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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 83 { 96FURTHER HIGHER MONOTONICITY PROPERTIES OFSTURM{LIOUVILLE FUNCTIONZuzana Do�sl�a, Milo�s H�a�cik1 and Martin E. MuldoonAbstract. Suppose that the function q(t) in the di�erential equation (1) y00 +q(t)y = 0 is decreasing on (b;1) where b � 0. We give conditions on q which ensurethat (1) has a pair of solutions y1(t); y2(t) such that the n-th derivative (n � 1) ofthe function p(t) = y21(t) + y22(t) has the sign (�1)n+1 for su�ciently large t andthat the higher di�erences of a sequence related to the zeros of solutions of (1) areultimately regular in sign. 1. IntroductionSeveral authors (starting with [9]; see [11] for references) have considered highermonotonicity properties of solutions of the di�erential equation(1) y00 + q(t)y = 0when assumptions are made about the higher monotonicity behaviour of q. Hart-man [6] showed that if q(1) > 0 and(2) (�1)nq(n+1)(t) � 0; 0 � t <1; n = 0; 1; : : :then (1) has a pair of solutions y1(t), y2(t) such that p(t) = y21(t) + y22(t) satis�es(3) (�1)np(n)(t) � 0; 0 � t <1; n = 0; 1; : : : :L. Lorch and P. Szego [9] showed, among other things, that if (3) holds, then(4) (�1)n�n+1tk � 0; n = 0; 1; : : : ; k = 1; 2; : : : ;1991 Mathematics Subject Classi�cation : 34A40, 34C10, 34D05.Key words and phrases: n-times monotonic functions, completely monotonic functions, ulti-mately monotonic functions and sequences, regularly varying functions, Appell di�erential equa-tion, generalized Airy equation, higher di�erences.Received June 8, 1992.This work was supported by grants from the Natural Sciences and Engineering ResearchCouncil (Canada).1Milo�s H�a�cik died suddenly on August 21, 1986 shortly after the �rst draft of this article wasprepared. We dedicate it to his memory. Z.D., M.E.M.83



84 ZUZANA DO�SL�A, MILO�S H�A�CIK, MARTIN E. MULDOONwhere ft1; t2; : : :g is the sequence of zeros of any non{trivial solution of (1) on(0;1). A typical example for both of these results is the transformed form(5) y00 + �1 + �14 � �2� t�2� y = 0of the Bessel equation in the case j�j � 12 .It is natural also to consider this equation for j�j< 12 . In this case we have(6) (�1)nq(n)(t) � 0; 0 < t <1; n = 0; 1; : : :and for a standard pair y1(t) = ptJ�(t), y2(t) = ptY�(t) of solutions of (5) it isknown [9,p. 62] that p(t) = y21(t) + y22(t) satis�es(7) (�1)np(n+1)(t) > 0; 0 < t <1; n = 0; 1; : : : :However, in general, (6) does not imply (7).The question of what additional assumptions are needed to make (6) imply (7)was discussed by P. Hartman in [7]. Z. Do�sl�a [3] showed, in the case q(1) > 0, thatif (6) holds and if certain assumptions are made about the orders of magnitude ofthe successive derivatives of q(t), then there is a sequence fTng such that(8) (�1)np(n+1)(t) � 0; Tn < t <1; n = 0; 1; : : : :This is a weaker result than (7). However, P. Hartman [7] showed that in thespecial case q(t) = 1 + �=t
 ; � > 0; 
 > 0, (7) holds for 0 < 
 < 1 and 
 =2.In this paper we use a result of Hartman [6, Theorem 22.1n] to show (Theorem2.1) that if (6) holds and if(9) (�1)n[q(t)�1Dt](n+1)(q(t))�1 � 0; 0 < t <1; n = 0; 1; : : : ;then (7) holds. In x6, we give examples of situations where (6) and (9) hold.We also give (Theorem 2.2) a sort of converse result where higher monotonicityassumptions on p are used to give similar properties of q. In x3 we give resultsanalogous to (4) under assumption (6) and additional assumptions on q. However,these results, like those of [3] refer to ultimate monotonicity. Typically, they showthe existence of a sequence flng such that(10) (�1)n�n+2tk � 0; n = 0; 1; : : : ; k = ln; ln + 1; : : : :In x4, we state some auxiliary results and in x5 we present proofs of the Theo-rems. x6 is devoted to applications.Finally, we remark that most of our results are stated and proved for \multi-ply monotonic" functions and sequences, i.e. inequalities like (6), (8) and (10) aresupposed to hold for n = 0; 1; : : :;M for some �nite M . Results concerning \com-pletely monotonic" functions and sequences follow by letting M tend to in�nity.



HIGHER MONOTONICITY PROPERTIES 852. The functions q(t) and p(t)Our principal result here is the following.Theorem 2.1. Let (1) be oscillatory at 1. Let(11) (�1)nDnt (q(t)) � 0; 0 < t <1; n = 0; 1; : : : ; N + 1and(12) (�1)nDn+1� [(q(t)�1] � 0; 0 < t <1; n = 0; 1; : : : ; N + 1 ;where �0(t) = q(t), i.e.D� = [q(t)]�1Dt. Then (1) has a pair of solutions y1(t); y2(t)on (0;1) such that p(t) = y21(t) + y22(t) satis�es(13) (�1)nDn+1t p(t) � 0; 0 < t <1; n = 0; 1; : : :; N :y1(t) and y2(t) are unique to the extent that p(t) is unique up to multiplicationby a constant.Furthermore, if N � 2, the function p2q is nonincreasing on (0;1) and it has apositive limit as t!1.Theorem 2.1 was about deducing properties of p from those of q. Theorem 2.2goes in the opposite direction. It is valid on any interval I.Theorem 2.2. Let the pair of solutions y1(t); y2(t) of (1) in I be such that p(t) =y21(t) + y22(t) satis�es(14) (�1)nDn+1t [p(t)]1=2 � 0; t 2 I; n = 0; 1; : : : ; N :Then(15) (�1)nDnt q(t) � 0; t 2 I; n = 0; 1; : : : ; N :3. Ultimate monotonicityWe start with a result whose conclusion is weaker than that of Theorem 2.1 inthe sense that, for each n, (13) holds only on a subinterval (�n;1) of (0;1). Itshypotheses are, in part, weaker than those of Theorem 2.1 but we need to imposean order condition on the derivatives of q(t) and q�1(t). We use the usual notationf(t) = O(t��); t!1, to mean thatlim supt!1 jf(t)jt� <1 :



86 ZUZANA DO�SL�A, MILO�S H�A�CIK, MARTIN E. MULDOONTheorem 3.1. Let (1) be oscillatory at t = 1 and let N � 4 be a �xed integer.Let(16) (�1)nq(n)(t) � 0; n = 0; 1; : : : ; N + 2 ;(17) limt!1 tq00(t)q0(t) = �; �1 < � < 0 :If q(1) = 0, suppose, in addition, that(18) (q�1)0 = O(t�1); t!1 :Then (1) has a pair of solutions y1(t); y2(t) such that p(t) = y21(t) + y22(t) satis�es(19) (�1)np(n+1)(t) � 0; �n < t <1; n = 0; 1; : : : ; N ;where f�ng is a nondecreasing sequence and �n = �n+1 only if �n = 0. Moreover,p2q is ultimately nonincreasing and has a positive limit as t!1.Now we turn to deducing properties of zeros of a nontrivial solution of (1) fromproperties of q(t).We let t1; t2; : : : be the sequence of consecutive positive zeros of a solution y(t)of (1). Our result on this sequence runs as follows.Theorem 3.2. Let the hypotheses of Theorem 3.1 hold and let(20) limt!1 jq0(t)jt2 = k; 0 < k � 1 :Then there is a nondecreasing sequence flng of non{negative integers with ln =ln+1 only if ln = 0, such that(21) (�1)n�n+2tk � 0; n = 0; 1; : : : ; N + 1; k = ln; ln + 1; : : : :Remark 1. The case of Theorem 3.1 in which q(1) > 0 was stated and proved in[3,Theorem 3.1] under stronger assumptions. The case q(1) > 0 of Theorem 3.2 isa supplement to [3,Theorem 3.2] for functions q(t) tending \slowly" to a nonzeroconstant.In the following section, we show that the function q considered in Theorems 3.1,3.2 is slowly varying; this will be used to establish further asymptotic propertiesof q. Lemma 4.3 makes it possible to di�erentiate an O-term and to determine thesign of a general di�erential operator. This, together with [6,Theorem 22.1n] and[11,Theorem 2.1], will be employed for the functions q�1 and p in the proofs ofTheorems 3.1 and 3.2, respectively.



HIGHER MONOTONICITY PROPERTIES 874. Auxiliary resultsIn what follows, we needDe�nition 1. A function f is n-times monotonic on an interval I, and we writef 2Mn(I) if (�1)if (i)(t) � 0; t 2 I; i = 0; 1; : : : ; n :Clearly, sums and products of n-times monotonic functions are n-times mono-tonic.Lemma 4.1. Let lim supt!1 jf2(t)=f1(t)j < 1. Then there exists T such thatsgn[f1(t) + f2(t)] =sgn f1(t) for t � T .Proof. . It is clear that there exists a T and an � > 0 such that jf2(t)=f1(t)j < 1��and hence [f1(t) + f2(t)]=f1(t) > � for t � T . �In [4] J. Karamata's notion of regularly varying functions is presented as follows:A function f(t) is said to be �{regularly varying at in�nity or simply �{varyingat in�nity, if it is real{valued, positive and measurable on [b;1) for some b > 0and if for each x > 0,(22) limt!1 f(tx)=f(t) = x�for some � in the interval �1 < � <1. � is called the index of regular variation.For example, for all real �, the functions t�, t� log(1 + t), [t log(log(e + t))]� are�-varying at in�nity.A function f(t) which is regularly varying with index � = 0 is called slowlyvarying (at in�nity). Every function f for which f(t) tends to a positive constantas t!1 is slowly varying. So is log t.If limt!1 jf(t)jt�� = A; 0 < A <1, then f is �-varying.Proposition 1. [12,p.7]. Any function f which is de�ned, positive and has con-tinuous �rst derivative on [B;1) for some positive B, and satis�es(23) limt!1 tf 0(t)=f(t) = �; �1 < � <1is �-varying at in�nity.Proposition 2. Suppose that f is �-varying at in�nity and that f 0 exists and ismonotone on [b;1). Then (23) holds and for � 6= 0, the function (sgn�)f 0(t) is(� � 1)-varying at in�nity.Proof. The main ideas for the proof are contained in [4], especially in the proofsof Theorems 2.7.1 (b) and Theorem 1.2.1 (b), but since the proposition does notappear to follow directly from results in [4] we give an indication of its proof here.Suppose that the hypotheses of Proposition 2 hold. We havef(yt) � f(xt)f(t) = tf 0(t)f(t) Z yx f 0(st)f 0(t) ds :



88 ZUZANA DO�SL�A, MILO�S H�A�CIK, MARTIN E. MULDOONCase (i): f 0 positive and decreasing or negative and increasing.Suppose �rst that 1 < x < y and that t > b. Then the integrand is � 1throughout the range of integration, so(24) f(yt) � f(xt)f(t) � tf 0(t)f(t) (y � x)and we get, on taking lim inf as t!1,y� � x� � lim inft!1 tf 0(t)f(t) (y � x) :Letting y ! x and then x! 1, we get(25) lim inft!1 tf 0(t)f(t) � � :On the other hand, with x < y < 1 and t > b, the integrand is � 1 throughout therange of integration, we have(26) f(yt) � f(xt)f(t) � tf 0(t)f(t) (y � x)and we get, on taking lim sup as t!1,y� � x� � lim supt!1 tf 0(t)f(t) (y � x):Letting y ! x and then x! 1, we get(27) lim supt!1 tf 0(t)f(t) � �:The two inequalities (25) and (27) together give (23).Case (ii): f 0 positive and increasing or negative and decreasing. The inequalities(24) and (26) for the integral will now be reversed so we get, in this case, for1 < x < y, y� � x� � lim supt!1 tf 0(t)f(t) (y � x)and for x < y < 1 y� � x� � lim inft!1 tf 0(t)f(t) (y � x):This leads to (23) as before.Now let � > 0 so that f 0 is ultimately positive. Let � > 0 be given. By (23),there is a T such that for t > T ,(28) � � �t < f 0f < � + �t :



HIGHER MONOTONICITY PROPERTIES 89Thus for x > 0 and t > T=x, we have(29) �� �tx f(tx) t� + � 1f(t) < f 0(tx)f 0(t) < � + �tx f(tx) t� � � 1f(t) :The right{hand side of (29) approaches x��1(�+ �)=(�� �) and the left{hand sideapproaches x��1(� � �)=(� + �) as t ! 1. But the coe�cients (� � �)=(� + �)and (� + �)=(� � �) are arbitrarily close to 1. Thus the middle expression in (29)approaches x��1 as t!1 and so f 0 is (�� 1){varying at in�nity. This completesthe proof in the case � > 0. The case � < 0 can be dealt with similarly. �Remark 2. The function q(t) in Theorems 3.1 and 3.2 is slowly varying. This is evi-dent if q(1) > 0. If q(1) = 0, then (18) shows that lim supt!1 q�2(t)jq0(t)jt <1,which implies that limt!1 q�1(t)jq0(t)jt = 0, i.e. q is slowly varying by Proposition1. The following Lemma is a restatement, with a slight correction, of a result of[3,(16)].Lemma 4.2. Let f and g be n-times di�erentiable functions on an interval I.Then [fDt]n(g) = fng(n) +X�(n; t)g(�)f
where �(n; t) is a homogeneous form in f 0; f 00; : : : ; f (n�1) whose typical term isconst:(f 0)�1(f 00)�2 : : : (f (n�1))�n�1with(30) 1 � �; 
 � n� 1; �1 + 2�2 + � � �+ (n� 1)�n�1 + � = nand 0 � �i � n� i; for i = 1; 2; : : : ; n� 1:Lemma 4.3. Let f (k) be monotone for k = 1; 2; : : : ; n; 0 < f(1) � 1 andlimt!1 tf 00(t)=f 0(t) = � < 0:If f(1) = 1, suppose, in addition, that f 0(t) = O(t�1); t ! 1. If f(1) < 1,suppose, in addition, that limt!1 tf 0(t) = 0. Then(i) limt!1 tk�1f(k)(t)f 0(t) = �(� � 1) : : : (� � k + 2) 6= 0; k = 2; : : : ; n:(ii) f (k)(t) = O(t�k); t!1; k = 2; : : : ; n; if f(1) =1 andlimt!1 tkf (k)(t) = 0; k = 2; : : : ; n; if f(1) <1:(iii) If the f (k) alternate in sign there exists a number Tk = T (k) such thatsgn(fDt)(k)[f(t)] = sgnf (k)(t); t � Tk; k = 1; 2; : : : ; n;Tk � Tk+1 and Tk = Tk+1 only if Tk = 0; k = 1; 2; : : : ; n.



90 ZUZANA DO�SL�A, MILO�S H�A�CIK, MARTIN E. MULDOONProof. In order to prove (i), we can use Propositions 1 and 2, leading tolimt!1 tk�1f (k)(t)f 0(t) = limt!1 tf (k)(t)f (k�1)(t) tf (k�1)(t)f (k�2)(t) : : : tf 00(t)f 0(t)= �(� � 1) : : : (� � k + 2) 6= 0; k = 2; : : : ; n:In the cases f(1) =1 and f(1) <1, we havelim supt!1 tkjf (k)(t)j = limt!1 j tk�1f (k)(t)f 0(t) j lim supt!1 jf 0(t)jt <1and limt!1 tkf (k)(t) = limt!1 tk�1f (k)(t)f 0(t) limt!1 tf 0(t) = 0respectively, so we have (ii). For (iii), we use Lemma 4.2 to getsgn(fDt)k(f) = sgn[fkf (k) +X�(k; t)f (�)f
 ]and (iii) will follow from Lemma 4.1 once we show(31) lim supt!1 j�(k; t)f (�)f (k) j limt!1[f(t)]
�k = 0:1. Let f(1) = 1. Then limt!1[f(t)]
�k = 0 because 
 � k < 0. We provethat lim supt!1 j�(k; t)f (�)=f (k)j < 1. A typical term in the limes superior is aconstant multiple of(32) lim supt!1 [f 0]�1 [f 00]�2 : : : [f (k�1)]�k�1f (�)[f (k)]�1:In view of (i),(ii) and (30) we getlimt!1 j f 0tk�1f (k) j lim supt!1 tk�1[f 0]�1�1[f 00]�2 : : : [f (k�1)]�k�1f (�) <1in case �1 � 1; in case �1 = 0 there exists �s � 1; s 2 f2; : : : ; n � 1g such that(32) approacheslimt!1[f (s)ts�1f 0 ]�s limt!1 j f 0tk�1f (k) j lim supt!1 tk�1��s(s�1)[f 0]�s�1[f 00]�2 : : :: : : [f (s�1)]�s�1 [f (s+1)]�s+1 : : : [f (k�1)]�k�1f (�) <1because �s � 1 + 2�2 + � � �+ s�s + � � �+ � = k � 1� �s(s � 1) and (ii) is used.2. Let 0 < f(1) < 1. In a similar way we get limt!1 j�(k; t)f (�)=f (k)j = 0 and(31) holds.



HIGHER MONOTONICITY PROPERTIES 91The conclusion (iii) now follows from Lemma 4.1.It remains to prove Tk � Tk+1 and Tk = Tk+1 only if Tk = 0; k = 1; 2; : : :. First,using the fact that if f 2 Mn(0;1) and if f is not constant then (�1)kf (k)(t) >0; k = 0; : : : ; n � 1; t 2 (0;1) (see [13,Lemma 0.3]), we have f (k) 6= 0; fort 2 (0;1); k = 2; : : : ; n� 1.Let Tk = minfT jsgn(fDt)k(f(t)) = sgnf (k)(t); for t > Tg; k = 1; : : : ; n. Sup-pose, contrary to what we wish to show, that there exists a k 2 f1; : : : ; n�1g suchthat Tk+1 < Tk or Tk+1 = Tk > 0. If k 2 f1; 2: : : : ; n� 2g, suppose without loss ofgenerality, that f (k+1)(t) < 0 and f (k)(t) > 0 for t 2 (0;1); k = 1; 2; : : : ; n� 2.Putting Fk = (fDt)k(f); k = 1; : : : ; n � 1, we have Fk+1 = fDt(Fk). It followsthat DtFk < 0; for t > Tk+1; Fk > 0; for t > Tk: Thus, because of thecontinuity of F and the de�nition of Tk, we get Fk(Tk) = 0 and Fk(t) is decreasingfor t > Tk � Tk+1, i.e. Fk(t) < 0 for t > Tk, which is a contradiction.Similarly, if k = n � 1 then Fn�1(Tn�1) = 0; Fn�1(t) < 0 for t > Tn�1;DtFn�1(t) � 0 for t > Tn � Tn�1, which is a contradiction. �Lemma 4.4. Let the hypotheses of Theorem 3.1 hold. Then(i) limt!1 t[q�1(t)]00[q�1(t)]0 = � < 0;(ii) sgn[q�1(t)](k) = �sgnq(k)(t), for su�ciently large t.Proof. Because of Remark 2, we havelimt!1[tq0(t)=q(t] = 0; limt!1[tq00(t)=q0(t)] = �; �1 < � < 0:By a routine computation,limt!1 t[q�1(t)]00[q�1(t)]0 = �2 limt!1 tq0(t)q(t) + limt!1 tq00(t)q0(t) = � < 0;so we get (i). To prove (ii), we show by mathematical induction that(q�1)(k) = �q�2q(k) + k+1X
=3�(
; k; t)q�
where �(
; k; t) is a homogeneous form in q0; : : : ; q(k�1) whose typical term isconst.(q0)�1(q00)�2 : : : (q(k�1))�k�1 ;where 0 � �i � k; i = 1; : : : ; k � 1; Pk�1i=1 i�i = k; and Pk�1i=1 �i = 
 � 1.If we prove L = lim supt!1 jP�(
; k; t)q�
�q�2q(k) j < 1;then the conclusion (ii) will follow from Lemma 4.1. We shall use Lemma 4.3(i),(ii) and the fact that limt!1[tq0(t)=q(t)] = 0: A typical term of L is a constantmultiple of q�
+2(q0)�1(q00)�2 : : : (q(k�1))�k�1 [q(k)]�1:Now by the similar decomposition as in the proof of Lemma 4.3 (iii) we get thatthis is asymptotic to a constant multiple of [tq0(t)=q(t)]
�2 which approaches 0 ast!1. The conclusion (ii) now follows from Lemma 4.1. �



92 ZUZANA DO�SL�A, MILO�S H�A�CIK, MARTIN E. MULDOONLemma 4.5. [10,pp. 1241-1242] Let g0(t) be (n � 1)-times monotonic on I andlet f be n-times monotonic on g(I). Then f [g(t)] is n-times monotonic on I. Letg0(t) be (n � 1)-times monotonic on Iand let Dxf(x) be n-times monotonic ong(I). Then Dtf [g(t)] is n-times monotonic on I.Remark 3. Lemma 4.5 shows that (q�1)0 2 Mn(b;1) implies that (q�1=2)0 2Mn(b;1).Lemma 4.6. [14,Lemma1] Let f be n-timesmonotonic on (b;1). Then limt!1 tkf (k)(t) = 0 for k = 1; : : : ; n� 1.5. Proofs of the theorems.Proof of Theorem 2.1. The hypothesis (12) may be expressed as(�1)n � 1q(t)Dt�n�Dt 1q2(t)� � 0; n = 0; 1; : : :; N:Thus it follows from a result of P. Hartman [6,Theorem 22.1n] that under thepresent hypotheses, the equation (1) possesses a pair of solutions y1(t); y2(t) suchthat if p(t) = y21(t) + y22(t), then p0(t) is an N -times monotonic function of � for0 < t <1. Moreover, p(t) is determined up to a multiplicative constant. But �0(t)is an N -times monotonic function of t. Thus by Lemma 4.5, p0(t) is an N -timesmonotonic function of t, i.e. (13) holds.If N � 2, we see from the Appell equation [1]p000 + 4qp0 + 2q0p = 0that(33) (p2q)0 = �pp000=2 � 0;so p2q is nonincreasing. That its limit is positive is most easily seen from theMammana identity [2](34) p2q = (p0)2=4� pp00=2 +w2since p; p0; p00 all! 0 as t!1 (Here w is the constant Wronskian of y1 and y2.)�Proof of Theorem 2.2. If we write r(t) = [p(t)]1=2, we have from (34) thatq(t) = �r00r + w2r4See, for example, [2,p. 32]. But �r00 is obviously N -times monotonic, and fromLemma 4.5, so are 1=r and w2=r4. Hence, q(t) is N -times monotonic. �



HIGHER MONOTONICITY PROPERTIES 93Proof of Theorem 3.1. According to Lemma 4.4 (ii), we havesgn(q�1)(k) = �sgnq(k) = (�1)k+1for su�ciently large t. By Lemma 4.6, we get limt!1 tq0(t) = 0. If q(1) > 0, thenlimt!1 t(q�1)0 = � limt!1 tq�2q0 = 0, so (q�1)0 = O(t�1). This condition is partof our hypotheses in the case q(1) = 0. Thus, all the hypotheses of Lemma 4.3(with f replaced by 1=q) are satis�ed and we havesgnDn+1� [q(t)]�1 = sgn(q�1Dt)n+1[q(t)]�1= sgn(q�1)(n+1) = (�1)n; n = 0; 1; : : : ; N + 1for t � �n, for t � �n where �n � �n+1 and �n = �n+1 only if �n = 0; n =0; : : : ; N + 1. Now, applying a modi�ed form of Theorem 2.1, with hypotheses on(�n+1;1) rather than (0;1), we get (19) and the last assertion of the Theorem.�Proof of Theorem 3.2. According to [11,Theorem 2.1], we havesgn[�n+1tk] = sgn(pDt)n(p);where p(t) is given in Theorem 3.1. We shall show that the function p(t) satis�esthe hypotheses imposed on f in Lemma 4.3, in particular that(a) lim supt!1 tp0(t) <1, if p(1) =1, and limt!1 tp0(t) = 0, if p(1) <1,(b) limt!1[tp00(t)=p0(t)] = � < 0: The condition 0 < p(1) � 1 is an automaticconsequence of 0 � q(1) < 1, since p2q approaches a �nite positive constant ast approaches in�nity. Then we will get sgn(pDt)n(p) = sgnp(n) = (�1)n+1 on�n < t < 1 and sgn[�n+1tk] = (�1)n+1; k = ln; ln + 1; : : : , which is what wehave to prove. Moreover, ln = l(n) denotes the smallest integer for which the zerotln is � �n. Since the sequence f�ng is nondecreasing and �n = �n+1 only if�n = 0, the same property must hold for flng.We have(35) p(t) = [q(t)]�1=2[c+w(t)]; w(t)! 0; c = const. > 0Thus p2q = (c + w)2 implies (p2q)0 = 2(c + w)w0. On the other hand, (p2q)0 =�pp000=2 � 0 (see (33)) and from this(36) w0 = �14 pp000c+ w = �14q�1=2p000:From (35), (36), we get(37) p0 = �12q�3=2q0(c+ w)� 14q�1p000or(38) p0 = �12q�3=2q0(c +w)[1 + 12 q1=2p000q0(c+ w) ]:



94 ZUZANA DO�SL�A, MILO�S H�A�CIK, MARTIN E. MULDOONIf p(1) < 1, and hence q(1) > 0, then limt!1 tp0(t) = 0, from (37), be-cause by Lemma 4.6, applied to q; p respectively, we have limt!1 tq0(t) = 0,limt!1 t2p000(t) = 0. Let p(1) =1, and hence q(1) = 0. We then have(39) limt!1 q1=2p000(c +w)q0 = limt!1 q1=2 limt!1 t2p000 1c limt!1 t2q0 = 0:(The �rst two limits are zero and the one in the denominator is non-zero, by(20).) Thus the quantity in square brackets in (38) approaches 0 as t approachesin�nity. Since (q�1)0 = O(t�1), i.e. lim supt!1 tq�2jq0j <1, we see from (38) thatlim supt!1 tp0(t) <1.To prove (b), we use (37) which we can write (since (39) holds both for q(1) > 0and q(1) = 0), p0 = �12(c+ w)q�3=2q0 [1 +O(1)]:Di�erentiating (37), we get, using (36),p00 = 34q�5=2q02(c +w)� 12q�3=2q00(c+ w) + 38q�2q0p000 � 14q�1p(4) :Thus limt!1 tp00(t)=p0(t) is a sum of four terms. The �rst of these is�32 limt!1 tq0(t)q = 0;using Remark 2. The second term islimt!1 tq00(t)q0(t) = �;by hypothesis (17). The third term is�34 limt!1 t2p000(t)tq1=2(t)(c+ w) = 0 :This is obvious if q(1) > 0 and if q(1) = 0, thenlimt!1 tq1=2(t) = limt!1[tq(t)]1=2t1=2 =1 ;since from (20) and the fact that limt!1 tq0(t)=q(t) = limt!1[t2q0(t)]=[tq(t)] = 0,it follows that limt!1 tq(t) > 0. The fourth and last term is12 limt!1 tp(4)(t)q1=2(t)q0(t)(c +w)[1 +O(1)] = 12 limt!1 q1=2(t) limt!1 t3p(4)(t)t2q0(t)(c+ w) = 0 :Putting these four terms together, we havelimt!1 tp00(t)=p0(t) = �; � < 0;and the proof is complete. �



HIGHER MONOTONICITY PROPERTIES 956. ApplicationsTheorem 2.1 may be applied to the generalized Airy equation(40) y00 + t�y = 0in case �1=2 � � � 0. This shows in the usual notation for Bessel functions thatfor 1=2 � � � 2=3, the �rst derivative of the function(41) p(t) = t[J2� (2�t1=(2�)) + Y 2� (2�t1=(2�))]is completely monotonic on (0;1). We may contrast this with the facts that:(i) for 1=3 � � < 1=2 the function (41) is completely monotonic on (0;1)[11, Theorem 5.1];(ii) for j�j � 1=2 the function t[J2� (t) + Y 2� (t)] is completely monotonic on(0;1).We note that Theorem 3.1 is not applicable to (40). However (35) and Remark3 suggest the followingConjecture:. (7) holds for (40) in the case �2 < � < 0 at least for su�cientlylarge t.In the case q(1) = 0, the results of Theorems 3.1 and 3.2 are applicable to theequation y00 + (log t)�1y = 0and more generally, to the equationy00 + [lk(t)]��y = 0on a suitable t-interval, where 0 < � � 1 and lk(t) is the iterated logarithm,i.e. l0(t) = t; lk(t) = log(lk�1(t); k = 1; 2; : : : : (On the contrary, a functionnot satisfying ((18)) is q(t) = t�; � < 0). In the case q(1) > 0, Theorem 3.1 isapplicable to the equations(42) y00 + [1 + t�
 ]y = 0; 
 > 0 ;see also [3,Corollary 1](43) y00 + [1 + (log t)�1]y = 0 ;and(44) y00 + [1+ (lk(t))��]y = 0 :The conclusion of Theorem 3.2 is applicable to the equations (43) and (44). Forequation (42), the corresponding conclusion was proved in [3, Corollary 1].
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