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72 ANTONELLA CABRAS, IVAN KOL�A�R1. Categories over manifolds and related vector �elds. Let Mf denotethe category of all manifolds and all smooth maps. A category over manifolds is acategory C endowed with a faithful functor m : C !Mf . Hence the C-morphismsbetween two C-objects A and B are identi�ed with some smooth maps betweenthe undelying manifolds mA and mB.Roughly speaking, a C-�eld on a C-object A is a vector �eld X : mA! T (mA)on the underlying manifold such that all transformations forming the 
ow of Xbelong to C. However, since the 
ow is formed by local di�eomorphisms in general,we must be somewhat more careful in the de�nition.An open subobject B of a C-object A is a C-object over an open subset mB �mA such that the inclusion imB : mB ,! mA is a C-morphism and the followingproperty holds: if for a smooth map f : mC ! mB the composition imB � f :mC ! mA is a C-morphism C ! A, then f is a C-morphism C ! B. By a locallyde�ned C-morphism of A1 into A2 we mean a smooth map f : U1 ! U2 betweenopen subsets U1 � mA1 and U2 � mA2 with the property that there exist opensubobjects B1 of A1 and B2 of A2, U1 � mB1 � mA1, U2 � mB2 � mA2, and aC-morphism g : B1 ! B2 such that f is the restriction of g to U1, U2.De�nition 1. A vector �eld X : mA ! T (mA) on a C-object A is called a C-�eld,if its 
ow is formed by locally de�ned C-morphisms of A.To prove that the C-�elds on a C-object A form a subalgebra of the Lie algebraof all vector �elds on mA, we need an additional assumption on the category C.(But this property holds for all classical categories in di�erential geometry.)De�nition 2. A category C over manifolds is called in�nitesimally closed, ifevery vector �eld tangent to a local one-parameter family of locally de�ned C-isomorphisms is a C-�eld.Proposition 1. Let C be an in�nitesimally closed category. If X and Y are twoC-�elds on a C-object A, then kX for all k 2 R, X + Y and [X;Y ] are C-�elds aswell.Proof. It is well known that kX is constructed by reparametrizing the 
ow of X,X+Y by composing the 
ows of X and Y and [X;Y ] by constructing the commu-tator of the 
ows of X and Y . Hence Proposition 1 follows from the assumptionthat C is in�nitesimally closed.2. Tangent valued C-forms and the Fr�olicher-Nijenhuis bracket. We recallthat a tangent valued k-form on a manifoldM is a linear morphism ! : �kTM !TM . For k = 0 this means a vector �eld on M .De�nition 3. Let C be an in�nitesimally closed category. A tangent valued k-form ! : �kT (mA) ! T (mA) on a C-object A is called a C-form, if !(X1; : : : ; Xk)is a C-�eld for every C-�elds X1; : : : ; Xk.For k = 0, a tangent valued C-form is a C-�eld.Fr�olicher and Nijenhuis de�ned the bracket [!; '] of a tangent valued k-form !and of a tangent valued l-form ', which is a tangent valued (k+ l)-form. Their ap-proach was based on the theory of graded derivations in the exterior algebra ofM .



SPECIAL TANGENT VALUED FORMS : : : 73In this setting it is not so easy to show that the Fr�olicher-Nijenhuis bracket of twoC-forms is a C-form as well. However, M. Modugno, [10], and, independently, P.W.Michor, [9], deduced the following expression for the Fr�olicher-Nijenhuis bracketin terms of the bracket of vector �eldk!l![!; '](X1; : : : ; Xk+l) =X� sgn�[!(X�1; : : : ; X�k); '(X�(k+1); : : : ; X�(k+l))]�lX� sgn�'([!(X�1; : : : ; X�k); X�(k+1)]; X�(k+2); : : : ; X�(k+l))+(�1)klkX� sgn�!(['(X�1; : : : ; X�l); X�(l+1)]; X�(l+2); : : : ; X�(k+l))+(�1)k�1 kl2 X� sgn�'(!([X�1; X�2]; X�3; : : : ; X�(k+1)); X�(k+2); : : : ; X�(k+l))+(�1)(k�1)l kl2 X� sgn�!('([X�1; X�2]; X�3; : : : ; X�(l+1)); X�(l+2); : : : ; X�(k+l));with summation with respect to all permutations � of k + l letters. Then Propo-sition 1 implies directlyProposition 2. The Fr�olicher-Nijenhuis bracket of two tangent valued C-formsis a C-form as well.Example 1. In the case of the category FM of all �bred manifolds, one seesdirectly that the vector �elds whose 
ows are formed by local FM-morphismsare just the projectable �elds. (We recall that a vector �eld X : Y ! TY on a�bred manifold p : Y ! M is said to be projectable, if there exists a vector �eldX0 : M ! TM such that Tp � X = X0 � p.) Obviously, FM is in�nitesimallyclosed. Let xi be some local coordinates on M , yp some �bre coordinates on Yand za = (xi; yp). Consider a k-form A : �kTY ! TY with coordinate expressionaia1:::akdza1 ^ � � � ^ dzak 
 @@xi + apa1:::akdza1 ^ � � � ^ dzak 
 @@yp :Taking into account the vector �elds of the form bi @@xi + bpqyq @@yp with constantb0s, we �nd that A(X1; : : : ; Xk) is a projectable vector �eld i� aij1:::jk = aij1:::jk(x)are functions of x only and all other aia1:::ak are zero. On the other hand, A iscalled projectable, if there exists a k-form A0 : �kTM ! TM such that A0 � p =�kTp�A. Hence we have proved that the tangent valued FM-forms coincide withthe projectable tangent valued forms. Such forms were studied by Modugno in[10].Example 2. Fix a Lie group G and consider the category PB(G) of principalG-bundles and their morphisms. Hence the local PB(G)-morphisms are the localFM-morphisms commuting with the right translations Rg. It is well known that



74 ANTONELLA CABRAS, IVAN KOL�A�Rtwo vector �elds are f-related with respect to a smooth map f i� their 
ows aref-related. Hence the PB(G)-�elds on a principal �bre bundle are the TRg-relatedones for all g 2 G, i.e. the classical right-invariant vector �elds on P . This impliesdirectly that PB(G) is in�nitesimally closed and the tangent valued PB(G)-formscoincide with the right-invariant tangent valued forms studied by the �rst authorand D. Canarutto, [1], [2].3. Vector and a�ne bundles. If p : E ! M is a vector bundle, then Tp :TE ! TM is also a vector bundle. Every VB-�eld X : E ! TE is projectableover a vector �eld X0 : M ! TM . One sees directly that if X is tangent toa local one-parameter family of local VB-morphisms, then X is a vector bundlemorphism E ! TE over X0 :M ! TM . We present a complete proof of the factthat every such a �eld is a VB-�eld (we shall modify it in the next section to amore complicated situation). Given a vector �eld X of the formXi(x) @@xi +Xpq (x)yq @@yp :Its 
ow 'i(x; t), 'p(x; y; t) is determined by the di�erential equationsdxidt = Xi(x); dypdt = Xpq (x)yq :Write �p(x; y; k; t) = 'p(x; ky; t) � k'p(x; y; t). We have �p(x; y; k; 0) = 0 byde�nition and @�p@t = Xpq ('i(x; t))�q(x; y; k; t) :Hence �p satisfy a system of linear di�erential equations with zero initial condition,so that �p = 0. This means'p(x; ky; t) = k'p(x; y; t) :By the homogeneous function theorem, [6], 'p is linear in y.Let us start with the description of VB-one-forms. Since the procedure fromExample 1 holds even in the VB-case, every VB-one-form A : TE ! TE is pro-jectable, i.e. of the formaij(x) dxj 
 @@xi + (api (x; y) dxi + apq(x; y) dyq) 
 @@yp :We require that A(X) is a VB-�eld for every VB-�eldX. Take �rst Xi = bi =const,Xpq = 0. This yields api = apiq(x)yq . Next consider Xi = 0, Xpq = bpq =const. Sinceapq(x; y)bqryr must be linear in y, it is multiplied by k when replacing y by ky,k 2 R, i.e. apq (x; ky)bqryr = apq(x; y)bqryr ; k 6= 0 :Letting k ! 0, we obtain apq(x; 0)bqryr on the left-hand side, while the right handside remains unchanged. Since bqr are arbitrary quantities, this implies apq(x; y) =



SPECIAL TANGENT VALUED FORMS : : : 75apq(x). In other words, the VB-one-forms A : TE ! TE are those projectableforms which are linear morphisms of TE ! TM into TE ! TM over the basemap A0 : TM ! TM .Consider now an arbitraryVB-k-formA : �kTE ! TE overA0 : �kTM ! TM ,which is of the formA0 + (api1:::ik(x; y) dxi1 ^ � � � ^ dxik + ai1:::ik�1q(x; y) dxi1 ^ � � � ^ dxik�1 ^ dyq+� � �+ apq1:::qk (x; y) dyq1 ^ � � � ^ dyqk) 
 @@yp :(1)Since A(X1; : : : ; Xk) must be a VB-�eld for every VB-�elds X1; : : : ; Xk, we obtain�rst(2) api1:::ik = api1:::ikq(x)yqand then, by the same change y ! ky as above,(3) api1:::ik�1q = api1:::ik�1q(x); api1:::ik�2q1q2 = 0; : : : ; apq1:::qk = 0 :We are going to interpret (1) - (3) geometrically. Taking into account the in-clusion i : �kTE ! 
kTE, consider the map idTE 
 Nk�1 Tp : Nk TE !TE 
Nk�1 TM . Since Tp : TE ! TM is a vector bundle, Tp 
Nk�1idTM :TE 
Nk�1 TM ! TM 
Nk�1 TM is a vector bundle as well. De�neLkE = (idTE 
 k�1OTp)(�kTE)which is a vector subbundle of TE 
Nk�1 TM over �kTM . Then (1) - (3) isequivalent to the following assertion.Proposition 3. A k-form A : �kTE ! TE is a VB-form i� all the followingthree conditions hold(i) A is projectable into A0 : �kTM ! TM ,(ii) A factorizes through LkE into AL : LkE ! TE,(iii) AL is a linear morphism LkE ! TE over A0.Furthermore, consider an a�ne bundle p : Y ! M . Then Tp : TY ! TM isalso an a�ne bundle, [3]. First we deduce that a vector �eld X : Y ! TY is anAB-�eld i� it is an a�ne bundle morphism Y ! TY over X0 : M ! TM . Thecoordinate expression of such a �eld in a�ne �bre coordinates is(4) Xi(x) @@xi + (Xpq (x)yq +Xp(x)) @@yp :On one hand, it is clear that a vector �eld tangent to a local one-parameter familyof local a�ne morphisms is of the form (4). On the other hand, the 
ow of (4) isgiven by(5) dxidt = Xi(x); dypdt = Xpq (x)yq +Xp(x) :



76 ANTONELLA CABRAS, IVAN KOL�A�RConsider �rst the equation dypdt = Xp(x), which yields yp = 'p(x; t). Then the\rest" of (5) corresponds to a VB-�eld and we can use our previous result.Let A : �kTY ! TY be an AB-k-form. Since the procedure from Example 1works, A is projectable over A0 : �kTM ! TM . For constant Xi = bi, Xp =bp, Xpq = 0 we �nd that all apa1:::ak in the coordinate expression of A are a�nefunctions. Using constant Xi = bi, Xpq = bpq , Xp = 0, we then obtain(6) api1:::ik�1q = api1:::ik�1q(x)api1:::ik�2q1q2 = 0; : : : ; apq1:::qk = 0Hence (6) and the previous relation(7) api1:::ik = api1:::ikq(x)yq + ~api1:::ik(x)characterize the AB-forms.The geometric interpretation of (6) and (7) is quite similar to the VB-case. SinceTp : TY ! TM is an a�ne bundle, Tp
Nk�1idTM : TY 
Nk�1 TM ! TM 
Nk�1 TM is an a�ne bundle as well. If we de�ne LkY = (idTY
Nk�1 Tp)(�kTY ),this is an a�ne subbundle of TY 
Nk�1 TM over �kTM . Then (6) and (7) isequivalent to the following assertion.Proposition 4. A k-form A : �kTY ! TY is an AB-form i� all the followingthree conditions hold(i) A is projectable into A0 : �kTM ! TM ,(ii) A factorizes through LkY into AL : LkY ! TY ,(iii) AL is a a�ne morphism LkY ! TY over A0.4. Algebraic models for higher order di�erential geometry. The vectorand a�ne bundles are the basic algebraic models for the �rst order di�erentialgeometry. The algebraic models for the higher order geometry have more compli-cated character, see e.g. [7], [8]. In this section we discuss the category 2GLB of2-graded linear bundles, [7]. The simplest example of a 2-graded linear bundle isthe space T 21M = J20 (R;M) of all second order one-dimensional velocities on amanifold M in the sense of Ehresmann, which is called the second order tangentbundle of M in higher order mechanics. In [7] it is proved that T 21 is a functorwith values in the category 2GLB. (We remark that the 2-graded linear maps areequivalent to the morphisms of linear 2-towers, [7]. The latter concept is moregeometrical, but the former one seems to be more suitable for our present aims.)In Proposition 7 below we characterize all tangent valued 2GLB-forms.Let V;W; �V ; �W be vector spaces. A 2-graded linear map is a triple f = (f1; f2; f3)where f1 2 L(V; �V ) and f2 2 L(W; �W ) are linear maps and f3 2 L2(V; �W ) isquadratic map of V into �W . Such a triple is interpreted as a mapf : V �W ! �V � �W; f(v; w) = (f1(v); f2(w) + f3(v)) :



SPECIAL TANGENT VALUED FORMS : : : 77One veri�es directly that the composition of 2-graded linear maps is 2-gradedlinear as well, so that these maps form a category 2GL. The objects in 2GL arethe products V �W of vector spaces, but we underline that the product vectorstructure on V �W is not preserved under 2GL-isomorphisms.For every category S over manifolds one de�nes the category SB of S-bundles,[3]. Since 2GL is a category over manifolds in a canonical way, we obtain thecategory 2GLB as a special case. By [3], the trivial 2GL-bundles are of the formM � V � W , where M is a manifold. A 2GLB-morphism into another trivial2GL-bundle �M � �V � �W is a quadruple (f0; f1; f2; f3), where f0 : M ! �M ,f1 : M ! L(V; �V ), f2 : M ! L(W; �W ), f3 : M ! L2(V; �W ) are smooth maps,which is interpreted as a map f :M � V �W ! �M � �V � �W of the form(8) f(x; v; w) = (f0(x); f1(x)(v); f2(x)(w) + f3(x)(v)) :In general, (8) represents the local expression of an arbitrary 2GLB-morphism.To make some geometric facts more transparent, let us introduce a category2FM of 2-�bred manifolds, whose objects are pairs of surjective submersions p :Z ! Y and q : Y ! M written as Z ! Y ! M , and whose morphisms preserveboth �berings. Obviously, every 2GL-bundle Z ! Y ! M is 2-�bred manifoldand the underlying �bering Y !M is a vector bundle.Proposition 5. For an arbitrary 2GL-bundle Z ! Y ! M the tangent bundleTZ ! TY ! TM is also a 2-graded linear bundle.Proof. In the case of a trivial 2GL-bundle M � V � W , T (M � V � W ) =TM � TV � TW is also a trivial 2GL-bundle and the tangent map to (8), whosesecond component is linear in v and dv over TM and third component is linear inw, dw and quadratic in v, dv over TM , is a trivial 2GLB-morphism as well. Therest of our claim follows form the general theory of structured bundles, [3]. �We are going to show that the 2GLB-�elds can be characterized analogouslyto the VB- and AB-cases. Consider a vector �eld X : Z ! TZ an a 2GL-bundleZ ! Y ! M tangent to a local one -parameter family of local 2GLB-morphisms.This implies, among others, that X is projectable into a vector �eld X1 : Y ! TYand the latter �eld is also projectable into a vector �eld X0 : M ! TM . On theother hand, since TZ ! TY ! TM is a 2GL-bundle, we have de�ned the conceptof a 2GLB-section Z ! TZ (i.e. a 2GLB -morphism, which is a section of TZ ! Zat the same time).Proposition 6. A vector �eld X on a 2GL-bundle Z ! Y !M is a 2GLB-�eldi� it is a 2GLB-section Z ! TZ.Proof. On one hand, if X is tangent to a local one-parameter family of local2GLB-morphisms of Z, then one sees directly that X : Z ! TZ is a 2GLB-section.Conversely, consider some local adapted coordinates xi; vp; wa on Z = M�V �W .The coordinate form of a 2GLB-section is(9) dxi = Xi(x); dvp = Xpq (x)vq ; dwa = Xapq(x)vpvq +Xab (x)wb :



78 ANTONELLA CABRAS, IVAN KOL�A�RIn the vector bundle case we deduced that the 
ow of the �rst two equations of(9) is(10) �xi = '(x; t); �vp = 'pq(x; t)yq :Denote by 'a(x; v; w; t) the solution of the additional equation(11) dwadt = Xapq(x)vpvq +Xab (x)wb :Write �a = 'a(x; kv; k2w; t)� k2'a(x; v; w; t); k 2 R, so that �a = 0 for t = 0 byde�nition. Then (11) with (10) implyd�a@t = Xab ('i(x; t))�b(x; v; w; k; t) :Hence �a satisfy a system of linear di�erential equations with zero initial condition,so that �a = 0. This yields'a(x; kv; k2w; t) = k2'a(x; v; w; t) :By the homogeneous function theorem, [6], 'a is linear in wa and quadratic in vp.This means that the 
ow of X is formed by local 2GLB-morphisms. �To describe the 2GLB-forms, we �rst construct a 2GL-bundle DZ related withTZ 
 TZ. Consider the projections Tp
 idTM : TZ 
 TM ! TY 
 TM andidTY 
 Tq : TY 
 TY ! TY 
 TM . Then the Whitney sum over the pullbackp�(TY 
 TM ) of TY 
 TM over ZTZ 
 TM �p�(TY
TM) TY 
 TY =: DZis a vector bundle over Z.Lemma. DZ ! TY 
 TM !
2TM is a 2GL-bundle.Proof. In the trivial case Z = Rm� V �W we haveT (Rm� V )
 TRm = (Rm�Rm
Rm)� (V � V ) 
Rmand DZ = T (Rm� V )
 TRm� (W �W 
Rm� V 
 V ) :Having a 2GLB-morphism f : Z = Rm�V �W ! �Z = �Rn� �V � �W of the form (8),one veri�es directly that the induced map Df : DZ ! D �Z is a 2GLB-morphismas well. The rest follows from the general theory of S-bundles, [3]. �Since (Tq 
 idTM ) � (idTZ 
 T (q � p)) = (idTY 
 Tq) � (Tp
 Tp)is the same map TZ 
 TZ ! TY 
 TM , the formulaQZ(B1 
 B2) = (B1 
 T (q � p)(B2); T p(B1)
 Tp(B2))induces a map QZ : TZ 
 TZ ! DZ. Then QZ 
Nk�2 T (q � p) : Nk TZ !DZ 
Nk�2 TM and we de�neDkZ = (QZ 
 k�2OT (q � p))(�kTZ) :This is a 2GL-bundle DkZ ! LkY ! �kTM .



SPECIAL TANGENT VALUED FORMS : : : 79Proposition 7. A one-form TZ ! TZ is a 2GLB-form i� it is a 2GLB-morphism.A k-form A : �kTZ ! TZ with k � 2 is a 2GLB-form i� all the following threeconditions hold(i) A is projectable into A0 : �kTM ! TM ,(ii) A factorizes through DkZ into AD : DkZ ! TZ,(iii) AD is a 2GLB-morphism DkZ ! TZ over A0.Proof. Let us start with the case k = 2. By functoriality, every 2GLB-two-formA : �2TZ ! TZ is projectable into a VB-two-form A1 : �2TY ! TY . Let(aaijdxi ^ dxj + aaipdxi ^ dvp + aaibdxi ^ dwb + aapqdvp ^ dvq++aapbdvp ^ dwb + aabcdwb ^ dwc) 
 @@wabe the coordinate expression of the \remaining" part of A. Hence (12) must belinear in w and quadratic in v for any two 2GLB-�elds X and �X . Let us discussthe following possibilities (the non-indicated components are zero)1) Xa = cacwc; �Xb = �cbdwd yield aabc = 0,2) Xa = cacwc; �Xb = cbpqvpvq yield aapb = 0,3) Xp = cprvr ; �Xq = �cqsvs yield apqr = apqr(x) depend on x only,4) Xi = ci; �Xa = cabwb yield aaib = aaib(x),5) Xi = ci; �Xp = cpqvq yield apiq = apiqr(x)vr ,6) Xi = ci; �Xj = �cj yield aaij = aaijpq(x)vpvq + aaijb(x)wb.This is just the coordinate form of our assertion. The cases k = 1 and k � 3can be studied quite similarly. �Our description of the C-forms in Propositions 3, 4 and 7 has an interestingrelation to the theory of connections of special types. For an arbitrary categoryS over manifolds, the following approach to the connections on an arbitrary S-bundle Y ! M is presented in [6]. A connection � : Y ! J1Y is said to bean SB-connection, if the �-lift of every vector �eld on M is an SB-�eld. Onesees directly this is equivalent to the requirement that the corresponding tangentvalued one-form !� is an SB-form, provided SB is in�nitesimally closed. But thecurvature of � can be de�ned as the Fr�olicher-Nijenhuis bracket [!�; !�], so thatit is an SB-two-form. In the VB- or AB-case we rededuce the well known factthat the curvature of a VB- or AB-connection is linear or a�ne, respectively. ButProposition 7 gives a new characterization of some properties of the curvature of2GLB-connections.5. Symplectic and volume-preserving cases. In the last section we intend toshow that there are some categories over manifolds, in which the tangent valuedC-forms are of trivial character. We �rst discuss the category Sp of all symplecticmanifolds and local symplectomorphisms. Clearly, the Sp-�elds are the locallyHamiltonian vector �elds characterized by(13) LX! = 0 ;



80 ANTONELLA CABRAS, IVAN KOL�A�Ri.e. the Lie derivative of the symplectic form ! vanishes. This implies directly thatSp is in�nitesimally closed. Using the well known formula LX = iXd + diX andthe fact that ! is closed, we can write (13) in the form(14) d(iX!) = 0 :Having the canonical local expression of !dx1 ^ dx2 + � � �+ dx2n�1 ^ dx2ncondition (14) reads(15) 0 = d(X1dx2 �X2dx1 + � � �+X2n�1dx2n�X2ndx2n�1) :Proposition8. The only Sp-one-forms on a connected symplectic manifold (M;!)are the constant multiples of idTM . The only Sp-k-form for k > 1 is the zero form.Proof. A one form A = aijdxj 
 @@xi is a Sp-form i�(16) 0 = d(a1iXidx2 � a2iXidx1 + � � �+ a2n�1i Xidx2n� a2ni Xidx2n�1)for every Sp-�eld Xi. Consider �rst the �eld bi @@xi with constant components. By(15) all of them are Sp-�elds. Then (16) implies(17) 0 = da1i ^ dx2 � da2i ^ dx1 + � � �+ da2n�1i ^ dx2n � da2ni ^ dx2n�1for all i = 1; : : :2n. This simpli�es (16) to the form(18) 0 = a1idXi ^dx2�a2i dXi^dx1+ � � �+a2n�1i dXi^dx2n�a2ni dXi^dx2n�1 :Consider now the vector �elds of linear coordinate formXi = bijxj ; bij = const;so that (15) reads0 = b1i dxi ^ dx2 � b2idxi ^ dx1 + � � �+ b2n�1i dxi ^ dx2n � b2ni dxi ^ dx2n�1 :This is equivalent to the conditions(19) b2l�12k�1 + b2k2l = 0 b2l�12k � b2k�12l = 0 b2l2k�1� b2k2l�1 = 0for all k; l = 1; : : : ; n. The coe�cient by dx1^dx2 in (18) with individual b0s impliesa11 � a22 = 0 a1� = 0; a2� = 0; � = 2; : : : ; 2n; � = 1; 3; : : : ; 2n:



SPECIAL TANGENT VALUED FORMS : : : 81Repeating such a procedure, we obtainaii � ajj = 0 no summation,with all other a0s vanishing. Then (17) gives@a11@x1 = 0; : : : ; @a11@x2n = 0so that aii =const.For an Sp-k-form A with k > 1 the same procedure yields A = 0: �A similar phenomenon appears in the case of the category Vol of manifoldswith volume form and of the volume-preserving local di�eomorphisms. On sucha manifold (M;'), the Vol-�elds are the so-called divergence-free vector �eldscharacterized by LX' = 0. Even Vol is a in�nitesimally closed category. In thecanonical local coordinates, in which ' has the formdx1 ^ � � � ^ dxma divergence-free vector �eld is characterized by@X1@x1 + � � �+ @Xm@xm = 0 :In the same way as in Proposition 8, one deduces for connected MProposition 9. The only Vol-one-forms on (M;') are the constant multiples ofidTM . The only Vol-k{form for k > 1 is the zero form.References[1] Cabras, A., Canarutto, D., Systems of Principal Tangent-valued forms, Rendiconti di Mat.,Ser VII, Roma 11 (1991), 471-493.[2] Cabras, A., Canarutto, D., The System of Principal Connections, Rendiconti di Mat., SerVII, Roma 11 (1991), 849-871.[3] Cabras, A., Canarutto, D., Kol�a�r, I., Modugno, M., Structured Bundles, Pitagora Editrice,Bologna (1991).[4] Crampin, M., Ibort, L. A., Graded Lie algebra of derivations and Ehresmann connections,J. Math. Pures Appl. 66 (1987), 113-125.[5] Fr�olicher, A., Nijenhuis, A., Theory of vector valued di�erential forms I., Indag. Math. 18(1956), 338-385.[6] Kol�a�r, I., Michor, P. W., Slov�ak, J., Natural Operations in Di�erential Geometry, Springer- Verlag, 1993.[7] Kol�a�r, I., Modugno, M., On the algebraic structure of the bundles of higher velocities, Sem-inari Instituto di Mat. Appl. \G. Sansone", Florence (1989), 17 pp.
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