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NATURAL TRANSFORMATIONS TRANSFORMING
VECTOR FIELDS INTO AFFINORS ON THE
EXTENDED R-TH ORDER TANGENT BUNDLES

WLODZIMIERZ M. MIKULSKI

ABSTRACT. A classification of natural transformations transforming vector fields on
n-manifolds into affinors on the extended r-th order tangent bundle over n-manifolds
is given, provided n > 3.

0. The extended r-th order tangent bundle E” M over an n-dimensional manifold
M is defined as dual vector bundle E"M = (J"(M,R))*. The r-th order tangent
bundle T"M = (J"(M,R)g)* over M is a vector subbundle of E” M and we have a
natural decomposition E" M = T" M x R.. For r = 1 we obtain the time-dependent
tangent bundle E'M = TM x R.

In this paper we determined all natural transformations transforming vector
fields on n-dimensional manifolds into affinors (i.e. tensor fields of type (1.1) ) on
E". In item 6 we defined geometrically 2(r + 2) natural transformations trans-
forming vector fields on n-dimensional manifolds into affinors on E”. Then we
prove that all natural transformations transforming vector fields on n-manifolds
into affinors on E” are their linear combinations, the coefficients of which are ar-
bitrary smooth functions on R, provided n > 3. Any natural affinor on E” in
the sense of J. Gancarzewicz and I. Koldf, c.f. [1], determines a constant natural
transformation transforming vector fields into affinors on E”. Hence this paper is
a generalization of [1].

In items 1 — 4 we cite some definitions and propositions. In item 5 we in-
troduce the definition of natural transformations transforming vector fields on
n-dimensional manifolds into affinors on E”. The main result ( Theorem 6.1 ) is
formulated in item 6. In item 7 we make some preparations to prove the main
theorem. The proof of Theorem 6.1 is given in item 8.

All manifolds and maps are assumed to be of class C°. If M 1s a manifold,
we denote the vector space of all vector fields on M by X (M) . We denote the
category of all n-dimensional manifolds and their embeddings by M,,.
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I would like to thank Professor 1. Kolaf for corrections.

1. Let M be a manifold. The vector bundle # : E"M = (J"(M,R))* — M,
where J"(M,R) is the vector bundle of r-jets of mappings M — R, is called r-
th order extended tangent bundle of M. The target map 7 : J"(M,R) — R is
a vector bundle epimorphism of J" (M, R) onto the 1-dimensional vector bundle
M x R which admits a splitting defined by the r-jets of the constant function on M.
Hence kerf = J"(M,R)q is a vector subbundle of J" (M, R) such that J"(M,R) =
ker3 x R. The vector bundle T"M = (ker 5)* is called r-th order tangent bundle
over M. This is a vector subbundle of E” M and we have a natural decomposition
E"M =T"M x R, provided we have used the canonical identification of R with
R*. Every smooth map f: M — N induces a linear map

r € M, ¢ : N — R. The transposed linear map FLM — E;(x)N determines a
vector bundle homomorphism E” f : E" M — E”N covering f. One verifies easily
that the rule M — E"M, f — E"f is a bundle functor on the category of all
manifolds in the sense of [2]. Since E" f(T" M) C T"N for every f: M — N and
pullbacks of constant functions are constant functions, we have E” f = T" f X idgr
under the decomposition E"M =T" M x R.

2. An affinor on a manifold M is a tensor field of type (1.1) on M, i.e. a
section M — (T @ T*)(M) which is also interpreted as a vector bundle homomor-
phism T'M — TM covering the identity on M. Let F be a natural bundle over
n—dimensional manifolds, see e.g. [6]. Let us recall that a natural affinor on F
in the sense of [1] is a system of affinors Q@ on FM, for every n-manifold M,
satisfying the condition

(T(FHQTHFf ) oQu=QnoFf

for every embedding f : M — N.

In [1], the authors defined the following four natural affinors on E"|M,,.

I. Let bpp : T(T"M) — T(T" M) be the identity map. By means of the decom-
position T(E" M) = T(T" M) x TR, § = {63;} induces a natural affinor 6 = {63/}
on E"|M,.

II. Analogously, the identity affinor §® : TR — TR on R induces a natural
affinor 6® on E"|M,,. Let us observe that 6+ 6™ is the identity affinor on £” | M.

IIT. Let y € T"M and @ = n(y) € M. There is the natural linear isomorphism
Yy @ Vy(I"M) — T7 M between the vertical space V,(I"M) = T,(T; M) and
the fiber T7 M of T"M over z. The jet projection 3y : J'(M,R)g — J(M,R)o
induces an inclusion épr : TM = T'M — T7M. Now we define a linear map
Vary 1 Ty(T" M) — T,(1" M) as the composition

Ty (17 M) 25 T M2 M, (17 M) € Ty (17 M),
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Let Vag : T(T"M) — T(T"M) be defined by Var|T,(T" M) = Vary for any y €
T"M. The system V = {Vis} is a natural affinor on 77| M,, which induces a
natural affinor V on E"|M,,.

IV. Let Ly be the Liouville vector field on 7" M | i.e. the vector field determined
by the fibre homotheties. This is a natural vector field on 77 M. Then the system
L @ dt = {Ly ® dt} is a natural affinor on E"|M,, where ¢ is the canonical
coordinate on R.

Next, the authors proved the following proposition.

Proposition 2.1. ([1]) All natural affinors on E"|M,, are linear combinations of
6,6® V and L ®dt, the coefficients of which are arbitrary smooth functions on R..

3. Let F be a natural bundle over n-manifolds. Let us recall that a natural
transformation transforming vector fields on n-manifolds into vector fields on F
in the sense of [5] is a system of functions

Dy« X(M) — X(FM),

for every n-manifold M, satisfying the following two conditions:

(a) (Naturality condition) for any two n-manifolds M, N, two vector fields X €
X(M),Y € X(N) and any embedding f : M — N the assumption TfoX =Y o f
implies

T(Ff)oDu(X)=Dn(Y) o FFf,

(b) (Regularity condition) if U is a manifold and X : U x M — TM is a C*
map such that X; : M — TM, X;(y) = X(t,y), is a vector field on M for every
t € U, then the mapping

U x FM 3 (t,w) — Dar(Xe)(w) € T(FM)

1s of class C°°.

In [5], we have the following classification of natural transformations transform-
ing vector fields on n-manifolds into vector fields on T"|M,,, provided n > 2.

I. For s = 1,2,...,r the s-iterated differentiation X o X o ...o X(f)(x) of f :
M — R, f(#) = 0, with respect to X € X (M) gives a linear map J (M,R)y — R,

(s) (s)
i.e. an element Dy (X)(x) € Ti M. Hence we have a section D p(X) of T7M.
This section (using the fibre translations) one can extend to a vertical vector field

(s) (s)
DY,(X) on T" M. Of course, the family DY of functions

(s)
X(M) 3 X — DY(X) € X(T" M),

M € M, is a natural transformation transforming vector fields on n-ma-nifolds
into vector fields on 7" | M,,.
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IT. On T"M we have the Liouville vector field Ly € X (T" M) defined by the
fibre homotheties. Of course the family L of constant functions Ly of X (M),
M € M,, is a natural transformation transforming vector fields on n-manifolds
into vector fields on 7" | M,,.

III. On 77 we have also the complete lifting of vector fields defined by

0
T(X)= §|0Tr(exp tX),

where exp tX is the flow of X on M. This is also a natural transformation trans-
forming vector fields on n-manifolds into vector fields on 77| M,,.
In [5], we proved the following proposition.

Proposition 3.1. ([5]) All natural transformations transforming vector fields on

€3] (r)

n-manifolds into vector fields on 17| M,, are linear combinations of DV ..., DV L
and T", the coefficients of which are arbitrary real numbers, provided n > 2.

4. Let F be a natural bundle over n—manifolds. Let us recall that a natural
transformation transforming vector fields on n-manifolds into functions on F is a
system of functions

Ly X(M) — C(FM),

for every n-manifold M, such that for any two n-manifolds M, N, two vector
fields X € X(M),Y € X(N) and any embedding f : M — N the assumption
TfoX =Y o fimplies

Ly(X)=LNyY)oFf.

We have the following proposition.

Proposition 4.1. ([4]) Let F|M,, be the restriction of a bundle functor (defined
on all manifolds and all maps) to M,, n > 2. Let L = {Lp} be a natural
transformation transforming vector fields on n-manifolds to functions on F|M,,.
Then there exists a map h : FR® — R such that Ly(X) = h o Fqp for any
M € M, and any X € X (M), where qpy : M — R® = {0} is the map. In
particular, Ly = const on X(M).

5. Let F be a natural bundle over n-dimensional manifolds. A natural transfor-
mation transforming vector fields on n-manifolds into affinors on F is a system of
affinors Q7 (X) on FM , for every n-manifold M and every vector field X € X(M),
satisfying the following two conditions:

(a) (Naturality condition) for every embedding f: M — N of two n-manifolds
and every vector fields X € X (M) and ¥V € X(N) the assumption Tfo X =Y o f
implies

(T(FH@T(FIH)) o Qu(X) = @n(Y) o FF,
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(b) (Regularity condition) if U is a manifold and X : U x M — TM is a C*°
map such that X; : M — TM, X;(y) = X(t,y), is a vector field on M for every
t € U, then the mapping

U x T(FM) 5 (t,w) — Qu(Xy)(w) € T(FM)

1s of class C°°.
Since any non-vanishing vector field is (locally) % with respect to some co-
ordinate system, then (by the naturality condition) we get the following lemma.

(The proof is similar to the proof of Lemma 2.1 in [5].)

Lemma 5.1. Let Q',Q? be two natural transformations transforming vector
fields on n-manifolds into affinors on F such that

Qr(01)|T, (FR") = Qra(01)|T,(FR")

for any v € FyR", where 01 = % is the canonical vector field on R™. Then
Q' = Q.

If {@ar} is a natural affinor on F, then QM(X) =Qu, M eM,, X € XY(M),
is a natural transformation transforming vector fields on n-manifolds into affinors
on F. Conversely, if Qu(X), M € M,,, X € X(M), is a natural transformation
transforming vector fields on n-manifolds into affinors on F, then Qar(03r), M €
M, is a natural affinor on F, where 0y € X' (M) is the 0 vector field.

Our problem is to find all natural transformations transforming vector fields on
n-manifolds into affinors on E"|M,,.

6. First we define 2(r + 2) natural transformations transforming vector fields
on n-manifolds into affinors on E"|M,,.

I. The natural affinors 5, 6B described in item 2 are natural transformations
transforming vector fields on n—manifolds into affinors on E"|M,,.

IT. Let D € {L,T", (D)V, s = 1,...,7} be a natural transformation transforming
vector fields on n—manifolds into vector fields on T"|M,,, see item 3. Then the
system D ® dt = {Dp(X) ® dt} is a natural transformation transforming vector
fields on n-manifolds into affinors on E”| M, where ¢ is the canonical coordinate
on R.

I Let s = 0,1,...,7r— 1. Let X € Y(M). Let y € T"M and =z = n(y) € M.
There is the natural isomorphism ¢, : V,(I"M) — T, M between the vertical
space V, (T" M) = T,(T; M) and the fiber T; M of T" M over z. For any v € T, M,

we have the (naturally dependent on z,v, X ) linear map ins o x(v) : Jo (M, R)o —
R given by

v x (V)(557) = o(X* (7)),
where X(5) = X o ...0 X, s-times. Hence we have the (naturally dependent on

s 0]
x and X ) linear map ipro x @ ToM — TP M. ( We see that iy x = im|TeM,



64 WLODZIMIERZ M. MIKULSKI

where i3 : TM — T" M is the natural inclusion defined in item 2.) Now, we define

(s)
a linear map @, y(X) : Ty (1" M) — T, (1" M) as the composition

g -1
Mz, X

T, (T7 M) 25 b 205 g v (7 ) € T (T M.

Let (52)M(X) cT(T"M) — T(T" M) be defined by %)M(X)|Ty(T’“M) = (Cf))yyM(X)

(s) (s)
for any y € T" M. The system @ = {@;(X)} is a natural transformation trans-
forming vector fields on n-manifolds into affinors on 7" |M,, which induces the

5
natural transformation @1 transforming vector fields on n-manifolds into affi-

(s) (s)
nors on E"|M,,. Thus Q1 (X)(v,w) = (Qm(X)(v),0) € Ty, E™M for every
(v,w) €Ty "M =T, T"M x TR, (y,7) € "M =T1T"M x R, M € M,, and
(0) -
X € X(M). Of course, QT =V (see item 2).
We remark that if f : R — R is a mapping and ¢ a natural transformation
transforming vector fields on n-manifolds into affinors on E”|M,,, then f@Q is a

natural transformation transforming vector fields on n-manifolds into affinors on
E"|M,, given by

(fQ)ar (X) (v, w) = f(7)Qu (X) (v, w)

for any (v, w) € Tiy "M = T,T"M xT; R, (y,7) € "M =T"M xR, M € M,
and X € XY(M).

The main result of this paper is the following theorem.

Theorem 6.1. All natural transformations transforming vector fields on n-ma-
nifolds into affinors on E”| M, are linear combinations of 6, 6%, L @ dt, T" @ dt,

(s) (s)
DY @dt,s = 1,...,r,and Qt,s = 0,1,...,r — 1, the coefficients of which are
arbitrary smooth functions on R, provided n > 3.

Since any natural transformation transforming vector fields on n-manifolds into
affinors on 77| M,, induces the natural transformation transforming vector fields
on n-manifolds into affinors on E”|M,, (constant with respect to the coordinate
on R), we have the following corollary of Theorem 6.1.

Corollary 6.1. All natural transformations transforming vector fields on n-mani-

s
folds into affinors on T"| M, are linear combinations of § (see item 2) and Q) ,s =
0,1,...,7— 1, the coefficients of which are arbitrary real numbers, provided n > 3.

The proof of Theorem 6.1 will occupy the rest of the paper.

7. We start with the proof of the following technical proposition.
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Proposition 7.1. Let ) be a natural transformation transforming vector fields
on n—manifolds into affinors on T"|M,,, n > 3. Suppose that

(7.1) Qr~(0r~) = 0,
(7.2) Qr~(X)(Vo(T"R")) C {0}

for any X € X(R"), where Or» € X(R") is the 0 vector field and Vo(T"R™)

denotes the vertical space of T’“ R" at 0 € T{R". Then there exist real numbers
(7“ 5]

Al, Ar 1SUCh thatQ_AlQ—l— —|—A7‘ 1 Q

To prove this proposition we need some preparations.
Throughout the whole of this item we shall keep the following notation. Let
q = card(S), where

S={a=(ag,...0n) e (NU{O)": 1< |a| =1+ ...+ ap <7}

For every o = (a1,...,c,) € S let 2% : R® — R be given by z%(y!,....y") =
(¥ ... (y")o . Let X* :R? — R (a € S) be the projection onto a-th factor. By
Q we denote the linear isomorphism

Q:TGR" = (JJ(R",R)g)" — RY, Q(w) = (w(jgz®); « € S).
Givenl €N and i =1,...,nlet g0§ :R™ — R” be defined by
pi(y) = y+ (") e,

where y = (¢}, ..., y") € R and ¢; = (0, ..., 1,...,0) € R™, 1 in i-th position. In [5],
we proved the following lemma.

Lemma 7.1. (Lemma 5.1 in [5]) Let h : R? — R™, m € N, be a polynomial in
the X%, a € S, such that
0 0 P
3XP ——h =0 and X ﬁ(thoTogoloQ H=0
for all § € S with |8| = r and all integers | > 2 and i = 1,...,n. Then h = const.

Using this lemma we prove the following one.

Lemma 7.2. Let () be as in Proposition 7.1. Then

(7.3) Qr (t01)(Vu (T"R™)) = {0},

(7.4) Qe (101) (17 (s0)(w)) € Vi (T"R?)

for any t,s € R and w € TfR", where T" X is the complete lift of X to T"R".

Proof. For every t € R we define F; : R? x R — R"” to be the composition
R! x R X2 rRe o TURY

(v )R L) (ppry e T R = R7
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where J is the diffeomorphism given by J(w, u) = (¥, )™ (u) (= ;’—T|T:0(w + Tu)).
Then the map F' : R x R x R? — R”, F(t,.) = F;, t € R, is of class C°°,
because of the regularity condition. From the naturality condition with respect to
the homotheties Tidp=, 7 € R — {0}, it follows that

F(rt, rlelye 718128 .« g e S)=71Ft,Y* 7% a,B€S)

for all 7 € R — {0}, € R and (Y*;a € 5),(Z°;3 € S) € R?. By the ho-
mogeneous function theorem, c.f. [3], F' is linear with respect to ¢,Y¢i, Z¢  for
j,k =1,...,n and it is independent of the Y*, Z” with |a| > 1 and |3| > 1. By
(7.1), F(0,Y®,Z%%; 4k =1,...,n) = 0. Since Qr~(td1) is an affinor, F'(¢,0,0) = 0.
Therefore ' = 0. Hence

Qr~(t01) (Vi (T"R™)) C Vi (T"R™)

for allt € R and w € TfR"™.
For any t € R and w € TJR" let H(t,w) = (Hg(t,w))a,ﬁ € S be the matrix
of the linear map

Qr(101)|Vey (TTR™) : Vo, (T"R™) — Vi, (T"R™)

with respect to the basis ((Q_l)*%)(w), vy ES.

We see that the formula (7.3) will be proved after proving that f](t, w) = 0 for
all t € R and w € TfR™. Consider the map H : R x R? — gl(¢) = R! ® (R9)* =
R¢

Ht,YP;5€8)=H(tQ (Y?;5€9)).

H is of class C'°°| because of the regularity condition. By the naturality condition
with respect to the homotheties, we obtain that

HE(rt, 7MYy € 8) = 7l g (1, v,y € S)

foranyr e R—{0},te R, (Y;vy€ S)€R?and o, 3 € S, where H = (H;a, 8 €
S). Since |a|—|5| < rforall o, 5 € S and H(0,.) = 0 (because of the formula (7.1)),
then (by the homogeneous function theorem) H(¢,.) : R? — R? is a polynomial
(in the X%, o € S) and
0
s HE ) =0

for any ¢t € R and any v € S with |y| = r. Since n > 2, then g0§ preserves Jp, and
then (by the naturality condition)

H(t,)oQoT@ioQ ™t = (QoTh¢loQ )@ (QoTh(p) Lo ) o H(t,.)

forallt € R, ¢ = 1,...,n and | € N. Therefore H(t,.) = const for any t € R,
because of Lemma 7.1. On the other hand, from (7.2) we get that H(¢,0) = 0 for
any t € R. Hence H = 0. The formula (7.3) is proved.



NATURAL TRANSFORMATIONS TRANSFORMING VECTOR FIELDS 67

It remains to prove the formula (7.4). Let us consider the map G : RxRxR? —
R” given by
G(t, s, Y% a €l
=TroQrn(t)(T"(50)(Q (Y a € S))) € [HR" = R™.
Using the same arguments as for F', we deduce that G = 0, as well. a
We are now in position to prove Proposition 7.1. We define the map K : R x
R x R? — R? by
K(t,s,Y* a €5)
= Qo i (yeraes) 0 Qralt0n) (17 (s5)(Q (Y50 € 5)),
where 1y, : Vi, (T"R") — Ty R” is the isomorphism. By the formula (7.4) K is

well-defined. Using similar arguments as for H we see that K(¢,s,.) : R? — R is
a polynomial (in the X7,v € S) and

o
W(A (t,s,.))=0

for all 8 € S with |3] = r and all {,s € R. Since n > 3, then g0§ preserves J; and
32, and then (by the naturality condition)

K(t,s,.)0Q0TipioQ L =QoTiyioQ o K(t,s,.)

foralli =1,...,n,l € Nand allt,s € R. Then K(¢,s,.) = const for every t,s € R,
because of Lemma 7.1.

By the naturality condition with respect to the homotheties R™ 3 (¢!, ..., y") —

(v %, 3, ., my") € R*, 7 € R — {0}, it follows that

K%(t,s) = 7ot Fan K(¢ s)
for all & = (aq, ...,p) € S, t,s € R and 7 € R — {0}, where K = (K*;a € S).
Therefore K¢ =0 for all « € S with az+ ...+ o, Z0.

Since Qrn(td1) is an affinor, then K is linear with respect to s. Then using the
homotheties R" 3 (y!,...,y") — (¥*, 7v%, 4%, ..., y") € R", 7 € R — {0}, we get
(similarly as above) that K¢ = 0 for all & = (a1, @2, 0) € S with as # 1.

Similarly, using Tidg~ and (7.1) we get K(®10) = 0.

(s)
On the other hand by the definition of @ it is easy to verify that

(s) T -1y 8 1 (s,1,0)
(75) Qo 'l/)ﬂ—l(yﬂ;ﬁes) o QRn(ﬁl)(T 62(9 (Y ,6 S S))) = (;60/ o e S)

for any (s,1,0) € S and (Y?;3 € S) € RY, where 65 1s the Kronecker delta.
Therefore

(7.6) Qre ()T o) = 3 Ay O (81)(T7 01 ()

s=1
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for any w € Ty R"”, where A; = S!K(s’l’o)(l, 1) e R.

If (pt,...,u"),e1,ea € R™ are linearly independent, then there exists a linear
isomorphism ¢, : R® — R” such that ¢, preserves 0; and

o0y = Zwa ° P

Hence by the naturality condition with respect to ¢, it follows from (7.6) that
Q)1 (05)00) = S0 B (0

(s)
for any w € Ty R". Then from the formula (7.3) and the similar formula for @,
s=0,...,r—1, it follows that

r—1

(s)
Qre(O)[Tu(TTR?) = 3 A, Qre (90)| T (T7R?)
s=1
for any w € TfR". The proposition is proved, because of Lemma 5.1. |

8. Now, we prove Theorem 6.1. Let us consider @ = {Qn(X)} a natural trans-
formation transforming vector fields on n-manifolds into affinors on E"|M,,. Let
Q" = {Qu(05r)} be the natural affinor on E”|M,, where 0yy € X (M) is the
0-vector field. Using Proposition 2.1 and replacing @ by Q — Q° one can assume
that

(8.1) Qu(0y) = 0:T(E"M) — T(E"M), for M € M,.

Using the isomorphisms Tiy, ) E"M = T, (17" M) x T; R = T, (T" M) x R, where
(w,7) € E"M = T" M x R, one can define a natural transformation Ly : XY (M) —
C®(T(E"M)), M € M, transforming vector fields on n-manifolds into functions
on TE"|M,, by

Ly(X)(v) = the R — component of Qur(X)(v),

where X € X'(M), v € Tiw,(E"M), (w,7) € E" M. Then by Proposition 4.1 and
(8.1)

(8.2) {Lar} = 0.

Therefore for any 7 € R we have a natural transformation D}, : X (M) —
X(T"M), M € M,, transforming vector fields on n-manifolds into vector fields
on T"| M, given by

(w, 7)) € Ty (T"M) x {0} = Ty, (T" M),

SIS0

Dy (X)(w) = @u (X)(
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where (w, 7)€ "M =T"M xR, M € M,,, X € X(M) and i is the canonical
vector field on T"M x R, at(w T) = §t|f oft = (w, 7+ 1)]. Slnce Qr(03r) = 0,

Dj3;(0ar) = 0. Then (by Proposition 3.1), there exist the functions a,¢q,..., ¢ :
R — R (not necessarily smooth) such that

(1) (r)
Dy (X)(w) = a(r) T3 X (w) + ex(7) Dy (X)(w) + o+ ¢ (7) Dy (X)(w).

<

(s)
Since Tk~ (81)(0), D%.(81)(0), where s = 1,...,7,0 € TyR", are linearly indepen-
dent, then a,cq, ..., ¢, are of class C'™°. Therefore replacing @ by @ — 7" ® dt —

1 (r)
en DY @dt—...— ¢, DV @ dt one can assume that
0
(8.3) QM(X)(E):O’ for any M € M,,, X € X(M).

For any M € M, X € X(M), x € M, w € T'M and 7 € R we denote the
composition of linear mappings

T M L Vo (T M)

QM(X)

= Vo(T" M) x {0} 222 T(T7 M) x {0} 25 T, M 25 77 M2 v (T7 M),

where {0} C T;R and 0 € Ty M, by 83y x,, : Te M — V(1" M). (This com-
position is well-defined because of (8.2). ) For any 7 € R we define a natural
transformation £, : XY(M) — X(T"M), M € M,, transforming vector fields on
n-manifolds into vector fields on T"|M,, by

g&(X)(w) = 6]7;4,)(,10 (w)a
where M € My, X € Y(M), x € M and w € TJ M. Since £ is of vertical
type and £§.(01)(0) = 0 (0 € TER™) and E},(0ar) = 0 (for Qar(037) = 0) and
(s)
DY.(81)(0),s = 1,...,7 (0 € TyR™), are linearly independent, then (by Proposition
3.1) &7 = 0. Therefore
Qu(X)(Vio,r) (E"M)) C Vio,r)(E" M)

for any M € M,,, X € ¥Y(M), x € M and 7 € R, where 0 € T M. Therefore
for any M € My, X € XY(M), 2z € M, w € T'M and 7 € R we can define
Yo xw oM — Vi, T7M to be the composition of linear mappings

QM(X)

T M LV (T M) = Vo(T" M) x {0} 222 v (17 M) % {0} 17 M 2 v, (T7 M),

where {0} C T;R and 0 € T] M. Then for any 7 € R we have a natural transforma-
tion G}, : XY(M) — X(T" M), M € M, transforming vector fields on n-manifolds
into vector fields on 7" |M,, such that

G (X)(w) = 71, x,0 (W)
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forany M € M,,, X € XY(M), 2z € M and w € T, M. Then by the same arguments
as for £7, G7 = 0. Therefore

(84) Qu(X)(Vo,n (E"M)) = {0}

for any M € My, X € X(M), x € M and 7 € R, where 0 € T/ M and {0} C
Vio,n)(E"M).

It follows from (8.2) that for every 7 € R we have a natural transformation
Qyu(X), M e M,, X € ¥Y(M), transforming vector fields into affinors on 77| M,
such that

Qu(X)(v) = Qu(X)(v) € Tu(T"M) = Ty (T" M) x {0} C Tiw,7) (E" M)

forany M e M, X € Y(M),w € T"M and v € T, (T" M) = T, (T" M) x {0} C
Tw,m(E"M). From (8.1) and (8.4) we deduce that Q7 satisfies the assumptions
of Proposition 7.1 with @7 playing the role of @) for every 7 € R. Then there exist
ALy oy Ar—1 0 R — R (not necessarily smooth) such that

05 (X) = M (P Gar(X) t ot Aea (1) @ ()

for any M € M,, and X € X(M). It follows from (7.5) that

(s)
Qr~(01)(T"52(0)) € Vo(T"R"™), where 0 e TyR", s =1, ...,7r— 1,

are linearly independent. Therefore A1, ..., A._1 are of class C'™°. Of course, () =
(D (r=1) (s)
MQT + ...+ A_-1 Q@ T, because of (8.3) and the definition of Q7. O
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