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SPECIAL TANGENT VALUED FORMS AND
THE FROLICHER-NIJENHUIS BRACKET

ANTONELLA CABRAS, IvAN KOLAR

ABSTRACT. We define the tangent valued C-forms for a large class of differential
geometric categories. We deduce that the Frélicher-Nijenhuis bracket of two tangent
valued C-forms is a C-form as well. Then we discuss several concrete cases and we
outline the relations to the theory of special connections.

It has been clarified recently, see e.g. [4], [9], [10], that the Frolicher-Nijenhuis
bracket is an important tool for the theory of general connections on arbitrary
fibred manifolds, as well as for some other problems in differential geometry. How-
ever, 1t seems that only two kinds of special tangent valued forms were studied
in detail up to now, namely the projectable forms on an arbitrary fibred mani-
fold, [10], and the right-invariant forms on a principal fibre bundle, [1], [2]. In the
present paper we develop a systematic approach to tangent valued k-forms corre-
sponding to a category C over manifolds satisfying a simple additional condition
and we discuss their relations to the theory of special connections. Sections 1 and
2 are devoted to the foundations of such a theory. Next we determine all vector
bundle k-forms and all affine bundle k-forms. In Section 4 we treat one of the
simple algebraic models for higher order differential geometry, the category 2GL5B
of 2-graded linear bundles, [7], [8]. The complete description of all 2GLB-forms in
Proposition 7, which represents a natural modification of the vector bundle case,
suggests that the theory of C-forms for several categories of structured bundles, [3],
can be rich. On the other hand, in the last section we deduce that the categories
of symplectomorphisms and volume-preserving diffeomorphisms admit only trivial
tangent valued forms.

All manifolds and maps are assumed to be infinitely differentiable.
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1. Categories over manifolds and related vector fields. Let M [ denote
the category of all manifolds and all smooth maps. A category over manifolds is a
category C endowed with a faithful functor m : C — M f. Hence the C-morphisms
between two C-objects A and B are identified with some smooth maps between
the undelying manifolds mA and mB.

Roughly speaking, a C-field on a C-object A is a vector field X : mA — T(mA)
on the underlying manifold such that all transformations forming the flow of X
belong to C. However, since the flow is formed by local diffeomorphisms in general,
we must be somewhat more careful in the definition.

An open subobject B of a C-object A is a C-object over an open subset mB C
mA such that the inclusion ¢,,p : mB — mA is a C-morphism and the following
property holds: if for a smooth map f : mC — mB the composition ¢, o f :
mC — mA 1s a C-morphism C' — A, then f is a C-morphism ' — B. By a locally
defined C-morphism of A; into A; we mean a smooth map f : U; — Us between
open subsets U1y C mA; and Us C mAs with the property that there exist open
subobjects By of Ay and By of As, U1 C mB; C mAy, Uy C mBs C mAs, and a
C-morphism g : By — By such that f is the restriction of g to Uy, Us.

Definition 1. A vector field X : mA — T(mA) on a C-object A is called a C-field,
if its flow is formed by locally defined C-morphisms of A.

To prove that the C-fields on a C-object A form a subalgebra of the Lie algebra
of all vector fields on mA, we need an additional assumption on the category C.
(But this property holds for all classical categories in differential geometry.)

Definition 2. A category C over manifolds is called infinitesimally closed, if
every vector field tangent to a local one-parameter family of locally defined C-
isomorphisms is a C-field.

Proposition 1. Let C be an infinitesimally closed category. If X and Y are two
C-fields on a C-object A, then kX for allk e R, X +Y and [X,Y] are C-fields as

well.

Proof. It is well known that kX is constructed by reparametrizing the flow of X,
X +Y by composing the flows of X and ¥ and [X,Y] by constructing the commu-
tator of the flows of X and Y. Hence Proposition 1 follows from the assumption
that C is infinitesimally closed.

2. Tangent valued C-forms and the Frolicher-Nijenhuis bracket. We recall
that a tangent valued k-form on a manifold M is a linear morphism w : A*TM —
TM. For k = 0 this means a vector field on M.

Definition 3. Let C be an infinitesimally closed category. A tangent valued k-
form w : A¥T(mA) — T(mA) on a C-object A is called a C-form, if w(X7, ..., X;)
is a C-field for every C-fields Xy, ..., X;.

For k = 0, a tangent valued C-form is a C-field.

Frolicher and Nijenhuis defined the bracket [w, ¢] of a tangent valued k-form w
and of a tangent valued I-form ¢, which is a tangent valued (k+!{)-form. Their ap-
proach was based on the theory of graded derivations in the exterior algebra of M.
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In this setting it 1s not so easy to show that the Frolicher-Nijenhuis bracket of two
C-forms is a C-form as well. However, M. Modugno, [10], and, independently, P.W.
Michor, [9], deduced the following expression for the Frolicher-Nijenhuis bracket
in terms of the bracket of vector field

Kw, @) (X1, Xep) = D sgnofw(Xot, -, Xok), @(Xo(ha1)s - - Xo(ran)]

g

_lzsgn U@([W(Xala ceey Xo'k‘)a Xo‘(k‘-l—l)]a Xo‘(k-I—Z)a sy Xa(k-l—l))

H=DMEY T sgnow(e(Xor, - Xot), Xorn)] Xoqga)s - Xo(err))

ki
+(_1)k_15 ngn ng(w([XUIaXUZ]a X0'3a R Xo‘(k‘-l—l))a Xo‘(k-I—Z)a R Xa(k-l—l))

kl
_|_(_1)(k—1)15 ngn UW(SD([XULXUZ], ng, R Xa(l+1))a Xa(l+2)a R Xa(k+l))a

g

with summation with respect to all permutations ¢ of k£ + [ letters. Then Propo-
sition 1 implies directly

Proposition 2. The Frolicher-Nijenhuis bracket of two tangent valued C-forms
is a C-form as well.

Example 1. In the case of the category FM of all fibred manifolds, one sees
directly that the vector fields whose flows are formed by local FM-morphisms
are just the projectable fields. (We recall that a vector field X : ¥ — TY on a
fibred manifold p : Y — M 1s said to be projectable, if there exists a vector field
Xo : M — TM such that Tpo X = Xy o p.) Obviously, FM is infinitesimally
closed. Let z' be some local coordinates on M, y” some fibre coordinates on Y
and z% = (', y?). Consider a k-form A : A¥TY — TY with coordinate expression

0
p a1 ak [
+ab o dz A ANdE™© B

asz..akdzal AN Ndz™ @

oxt

Taking into account the vector fields of the form bi% + b{]’yq% with constant
b's, we find that A(Xy,..., X}) is a projectable vector field iff a;'»lm]»k = a;'»lm]»k (2)
are functions of z only and all other aj . are zero. On the other hand, A is
called projectable, if there exists a k-form A : A*TM — TM such that Agop =
A*Tpo A. Hence we have proved that the tangent valued F M-forms coincide with
the projectable tangent valued forms. Such forms were studied by Modugno in

[10].

Example 2. Fix a Lie group G and consider the category PB(G) of principal
G-bundles and their morphisms. Hence the local PB(G)-morphisms are the local
F M-morphisms commuting with the right translations R,. It is well known that
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two vector fields are f-related with respect to a smooth map f iff their flows are
f-related. Hence the PB(G)-fields on a principal fibre bundle are the TR -related
ones for all g € (G, 1.e. the classical right-invariant vector fields on P. This implies
directly that PB(G) is infinitesimally closed and the tangent valued PB(G)-forms
coincide with the right-invariant tangent valued forms studied by the first author
and D. Canarutto, [1], [2].

3. Vector and affine bundles. If p : £ — M is a vector bundle, then Tp :
TE — TM is also a vector bundle. Every VB-field X : E — TFE is projectable
over a vector field Xg : M — TM. One sees directly that if X is tangent to
a local one-parameter family of local VB-morphisms, then X is a vector bundle
morphism £ — TE over Xg: M — TM. We present a complete proof of the fact
that every such a field is a VB-field (we shall modify it in the next section to a
more complicated situation). Given a vector field X of the form

i P q
X(x) " + XJ (x)y 7

Its flow ¢'(x,1), P (x,y,t) is determined by the differential equations
dz? . dy?

= X &
dt (@), dt

Write ®F(z,y, k,t) = P (x, ky,t) — kP (z,y,1). We have ®(x,y,k,0) = 0 by
definition and

= XD (z)y!.

6(1)17 .
- = P 2 q
615 _Xq (SD (l‘,t))q) (x,y,k,t).

Hence ®F satisfy a system of linear differential equations with zero initial condition,
so that ®° = 0. This means

o (x, by, t) = ko (x,y,1).

By the homogeneous function theorem, [6], ¢F is linear in y.

Let us start with the description of VB-one-forms. Since the procedure from
Example 1 holds even in the VB-case, every VB-one-form A : TE — TF is pro-
jectable, 1.e. of the form

. 9 .
aj(z)ds’ @ Fye + (af (z,y) da* + al (z,y) dy?) @

ayr
We require that A(X) is a VB-field for every VB-field X. Take first X* = b’ =const,
X = 0. This yields al = afq(x)yq. Next consider X¢ = 0, XTI = b8 =const. Since
a{]’(x,y)bgy’“ must be linear in y, it is multiplied by k& when replacing y by ky,
keR,ie.

al (z, ky)bly" = al (z,y)bly", k#0.

Letting & — 0, we obtain al(z,0)bfy" on the left-hand side, while the right hand
side remains unchanged. Since bZ are arbitrary quantities, this implies a{]’(x, y) =
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a{]’(x). In other words, the VB-one-forms A : TE — TF are those projectable
forms which are linear morphisms of TE — TM into TE — T'M over the base
map Ag : TM — TM.

Consider now an arbitraryVB-k-form A : A¥TE — TE over Ag : A¥T'M — T M,
which is of the form

Ao+ (aflzk (l‘, y) dxil ASERNA dxlk + ai1~~~ik—1q(x’ y) dxil ARRRNA dxik_l A dyq+
0
(1) ~~~+a2’1...qk(x,y)dy“A~~~Ady“)®w~

Since A(X71,..., X;) must be a VB-field for every VB-fields X1, ..., X}, we obtain
first

P _ P
(2) Ay iy — ail...ikq(x)yq
and then, by the same change y — ky as above,

(3) al =al (z),d? =0,...,a =0.

$1..8k—1¢ T t1...0k—-14 » Vi1 dk—2¢192 q1---9k

We are going to interpret (1) - (3) geometrically. Taking into account the in-
clusion i : A*TE — @FTE, consider the map idyg ® ®k_1Tp : ®k TE —
TE ® ®k_1TM. Since Tp : TE — TM is a vector bundle, Tp ® ®k_1idTM :
TE® ®k_1 ™ — TM ® ®k_1 T'M is a vector bundle as well. Define

k—1
Ly E = (idrp @ Q) Tp)(A*TE)

which is a vector subbundle of TE @ ®" ™' TM over A*TM. Then (1) - (3) is

equivalent to the following assertion.

Proposition 3. A k-form A : A*¥TE — TE is a VB-form iff all the following
three conditions hold

(i) A is projectable into Ag : A*TM — TM,

(ii) A factorizes through Ly F into Ap : Ly — TE,

(iii) A is a linear morphism Ly . — TE over Ay.

Furthermore, consider an affine bundle p : Y — M. Then Tp : TY — TM 1s
also an affine bundle, [3]. First we deduce that a vector field X : Y — TY is an

AB-field iff it is an affine bundle morphism Y — 7Y over Xo : M — TM. The
coordinate expression of such a field in affine fibre coordinates is

0 0
P q P
3 + (Xq (e)y? + X (x))ayp .

(4) X'(x)

On one hand, it is clear that a vector field tangent to a local one-parameter family
of local affine morphisms is of the form (4). On the other hand, the flow of (4) is
given by

dz? i dy?
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du?
Consider first the equation d_yt = XP(#), which yields ¥ = ¢P(z,t). Then the

“rest” of (5) corresponds to a VB-field and we can use our previous result.

Let A : A*TY — TY be an AB-k-form. Since the procedure from Example 1
works, A is projectable over Ay : A*T'M — TM. For constant X* = b, XP =
bP, X¥ = 0 we find that all af , in the coordinate expression of A are affine

functions. Using constant X¢ = b, XP =0, XP =0, we then obtain

afl...ik_lq = afl. ik 1q(x)
(6) P _ 0 y4 _ 0
iy inoqige — P b T
Hence (6) and the previous relation
P _ P =p
(7) @ o= @y +a (@)

characterize the AB-forms.

The geometric interpretation of (6) and (7) is quite similar to the VB-case. Since
Tp:TY — TM is an affine bundle, Tp ® ®k_1idTM TY ® ®k_1 ™™ - TM®
®k_1 TM is an affine bundle as well. If we define L;Y = (idpy ®®k_1 Tp)(A*TY),
this is an affine subbundle of TY @ ®" ™' TM over A¥T'M. Then (6) and (7) is

equivalent to the following assertion.

Proposition 4. A k-form A : A*TY — TY is an AB-form iff all the following
three conditions hold

(i) A is projectable into Ag : A*TM — TM,

(ii) A factorizes through L;Y into Ap : LY — TY,

(iii) A is a affine morphism LY — TY over Ay.

4. Algebraic models for higher order differential geometry. The vector
and affine bundles are the basic algebraic models for the first order differential
geometry. The algebraic models for the higher order geometry have more compli-
cated character, see e.g. [7], [8]. In this section we discuss the category 2GLB of
2-graded linear bundles, [7]. The simplest example of a 2-graded linear bundle is
the space TEM = JZ(R, M) of all second order one-dimensional velocities on a
manifold M in the sense of Ehresmann, which is called the second order tangent
bundle of M in higher order mechanics. In [7] it is proved that 77 is a functor
with values in the category 2GLB. (We remark that the 2-graded linear maps are
equivalent to the morphisms of linear 2-towers, [7]. The latter concept is more
geometrical, but the former one seems to be more suitable for our present aims.)
In Proposition 7 below we characterize all tangent valued 2GLB-forms.

Let V, W, V, W be vector spaces. A 2-graded linear map is a triple f = (f1, fa, f3)
where f; € L(V,V) and fo € L(W,W) are linear maps and f3 € L*(V, W) is

quadratic map of V into W. Such a triple is interpreted as a map

F VW =VxW, flv,w)=(fi(v), fo(w)+ f3(v)).
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One verifies directly that the composition of 2-graded linear maps is 2-graded
linear as well, so that these maps form a category 2GL. The objects in 2GL are
the products V' x W of vector spaces, but we underline that the product vector
structure on V x W is not preserved under 2GL-isomorphisms.

For every category & over manifolds one defines the category &5 of S-bundles,
[3]. Since 2GL is a category over manifolds in a canonical way, we obtain the
category 2GLB as a special case. By [3], the trivial 2GL-bundles are of the form
M x V x W, where M is a manifold. A 2GLB-morphism into another trivial
2GL-bundle M x V x W is a quadruple (fo, f1, f2, f3), where fo : M — M,
i M —= LV, V), fo: M — L(IW,W), fs : M — L*(V,W) are smooth maps,
which is interpreted as amap f: M x Vx W — M x V x W of the form

(8) fa,0,w) = (folx), [1(@)(v), f2(2)(w) + fa(2)(v)).

In general, (8) represents the local expression of an arbitrary 2GLB-morphism.

To make some geometric facts more transparent, let us introduce a category
2F M of 2-fibred manifolds, whose objects are pairs of surjective submersions p :
Z —Y and ¢ : Y — M written as 7 — Y — M, and whose morphisms preserve
both fiberings. Obviously, every 2GL-bundle 7 — Y — M is 2-fibred manifold
and the underlying fibering Y — M is a vector bundle.

Proposition 5. For an arbitrary 2GL-bundle 77 — Y — M the tangent bundle
T7Z —TY — TM is also a 2-graded linear bundle.

Proof. In the case of a trivial 2GL-bundle M x V x W, T(M x V x W) =
TM x TV x TW is also a trivial 2GL-bundle and the tangent map to (8), whose
second component is linear in v and dv over T'M and third component is linear in
w, dw and quadratic in v, dv over T'M | is a trivial 2GLB-morphism as well. The
rest of our claim follows form the general theory of structured bundles, [3]. d

We are going to show that the 2GLB-fields can be characterized analogously
to the VB- and AB-cases. Consider a vector field X : 7 — T 7 an a 2GL-bundle
7 — Y — M tangent to a local one -parameter family of local 2G £L5-morphisms.
This implies, among others, that X is projectable into a vector field X; : Y — TY
and the latter field 1s also projectable into a vector field Xy : M — T M. On the
other hand, since TZ — TY — TM 1s a 2GL-bundle, we have defined the concept
of a 2GLB-section 7 — T7 (i.e. a 2GLB -morphism, which is a section of TZ — Z
at the same time).

Proposition 6. A vector field X on a 2GL-bundle Z — Y — M is a 2GLB-field
iff it is a 2GLB-section Z — T'Z.

Proof. On one hand, if X is tangent to a local one-parameter family of local
2G LB-morphisms of Z, then one sees directly that X : 7 — T'Z is a 2GLB-section.
Conversely, consider some local adapted coordinates z%, v?, w® on Z = M xV x W.
The coordinate form of a 2GLB-section 1s

(9) det = X'(x), dof = XP(x)?,  dw® = X7 (x)oFv? + X (x)w'.
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In the vector bundle case we deduced that the flow of the first two equations of

(9) is

(10) o= g(r,t), o= o (=, t)y? .

Denote by ¢%(x, v, w,t) the solution of the additional equation
dw*® a a

(11) — = X2 (x)oPv! + Xf (z)w’ .

Write % = p%(x, kv, k*w, 1) — k2% (2, v, w,t),k € R, so that ®* = ( for ¢t = 0 by
definition. Then (11) with (10) imply

do*

ot
Hence ®¢ satisfy a system of linear differential equations with zero initial condition,
so that ®* = 0. This yields

o (x, kv, k*w, ) = k2o (x,v,w,1).
By the homogeneous function theorem, [6], % is linear in w® and quadratic in v?.
This means that the flow of X is formed by local 2G LB5-morphisms. |

To describe the 2GLB-forms, we first construct a 2GL-bundle D7 related with
TZ ® TZ. Consider the projections Tp® idppyr - TZTM — TY @ TM and
dpy @ Tq : TY @ TY — TY @ TM. Then the Whitney sum over the pullback
p*(TY @ TM) of TY @ TM over Z

TZ@TM xperyeran TY @TY =: DZ
is a vector bundle over 7.
Lemma. DZ —TY @ TM — @*TM is a 2GL-bundle.
Proof. In the trivial case Z = R™ x V x W we have
TR xV)@TR" = (R"xRT@R™) x (V x V) R™

= Xp (@' (2, 1)@ (2, v, w, k).

and

DZ=TR"xV)@TR" x (W xWaR"”xVaV).
Having a 2GL£B-morphism f : Z = R™xV xW — Z = R” xif/ x W of the form (8),
one verifies directly that the induced map Df : DZ — DZ 1s a 2GLB-morphism
as well. The rest follows from the general theory of S-bundles, [3]. d

Since
(Tq @ idpar) o (idpz @ T(g o p)) = (idry @ Tq) o (Tp @ Tp)
is the ssme map T2 @ TZ — TY ® T'M, the formula
Qz(B1 @ Ba) = (B1 @ T(q0p)(B2), Tp(B1) @ Tp(B2))
induces amap Qz : TZQ7TZ — DZ. Then Q7 ® ®k_2T(q op) : ®k T7 —
DZ® ®k_2 TM and we define
k-2
DyZ =(Qz @ Q) T(q0op))(ATZ).
This is a 2GL-bundle D, 7 — LY — A*TM.
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Proposition 7. A one-formTZ — TZ is a 2GLB-form iff it is a 2G L B-morphism.
A k-form A : A*TZ — TZ with k > 2 is a 2GLB-form iff all the following three
conditions hold

(i) A is projectable into Ag : A*TM — TM,

(ii) A factorizes through Dy 7 into Ap : Dy 7 — TZ,

(iii) Ap is a 2GLB-morphism D7 — T'Z over Ay.

Proof. Let us start with the case k = 2. By functoriality, every 2GLB-two-form
A A*TZ — TZ is projectable into a VB-two-form A; : A’TY — TY . Let

(afjdxi Adzl + afpdxi A dv? + afydat A dw® + g dv? A dv?+

+apydv? A dw® 4 af,dw® A dw®) ®

ow*

be the coordinate expression of the “remaining” part of A. Hence (12) must be
linear in w and quadratic in v for any two 2GLB-fields X and X. Let us discuss
the following possibilities (the non-indicated components are zero)

1) X = ctw®, X = w? yield af, = 0,

2) X = cgwc’%(b = czqvpvq yield ag, =0,

3) X’" _ C?“ZXQ = ¢lp® yield ab, = ab (x) depend on x only,
H X' =X = cgwb yield afy = afy (=),

5) X' = X0 = i Vield df, = 230,

6) Xi=c Xi=¢ yield af; = af;, (z)vPv! + a?jb(x)wb.

This is just the coordinate form of our assertion. The cases k = 1 and k& > 3
can be studied quite similarly. a

Our description of the C-forms in Propositions 3, 4 and 7 has an interesting
relation to the theory of connections of special types. For an arbitrary category
S over manifolds, the following approach to the connections on an arbitrary S-
bundle ¥ — M is presented in [6]. A connection I' : ¥ — J'V is said to be
an SB-connection, if the T-lift of every vector field on M is an SB-field. One
sees directly this is equivalent to the requirement that the corresponding tangent
valued one-form wr is an §B-form, provided &B is infinitesimally closed. But the
curvature of T' can be defined as the Frolicher-Nijenhuis bracket [wr,wr], so that
it is an SB-two-form. In the VB- or AB-case we rededuce the well known fact
that the curvature of a VB- or AB-connection is linear or affine, respectively. But
Proposition 7 gives a new characterization of some properties of the curvature of
2G LB-connections.

5. Symplectic and volume-preserving cases. In the last section we intend to
show that there are some categories over manifolds, in which the tangent valued
C-forms are of trivial character. We first discuss the category Sp of all symplectic
manifolds and local symplectomorphisms. Clearly, the Sp-fields are the locally
Hamiltonian vector fields characterized by

(13) [,X{.UIO,
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1.e. the Lie derivative of the symplectic form w vanishes. This implies directly that
Sp 1s infinitesimally closed. Using the well known formula £Lx = ixd 4+ dix and
the fact that w is closed, we can write (13) in the form

(14) d(ixw)=0.
Having the canonical local expression of w

det Ade® 4+ -+ de® 7 A de?n
condition (14) reads

(15) 0 =d(X'de? — X?da! 4+ + X" Hda® — X*dz?" 1)

Proposition 8. The only Sp-one-forms on a connected symplectic manifold (M, w)
are the constant multiples of idppr. The only Sp-k-form for k > 1 is the zero form.

Proof. A one form A = a;:dxj ® % 1s a Sp-form iff
x

(16) 0=d(aj X'de? — a}X'da' + - 4 "' X'de™ — af" X'dx™ 1)
for every Sp-field X?. Consider first the field bii. with constant components. By
l‘l
(15) all of them are Sp-fields. Then (16) implies
(17) 0 =daj Adz? —dai Ndz' + -+ da?" " A de® — dai™ A de? !
for all ¢ = 1,...2n. This simplifies (16) to the form
(18) 0 = a}dX* Ade? —aldX' Adal 4 4 a?" X Ade™ —ai"dX Adx® L
Consider now the vector fields of linear coordinate form
X :bj»xj, bj» = const,
so that (15) reads
0 =bjde' Ade? —bide' Ada + -+ b7 dat A da®™ — bFda’ A dx® L
This is equivalent to the conditions
(19) bggc_—11 + b%f =0 bggc_l - bgf_l =0 b§2—1 - 535—1 =0
forall k,l =1,...,n. The coefficient by dz! Adz? in (18) with individual b’'s implies

aj—a3=0 a,=0,a3=0, a=2...,2n, B=13,... 2n
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Repeating such a procedure, we obtain
al — ag =0 no summation,

with all other a’s vanishing. Then (17) gives

gai _, . D _
Oat Ox?n
so that al =const.
For an Sp-k-form A with & > 1 the same procedure yields A = 0. |

A similar phenomenon appears in the case of the category Vol of manifolds
with volume form and of the volume-preserving local diffeomorphisms. On such
a manifold (M, ), the Vol-fields are the so-called divergence-free vector fields
characterized by Lx¢ = 0. Even Vol 1s a infinitesimally closed category. In the
canonical local coordinates, in which ¢ has the form

det A Adae™
a divergence-free vector field is characterized by

ax? oxm™
ozt T ppm

=0.

In the same way as in Proposition 8, one deduces for connected M

Proposition 9. The only Vol-one-forms on (M, ¢) are the constant multiples of
idpar. The only Vol-k—form for k > 1 is the zero form.
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