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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 59 { 70NATURAL TRANSFORMATIONS TRANSFORMINGVECTOR FIELDS INTO AFFINORS ON THEEXTENDED R{TH ORDER TANGENT BUNDLESW lodzimierz M. MikulskiAbstract. A classi�cation of natural transformations transforming vector �elds onn-manifolds into a�nors on the extended r-th order tangent bundle over n-manifoldsis given, provided n � 3.0. The extended r-th order tangent bundle ErM over an n-dimensionalmanifoldM is de�ned as dual vector bundle ErM = (Jr(M;R))�. The r-th order tangentbundle T rM = (Jr(M;R)0)� over M is a vector subbundle of ErM and we have anatural decomposition ErM = T rM �R. For r = 1 we obtain the time-dependenttangent bundle E1M = TM �R.In this paper we determined all natural transformations transforming vector�elds on n-dimensional manifolds into a�nors (i.e. tensor �elds of type (1:1) ) onEr. In item 6 we de�ned geometrically 2(r + 2) natural transformations trans-forming vector �elds on n-dimensional manifolds into a�nors on Er . Then weprove that all natural transformations transforming vector �elds on n-manifoldsinto a�nors on Er are their linear combinations, the coe�cients of which are ar-bitrary smooth functions on R, provided n � 3. Any natural a�nor on Er inthe sense of J. Gancarzewicz and I. Kol�a�r, c.f. [1], determines a constant naturaltransformation transforming vector �elds into a�nors on Er. Hence this paper isa generalization of [1].In items 1 | 4 we cite some de�nitions and propositions. In item 5 we in-troduce the de�nition of natural transformations transforming vector �elds onn-dimensional manifolds into a�nors on Er . The main result ( Theorem 6.1 ) isformulated in item 6. In item 7 we make some preparations to prove the maintheorem. The proof of Theorem 6.1 is given in item 8.All manifolds and maps are assumed to be of class C1. If M is a manifold,we denote the vector space of all vector �elds on M by X (M ) . We denote thecategory of all n-dimensional manifolds and their embeddings by Mn.1991 Mathematics Subject Classi�cation : 58A20, 53A55.Key words and phrases: natural bundle, natural transformation.Received February 3, 1992. 59



60 W LODZIMIERZ M. MIKULSKII would like to thank Professor I. Kol�a�r for corrections.1. Let M be a manifold. The vector bundle � : ErM = (Jr(M;R))� ! M ,where Jr(M;R) is the vector bundle of r-jets of mappings M ! R, is called r-th order extended tangent bundle of M . The target map � : Jr(M;R) ! R isa vector bundle epimorphism of Jr(M;R) onto the 1-dimensional vector bundleM�R which admits a splitting de�ned by the r-jets of the constant function onM .Hence ker� = Jr(M;R)0 is a vector subbundle of Jr(M;R) such that Jr(M;R) =ker� �R. The vector bundle T rM = (ker �)� is called r-th order tangent bundleover M . This is a vector subbundle of ErM and we have a natural decompositionErM = T rM � R; provided we have used the canonical identi�cation of R withR�. Every smooth map f :M ! N induces a linear mapJrf(x)(N;R) 3 jrf(x)'! jrx(' � f) 2 Jrx(M;R);x 2 M; ' : N ! R. The transposed linear map ErxM ! Erf(x)N determines avector bundle homomorphism Erf : ErM ! ErN covering f . One veri�es easilythat the rule M ! ErM , f ! Erf is a bundle functor on the category of allmanifolds in the sense of [2]. Since Erf(T rM ) � T rN for every f : M ! N andpullbacks of constant functions are constant functions, we have Erf = T rf � idRunder the decomposition ErM = T rM �R.2. An a�nor on a manifold M is a tensor �eld of type (1:1) on M , i.e. asection M ! (T 
T �)(M ) which is also interpreted as a vector bundle homomor-phism TM ! TM covering the identity on M . Let F be a natural bundle overn�dimensional manifolds, see e.g. [6]. Let us recall that a natural a�nor on Fin the sense of [1] is a system of a�nors QM on FM , for every n-manifold M ,satisfying the condition(T (Ff) 
 T �(Ff�1)) �QM = QN � Fffor every embedding f :M ! N .In [1], the authors de�ned the following four natural a�nors on ErjMn.I. Let �M : T (T rM )! T (T rM ) be the identity map. By means of the decom-position T (ErM ) = T (T rM )� TR, � = f�Mg induces a natural a�nor ~� = f~�Mgon ErjMn.II. Analogously, the identity a�nor �R : TR ! TR on R induces a naturala�nor ~�R on ErjMn: Let us observe that ~�+ ~�R is the identity a�nor on Er jMn.III. Let y 2 T rM and x = �(y) 2M . There is the natural linear isomorphism y : Vy(T rM ) ! T rxM between the vertical space Vy(T rM ) = Ty(T rxM ) andthe �ber T rxM of T rM over x. The jet projection �1 : Jr(M;R)0 ! J1(M;R)0induces an inclusion iM : TM = T 1M ! T rM . Now we de�ne a linear mapVM;y : Ty(T rM )! Ty(T rM ) as the compositionTy(T rM ) Ty��!T�(y)M iM�!T r�(y)M  �1y�!Vy(T rM ) � Ty(T rM ):



NATURAL TRANSFORMATIONS TRANSFORMING VECTOR FIELDS 61Let VM : T (T rM ) ! T (T rM ) be de�ned by VM jTy(T rM ) = VM;y for any y 2T rM . The system V = fVMg is a natural a�nor on T rjMn which induces anatural a�nor ~V on ErjMn.IV. Let LM be the Liouville vector �eld on T rM , i.e. the vector �eld determinedby the �bre homotheties. This is a natural vector �eld on T rM . Then the systemL 
 dt = fLM 
 dtg is a natural a�nor on Er jMn, where t is the canonicalcoordinate on R.Next, the authors proved the following proposition.Proposition 2.1. ([1]) All natural a�nors on ErjMn are linear combinations of~�; ~�R; ~V and L
dt, the coe�cients of which are arbitrary smooth functions on R.3. Let F be a natural bundle over n-manifolds. Let us recall that a naturaltransformation transforming vector �elds on n-manifolds into vector �elds on Fin the sense of [5] is a system of functionsDM : X (M )! X (FM );for every n-manifoldM , satisfying the following two conditions:(a) (Naturality condition) for any two n-manifoldsM;N , two vector �elds X 2X (M ), Y 2 X (N ) and any embedding f :M ! N the assumption Tf �X = Y �fimplies T (Ff) � DM (X) = DN (Y ) � Ff;(b) (Regularity condition) if U is a manifold and X : U �M ! TM is a C1map such that Xt : M ! TM , Xt(y) = X(t; y), is a vector �eld on M for everyt 2 U , then the mappingU �FM 3 (t; w)!DM (Xt)(w) 2 T (FM )is of class C1.In [5], we have the following classi�cation of natural transformations transform-ing vector �elds on n-manifolds into vector �elds on T rjMn; provided n � 2:I. For s = 1; 2; :::; r the s-iterated di�erentiation X � X � ::: � X(f)(x) of f :M ! R, f(x) = 0, with respect to X 2 X (M ) gives a linear map Jrx(M;R)0 ! R,i.e. an element (s)DM (X)(x) 2 T rxM . Hence we have a section (s)DM (X) of T rM .This section (using the �bre translations) one can extend to a vertical vector �eld(s)DVM(X) on T rM . Of course, the family (s)DV of functionsX (M ) 3 X ! (s)DVM (X) 2 X (T rM );M 2 Mn, is a natural transformation transforming vector �elds on n-ma-nifoldsinto vector �elds on T rjMn.



62 W LODZIMIERZ M. MIKULSKIII. On T rM we have the Liouville vector �eld LM 2 X (T rM ) de�ned by the�bre homotheties. Of course the family L of constant functions LM of X (M ),M 2 Mn, is a natural transformation transforming vector �elds on n-manifoldsinto vector �elds on T rjMn.III. On T r we have also the complete lifting of vector �elds de�ned byT r(X) = @@t j0T r(exp tX);where exp tX is the 
ow of X on M . This is also a natural transformation trans-forming vector �elds on n-manifolds into vector �elds on T rjMn.In [5], we proved the following proposition.Proposition 3.1. ([5]) All natural transformations transforming vector �elds onn-manifolds into vector �elds on T r jMn are linear combinations of (1)DV ; :::; (r)DV ; Land T r, the coe�cients of which are arbitrary real numbers, provided n � 2.4. Let F be a natural bundle over n�manifolds. Let us recall that a naturaltransformation transforming vector �elds on n-manifolds into functions on F is asystem of functions LM : X (M )! C1(FM );for every n-manifold M , such that for any two n-manifolds M;N , two vector�elds X 2 X (M ), Y 2 X (N ) and any embedding f : M ! N the assumptionTf �X = Y � f implies LM (X) = LN (Y ) � Ff:We have the following proposition.Proposition 4.1. ([4]) Let FjMn be the restriction of a bundle functor (de�nedon all manifolds and all maps) to Mn, n � 2. Let L = fLMg be a naturaltransformation transforming vector �elds on n-manifolds to functions on FjMn.Then there exists a map h : FR0 ! R such that LM(X) = h � FqM for anyM 2 Mn and any X 2 X (M ), where qM : M ! R0 = f0g is the map. Inparticular, LM = const on X (M ).5. Let F be a natural bundle over n-dimensional manifolds. A natural transfor-mation transforming vector �elds on n-manifolds into a�nors on F is a system ofa�nors QM (X) on FM , for every n-manifoldM and every vector �eld X 2 X (M ),satisfying the following two conditions:(a) (Naturality condition) for every embedding f :M ! N of two n-manifoldsand every vector �elds X 2 X (M ) and Y 2 X (N ) the assumption Tf �X = Y � fimplies (T (Ff) 
 T �(Ff�1)) �QM (X) = QN (Y ) � Ff;



NATURAL TRANSFORMATIONS TRANSFORMING VECTOR FIELDS 63(b) (Regularity condition) if U is a manifold and X : U �M ! TM is a C1map such that Xt : M ! TM , Xt(y) = X(t; y), is a vector �eld on M for everyt 2 U , then the mappingU � T (FM ) 3 (t; w)! QM(Xt)(w) 2 T (FM )is of class C1.Since any non-vanishing vector �eld is (locally) @@x1 with respect to some co-ordinate system, then (by the naturality condition) we get the following lemma.(The proof is similar to the proof of Lemma 2.1 in [5].)Lemma 5.1. Let Q1; Q2 be two natural transformations transforming vector�elds on n-manifolds into a�nors on F such thatQ1Rn(@1)jTv(FRn) = Q2Rn(@1)jTv(FRn)for any v 2 F0Rn, where @1 = @@x1 is the canonical vector �eld on Rn. ThenQ1 = Q2.If fQMg is a natural a�nor on F , then ~QM(X) = QM , M 2 Mn, X 2 X (M ),is a natural transformation transforming vector �elds on n-manifolds into a�norson F . Conversely, if QM (X), M 2 Mn, X 2 X (M ), is a natural transformationtransforming vector �elds on n-manifolds into a�nors on F , then QM(0M ); M 2Mn, is a natural a�nor on F , where 0M 2 X (M ) is the 0 vector �eld.Our problem is to �nd all natural transformations transforming vector �elds onn-manifolds into a�nors on Er jMn.6. First we de�ne 2(r + 2) natural transformations transforming vector �eldson n-manifolds into a�nors on ErjMn.I. The natural a�nors ~�; ~�R described in item 2 are natural transformationstransforming vector �elds on n�manifolds into a�nors on ErjMn.II. Let D 2 fL; T r; (s)DV ; s = 1; :::; rg be a natural transformation transformingvector �elds on n�manifolds into vector �elds on T r jMn, see item 3. Then thesystem D 
 dt = fDM (X) 
 dtg is a natural transformation transforming vector�elds on n-manifolds into a�nors on ErjMn, where t is the canonical coordinateon R.III. Let s = 0; 1; :::; r� 1. Let X 2 X (M ). Let y 2 T rM and x = �(y) 2 M .There is the natural isomorphism  y : Vy(T rM ) ! T rxM between the verticalspace Vy(T rM ) = Ty(T rxM ) and the �ber T rxM of T rM over x. For any v 2 TxM ,we have the (naturally dependent on x; v;X ) linear map siM;x;X(v) : Jrx(M;R)0 !R given by siM;x;X(v)(jrx
) = v(X(s)(
));where X(s) = X � ::: � X, s-times. Hence we have the (naturally dependent onx and X ) linear map siM;x;X : TxM ! T rxM . ( We see that 0iM;x;X = iM jTxM ,



64 W LODZIMIERZ M. MIKULSKIwhere iM : TM ! T rM is the natural inclusion de�ned in item 2.) Now, we de�nea linear map (s)Qy;M(X) : Ty(T rM )! Ty(T rM ) as the compositionTy(T rM ) Ty��!TxM siM;x;X����!T rxM  �1y�!Vy(T rM ) � Ty(T rM ):Let (s)QM (X) : T (T rM ) ! T (T rM ) be de�ned by (s)QM (X)jTy(T rM ) = (s)Qy;M(X)for any y 2 T rM . The system (s)Q = f(s)QM (X)g is a natural transformation trans-forming vector �elds on n-manifolds into a�nors on T r jMn which induces thenatural transformation (s)Q+ transforming vector �elds on n-manifolds into a�-nors on ErjMn. Thus (s)Q+M (X)(v; w) = ((s)QM (X)(v); 0) 2 T(y;�)ErM for every(v; w) 2 T(y;�)ErM = TyT rM � T�R, (y; � ) 2 ErM = T rM �R, M 2 Mn andX 2 X (M ). Of course, (0)Q+ = ~V (see item 2).We remark that if f : R ! R is a mapping and Q a natural transformationtransforming vector �elds on n-manifolds into a�nors on Er jMn, then fQ is anatural transformation transforming vector �elds on n-manifolds into a�nors onErjMn given by (fQ)M (X)(v; w) = f(� )QM (X)(v; w)for any (v; w) 2 T(y;�)ErM = TyT rM�T�R, (y; � ) 2 ErM = T rM�R,M 2Mnand X 2 X (M ).The main result of this paper is the following theorem.Theorem 6.1. All natural transformations transforming vector �elds on n-ma-nifolds into a�nors on ErjMn are linear combinations of ~�, ~�R, L 
 dt, T r 
 dt,(s)DV 
 dt; s = 1; :::; r; and (s)Q+; s = 0; 1; :::; r � 1, the coe�cients of which arearbitrary smooth functions on R, provided n � 3.Since any natural transformation transforming vector �elds on n-manifolds intoa�nors on T rjMn induces the natural transformation transforming vector �eldson n-manifolds into a�nors on Er jMn (constant with respect to the coordinateon R), we have the following corollary of Theorem 6.1.Corollary 6.1. All natural transformations transforming vector �elds on n-mani-folds into a�nors on T rjMn are linear combinations of � (see item 2) and (s)Q; s =0; 1; :::; r� 1, the coe�cients of which are arbitrary real numbers, provided n � 3.The proof of Theorem 6.1 will occupy the rest of the paper.7. We start with the proof of the following technical proposition.



NATURAL TRANSFORMATIONS TRANSFORMING VECTOR FIELDS 65Proposition 7.1. Let Q be a natural transformation transforming vector �eldson n�manifolds into a�nors on T rjMn, n � 3. Suppose thatQRn(0Rn) = 0;(7.1) QRn(X)(V0(T rRn)) � f0g(7.2)for any X 2 X (Rn); where 0Rn 2 X (Rn) is the 0 vector �eld and V0(T rRn)denotes the vertical space of T rRn at 0 2 T r0Rn. Then there exist real numbers�1; :::; �r�1 such that Q = �1(1)Q + :::+ �r�1(r�1)Q .To prove this proposition we need some preparations.Throughout the whole of this item we shall keep the following notation. Letq = card(S); whereS = f� = (�1; :::; �n) 2 (N [ f0g)n : 1 � j�j = �1 + :::+ �n � rg:For every � = (�1; :::; �n) 2 S let x� : Rn ! R be given by x�(y1; :::; yn) =(y1)�1 :::(yn)�n . Let X� : Rq ! R (� 2 S) be the projection onto �-th factor. By
 we denote the linear isomorphism
 : T r0Rn = (Jr0 (Rn;R)0)� ! Rq; 
(w) = (w(jr0x�);� 2 S):Given l 2N and i = 1; :::; n let 'il : Rn ! Rn be de�ned by'il(y) = y + (yn)lei;where y = (y1; :::; yn) 2 Rn and ei = (0; :::; 1; :::; 0)2 Rn, 1 in i-th position. In [5],we proved the following lemma.Lemma 7.1. (Lemma 5.1 in [5]) Let h : Rq ! Rm; m 2 N; be a polynomial inthe X�; � 2 S; such that@@X� h = 0 and @@X� (h �
 � T r0'il �
�1) = 0for all � 2 S with j�j = r and all integers l � 2 and i = 1; :::; n. Then h = const.Using this lemma we prove the following one.Lemma 7.2. Let Q be as in Proposition 7.1. ThenQRn(t@1)(Vw(T rRn)) = f0g; and(7.3) QRn(t@1)(T r(s@2)(w)) 2 Vw(T rRn)(7.4)for any t; s 2 R and w 2 T r0Rn, where T rX is the complete lift of X to T rRn.Proof. For every t 2 R we de�ne Ft : Rq �Rq ! Rn to be the compositionRq �Rq 
�1�
�1�����! T r0Rn � T r0RnJ�! (V T r)0Rn QRn (t@1)�����! (TT r)0Rn T��!T0Rn = Rn;



66 W LODZIMIERZ M. MIKULSKIwhere J is the di�eomorphism given by J(w; u) = ( w)�1(u) (= @@� j�=0(w+ �u)).Then the map F : R � Rq � Rq ! Rn, F (t; :) = Ft, t 2 R, is of class C1,because of the regularity condition. From the naturality condition with respect tothe homotheties � idRn ; � 2 R� f0g, it follows thatF (� t; � j�jY �; � j�jZ� ;�; � 2 S) = �F (t; Y �; Z�;�; � 2 S)for all � 2 R � f0g; t 2 R and (Y �;� 2 S); (Z� ; � 2 S) 2 Rq. By the ho-mogeneous function theorem, c.f. [3], F is linear with respect to t; Y ej ; Zek , forj; k = 1; :::; n and it is independent of the Y �; Z� with j�j > 1 and j�j > 1. By(7:1), F (0; Y ej ; Zek ; j; k = 1; :::; n) = 0. Since QRn (t@1) is an a�nor, F (t; 0; 0) = 0.Therefore F = 0. HenceQRn(t@1)(Vw(T rRn)) � Vw(T rRn)for all t 2 R and w 2 T r0Rn.For any t 2 R and w 2 T r0Rn let ~H(t; w) = ( ~H�� (t; w))�; � 2 S be the matrixof the linear mapQRn(t@1)jVw(T rRn) : Vw(T rRn)! Vw(T rRn)with respect to the basis ((
�1)� @@X
 )(w); 
 2 S.We see that the formula (7:3) will be proved after proving that ~H(t; w) = 0 forall t 2 R and w 2 T r0Rn. Consider the map H : R�Rq ! gl(q) = Rq 
 (Rq)� =Rq2 H(t; Y �; � 2 S) = ~H(t;
�1(Y � ; � 2 S)):H is of class C1, because of the regularity condition. By the naturality conditionwith respect to the homotheties, we obtain thatH��(� t; � j
jY 
 ; 
 2 S) = � j�j�j�jH��(t; Y 
 ; 
 2 S)for any � 2 R�f0g; t 2 R, (Y 
 ; 
 2 S) 2 Rq and �; � 2 S; where H = (H�� ;�; � 2S). Since j�j�j�j � r for all�; � 2 S andH(0; :) = 0 (because of the formula (7:1)),then (by the homogeneous function theorem) H(t; :) : Rq ! Rq is a polynomial(in the X�; � 2 S) and @@X
 (H(t; :)) = 0for any t 2 R and any 
 2 S with j
j = r. Since n � 2, then 'il preserves @1, andthen (by the naturality condition)H(t; :) �
 � T r0'il �
�1 = ((
 � T r0'il �
�1)
 (
 � T r0 ('il)�1 �
�1)�) �H(t; :)for all t 2 R, i = 1; :::; n and l 2 N. Therefore H(t; :) = const for any t 2 R,because of Lemma 7.1. On the other hand, from (7:2) we get that H(t; 0) = 0 forany t 2 R. Hence H = 0. The formula (7:3) is proved.



NATURAL TRANSFORMATIONS TRANSFORMING VECTOR FIELDS 67It remains to prove the formula (7:4). Let us consider the mapG : R�R�Rq !Rn given by G(t; s; Y �;� 2 S)= T� �QRn(t@1)(T r(s@2)(
�1(Y �;� 2 S))) 2 T0Rn = Rn:Using the same arguments as for F , we deduce that G = 0, as well. �We are now in position to prove Proposition 7.1. We de�ne the map K : R �R�Rq ! Rq by K(t; s; Y �;� 2 S)= 
 �  
�1(Y �;�2S) �QRn(t@1)(T r(s@2)(
�1(Y �;� 2 S)));where  w : Vw(T rRn) ! T r0Rn is the isomorphism. By the formula (7:4) K iswell-de�ned. Using similar arguments as for H we see that K(t; s; :) : Rq ! Rq isa polynomial (in the X
 ; 
 2 S) and@@X� (K(t; s; :)) = 0for all � 2 S with j�j = r and all t; s 2 R. Since n � 3, then 'il preserves @1 and@2, and then (by the naturality condition)K(t; s; :) �
 � T r0'il �
�1 = 
 � T r0'il �
�1 �K(t; s; :)for all i = 1; :::; n, l 2N and all t; s 2 R. Then K(t; s; :) = const for every t; s 2 R,because of Lemma 7.1.By the naturality condition with respect to the homothetiesRn 3 (y1; :::; yn)!(y1; y2; �y3; :::; �yn) 2 Rn; � 2 R� f0g, it follows thatK�(t; s) = ��3+:::+�nK�(t; s)for all � = (�1; :::; �n) 2 S; t; s 2 R and � 2 R � f0g; where K = (K�;� 2 S).Therefore K� = 0 for all � 2 S with �3 + :::+ �n 6= 0.Since QRn(t@1) is an a�nor, then K is linear with respect to s. Then using thehomotheties Rn 3 (y1; :::; yn) ! (y1; �y2; y3; :::; yn) 2 Rn; � 2 R � f0g, we get(similarly as above) that K� = 0 for all � = (�1; �2; 0) 2 S with �2 6= 1.Similarly, using � idRn and (7.1) we get K(0;1;0) = 0.On the other hand by the de�nition of (s)Q it is easy to verify that(7.5) 
 �  
�1(Y � ;�2S) � (s)QRn (@1)(T r@2(
�1(Y �; � 2 S))) = ( 1s!�(s;1;0)� ;� 2 S)for any (s; 1; 0) 2 S and (Y �; � 2 S) 2 Rq; where ��� is the Kronecker delta.Therefore(7.6) QRn(@1)(T r@2(w)) = r�1Xs=1 �s(s)QRn (@1)(T r@2(w))



68 W LODZIMIERZ M. MIKULSKIfor any w 2 T r0Rn, where �s = s!K(s;1;0)(1; 1) 2 R.If (�1; :::; �n); e1; e2 2 Rn are linearly independent, then there exists a linearisomorphism '� : Rn ! Rn such that '� preserves @1 andT'� � @2 = nXj=1 �j@j � '�:Hence by the naturality condition with respect to '� it follows from (7:6) thatQRn(@1)(T r( nXj=1 �j@j)(w)) = r�1Xs=1 �s(s)QRn (@1)(T r( nXj=1 �j@j)(w))for any w 2 T r0Rn. Then from the formula (7:3) and the similar formula for (s)Q ,s = 0; :::; r� 1, it follows thatQRn(@1)jTw(T rRn) = r�1Xs=1 �s(s)QRn (@1)jTw(T rRn)for any w 2 T r0Rn. The proposition is proved, because of Lemma 5.1. �8. Now, we prove Theorem 6.1. Let us consider Q = fQM (X)g a natural trans-formation transforming vector �elds on n-manifolds into a�nors on ErjMn. LetQ0 = fQM(0M )g be the natural a�nor on Er jMn, where 0M 2 X (M ) is the0-vector �eld. Using Proposition 2.1 and replacing Q by Q � Q0 one can assumethat(8.1) QM (0M ) = 0 : T (ErM )! T (ErM ); for M 2Mn:Using the isomorphisms T(w;�)ErM = Tw(T rM )� T�R = Tw(T rM ) �R, where(w; � ) 2 ErM = T rM�R, one can de�ne a natural transformationLM : X (M )!C1(T (ErM )); M 2Mn, transforming vector �elds on n-manifolds into functionson TErjMn by LM(X)(v) = the R� component of QM(X)(v);where X 2 X (M ), v 2 T(w;�)(ErM ), (w; � ) 2 ErM . Then by Proposition 4.1 and(8.1)(8.2) fLMg = 0:Therefore for any � 2 R we have a natural transformation D�M : X (M ) !X (T rM ), M 2 Mn, transforming vector �elds on n-manifolds into vector �eldson T rjMn given byD�M (X)(w) = QM (X)( @@t (w; � )) 2 Tw(T rM )� f0g = Tw(T rM );



NATURAL TRANSFORMATIONS TRANSFORMING VECTOR FIELDS 69where (w; � ) 2 ErM = T rM �R, M 2 Mn, X 2 X (M ) and @@t is the canonicalvector �eld on T rM � R, @@t(w; � ) = @@t jt=0[t ! (w; � + t)]: Since QM (0M ) = 0,D�M (0M ) = 0: Then (by Proposition 3.1), there exist the functions a; c1; :::; cr :R! R (not necessarily smooth) such thatD�M (X)(w) = a(� )T rMX(w) + c1(� )(1)DVM (X)(w) + :::+ cr(� )(r)DVM (X)(w):Since T rRn (@1)(0); (s)DVRn (@1)(0), where s = 1; :::; r; 0 2 T0Rn, are linearly indepen-dent, then a; c1; :::; cr are of class C1. Therefore replacing Q by Q � aT r 
 dt �c1(1)DV 
 dt� :::� cr (r)DV 
 dt one can assume that(8.3) QM (X)( @@t ) = 0; for any M 2Mn; X 2 X (M ):For any M 2 Mn, X 2 X (M ), x 2 M , w 2 T rxM and � 2 R we denote thecomposition of linear mappings T rxM  0= V0(T rM )= V0(T rM ) � f0gQM(X)���! T0(T rM )� f0g T��!TxM iM�!T rxM  w= Vw(T rM );where f0g � T�R and 0 2 T rxM , by ��M;X;w : T rxM ! Vw(T rM ). (This com-position is well-de�ned because of (8.2). ) For any � 2 R we de�ne a naturaltransformation E�M : X (M ) ! X (T rM ); M 2 Mn, transforming vector �elds onn-manifolds into vector �elds on T rjMn byE�M (X)(w) = ��M;X;w(w);where M 2 Mn, X 2 X (M ), x 2 M and w 2 T rxM . Since E� is of verticaltype and E�Rn(@1)(0) = 0 (0 2 T r0Rn) and E�M (0M ) = 0 (for QM (0M) = 0) and(s)DVRn(@1)(0); s = 1; :::; r (0 2 T0Rn), are linearly independent, then (by Proposition3.1) E� = 0: ThereforeQM(X)(V(0;�)(ErM )) � V(0;�)(ErM )for any M 2 Mn; X 2 X (M ), x 2 M and � 2 R; where 0 2 T rxM . Thereforefor any M 2 Mn; X 2 X (M ); x 2 M , w 2 T rxM and � 2 R we can de�ne
�M;X;w : T rxM ! VwT rM to be the composition of linear mappingsT rxM  0= V0(T rM ) = V0(T rM )� f0gQM(X)���! V0(T rM )� f0g  0= T rxM  w= Vw(T rM );where f0g � T�R and 0 2 T rxM . Then for any � 2 R we have a natural transforma-tion G�M : X (M )! X (T rM ); M 2Mn, transforming vector �elds on n-manifoldsinto vector �elds on T rjMn such thatG�M (X)(w) = 
�M;X;w(w)



70 W LODZIMIERZ M. MIKULSKIfor anyM 2Mn; X 2 X (M ), x 2M and w 2 T rxM . Then by the same argumentsas for E� , G� = 0. Therefore(8.4) QM(X)(V(0;�)(ErM )) = f0gfor any M 2 Mn, X 2 X (M ), x 2 M and � 2 R; where 0 2 T rxM and f0g �V(0;�)(ErM ).It follows from (8:2) that for every � 2 R we have a natural transformationQ�M (X); M 2Mn; X 2 X (M ), transforming vector �elds into a�nors on T rjMnsuch thatQ�M (X)(v) = QM (X)(v) 2 Tw(T rM ) = Tw(T rM )� f0g � T(w;�)(ErM )for any M 2 Mn; X 2 X (M ); w 2 T rM and v 2 Tw(T rM ) = Tw(T rM ) � f0g �T(w;�)(ErM ). From (8:1) and (8:4) we deduce that Q� satis�es the assumptionsof Proposition 7.1 with Q� playing the role of Q for every � 2 R. Then there exist�1; :::; �r�1 : R! R (not necessarily smooth) such thatQ�M (X) = �1(� )(1)QM(X) + :::+ �r�1(� )(r�1)Q M (X)for any M 2Mn and X 2 X (M ). It follows from (7:5) that(s)QRn (@1)(T r@2(0)) 2 V0(T rRn); where 0 2 T r0Rn; s = 1; :::; r� 1;are linearly independent. Therefore �1; :::; �r�1 are of class C1. Of course, Q =�1(1)Q+ + :::+ �r�1(r�1)Q +, because of (8.3) and the de�nition of (s)Q+. �References[1] Gancarzewicz, J., Kol�a�r, I., Natural a�nors on the extended r-th order tangent bundles,Winter school of Geometry and Physics, Srni 1991, Supl. Rendiconti Circolo Mat. Palermo,in press.[2] Kol�a�r, I., Slov�ak, J., On the geometric functors on manifolds, Proceedings of the Winterschool on Geometry and Physics, Srni 1988, Supl, Rendiconti Circolo Mat. Palermo (21)1989, 223-233.[3] Kol�a�r., I., Vosmansk�a, G., Natural transformations of higher order tangent bundles and jetspaces, �Cas. p�est. mat. 114 (1989), 181-186.[4] Mikulski, W. M., Natural transformations transforming functions and vector �elds to func-tions on some natural bundles, Mathematica Bohemica 117 (1992), 217-223.[5] Mikulski, W. M., Some natural operations on vector �elds, Rendiconti di Matematica (Roma)VII (12) (1992), 783-803.[6] Nijenhuis, A., Natural bundles and their general properties, in Di�erentialGeometry in Honorof K. Yano, Kinokuniya (Tokyo) (1972), 317-343.W lodzimierz M. MikulskiInstitute of MathematicsJagellonian UniversityReymonta 4Krak�w, POLAND
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