3, j=4, k=1) we get v3p3, = vapls and from (1.1) (i=1, k=3), (2.35)
we obtain

21)?175(317%1 - P?z) = (217%1 - 1)75174113,
SO

3pt, — vl
4 _ 5 2 9P11 12
(2.39) Pis = 2p1) 22, —1

The relations (2.38) and (2.39) give the equation

(p12)” — (4p1, + 1)(p12)” + [(p71)° + 8pT) — 2plat
+12(011)° = 3(p11)° = 3p1, + 21 =0

and
[pls — (p11 + DI(pT,)” — 311935 — 2(p11)” + Bpi; — 2] = 0.

Because of 0 < p?, < A; = 3p?, it must hold

0 < 17(p7;)” — 20p1; + 8 < 9(p7,)”

and

(2p1; — )(pf, —2) < 0.
But there are no p, € N for p?; = 1 and it must hold
(2.40) Pl =ph +1
(1.1) (i=1, k=3) and (2.40) give
(2.41) Pl =207, — 1
and from (2.39) and (2.40) it follows

(2.42) Pis = 2011
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The relations (1.1) (i=1, k=4) and (2.42) give

(2~43) Pils = P%1
and from (2.33) and (2.34) we obtain

24
2.44 vy = 18p3, — 244+ ———
( ) 3 11 P%1 +1
and

36
2.45 = 18pi, — 33+ :
( ) V4 P11 P+ 1
Substituting (2.40) and (2.42) in (2.37) we obtain
(2.46) pia = 2pi, +1
and from (1.1) (i=1, k=5) it follows
(2.47) P?6 = P%1 -1

Because diameter of G is D = 6 it holds pis > 0, so

(2.48) pi > 1.
From (1.2) (i=4, j=5, k=1) we get wvapjs = vspl, so, from (2.43), (2.45) and
(2.47) we obtain
3(3p%, — D(2pi; — Dpiy
(P% + 1)(217%1 +1)
and according to vz, vq,vs € N, (2.44), (2.45), (2.48) and (2.49) imply

(2.49) vs =

(2.50) P = 2.

The relations (1.1), (1.2), (2.1) - (2.50) give the following table of the nonzero
parameters of a graph G:

P%o =1 P%o =1 Pgo =1 Pio =1 Pgo =1 Pgo =1

P%z =5 P%1 =2 P?z =3 P%B =4 Pi’4 =5 P?s =6

P%B =10 P%B =4 P?z} =3 Pils =2 P?6 =1 Pg4 =15

P:ls4 =10 P%z =8 PSB =9 sz =6 PgB =10 P:633 =20=wvs3
P}Ls =5 P§4 =6 Pgs =3 P§4 =8 Pgs =5 Ag=—14
Pé6 =1 P:233 =12 Pg4 =9 P§6 =1 Pg4 =10 mg =6

A =6 pas =4 pag =1 pag =12 Ay =0 Ar=—6
my =1 pi4 =8 p25 =3 p§5 =4 my =20 my =1 = vg
Ay =4 Pas =1 Az =2 ph, =6 X =—2 v1 =6 = vs

ms =6 pgg, =2 mz =15 vg =1 ms =15 ve =15 = vy
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The realization of this table is the 6-dimensional unit cube. O

With respect to Theorems 1.9.- 1.11. and 2.1. it would be reasonable to conjec-
ture:

There ts only one table of parameters of an association scheme with 2k classes
(k > 2) so that the corresponding metrically regular bipartite graph of diameter
D = 2k has a metrically reqular square. The realization of this table is the 2k-
dimensional unit cube.
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