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FURTHER HIGHER MONOTONICITY PROPERTIES OF
STURM-LIOUVILLE FUNCTION

ZUzZANA DoSLA, MiLo§ HACIK! AND MARTIN E. MULDOON

ABSTRACT. Suppose that the function g(¢) in the differential equation (1) v’/ +
g(t)y = 0 is decreasing on (b, c0) where b > 0. We give conditions on g which ensure
that (1) has a pair of solutions yi (¢), y2(¢t) such that the n-th derivative (n > 1) of
the function p(t) = y?(t) + y2(t) has the sign (—1)"*+! for sufficiently large ¢ and
that the higher differences of a sequence related to the zeros of solutions of (1) are
ultimately regular in sign.

1. INTRODUCTION

Several authors (starting with [9]; see [11] for references) have considered higher
monotonicity properties of solutions of the differential equation

(1) y' +qt)y =0

when assumptions are made about the higher monotonicity behaviour of ¢q. Hart-
man [6] showed that if ¢(o0) > 0 and

(2) (—)"¢" D) >0, 0<t<oo, n=0,1,...
then (1) has a pair of solutions y; (t), y2(t) such that p(t) = yi(t) + y3(¢) satisfies
(3) (—)"p™ () >0, 0<t<oo, n=0,1,....

L. Lorch and P. Szego [9] showed, among other things, that if (3) holds, then

(4) (=1)"A" T >0, n=0,1,..., k=1,2,...,
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where {t1,t2,...} is the sequence of zeros of any non-trivial solution of (1) on
(0,00). A typical example for both of these results is the transformed form

(5) Y+ [1+ G—zﬂ) t—Z] y=0

of the Bessel equation in the case [v| > $.
It is natural also to consider this equation for |v| < % In this case we have

(6) (=)"¢"™(t) >0, 0<t<oo, n=0,1,...

and for a standard pair y;(t) = Vi, (1), y2(t) = \/{Y,,(t) of solutions of (5) it is
known [9,p. 62] that p(t) = y3(t) + y3(t) satisfies

(7) (=)"p () >0, O0<t<oo, n=01,....

However, in general, (6) does not imply (7).

The question of what additional assumptions are needed to make (6) imply (7)
was discussed by P. Hartman in [7]. Z. Dosl4 [3] showed, in the case ¢(oc) > 0, that
if (6) holds and if certain assumptions are made about the orders of magnitude of
the successive derivatives of ¢(t), then there is a sequence {7,} such that

(8) (~1)"p" (@) >0, T, <t<oo, n=01,....

This is a weaker result than (7). However, P. Hartman [7] showed that in the
special case ¢(t) =14+ 3/t7,5 > 0,7 >0, (7) holds for 0 < vy < 1 and vy =2.
In this paper we use a result of Hartman [6, Theorem 22.1,] to show (Theorem

2.1) that if (6) holds and if
(9) (=" [q() "' D)7 (g(t))™ >0, 0<t<oo, n=01,...,

then (7) holds. In §6, we give examples of situations where (6) and (9) hold.
We also give (Theorem 2.2) a sort of converse result where higher monotonicity
assumptions on p are used to give similar properties of ¢. In §3 we give results
analogous to (4) under assumption (6) and additional assumptions on ¢. However,
these results, like those of [3] refer to ullimate monotonicity. Typically, they show
the existence of a sequence {l,,} such that

(10) (=1)"A™ 2, >0, n=0,1,.. k=10, +1,....

In §4, we state some auxiliary results and in §5 we present proofs of the Theo-
rems. §6 is devoted to applications.

Finally, we remark that most of our results are stated and proved for “multi-
ply monotonic” functions and sequences, i.e. inequalities like (6), (8) and (10) are
supposed to hold for n = 0,1, ..., M for some finite M. Results concerning “com-
pletely monotonic” functions and sequences follow by letting M tend to infinity.
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2. THE FUNCTIONS ¢(t} AND p(t)
Our principal result here is the following.

Theorem 2.1. Let (1) be oscillatory at co. Let

(11) (=" D (q(t)) >0, 0<t<oo, n=0,1,...,N+1
and
(12) (=)Dt (gt)™1>0, 0<t<oo, n=0,1,...,N+1,

where 0'(t) = q(t), i.e. Dy = [q

[¢(t)]~1D;. Then (1) has a pair of solutions y; (t), y2(t)
on (0,00) such that p(t) = yi(

(t
1) + y3(t) satisfies
(13) (=)"Ditp(t) >0, 0<t<oo, n=0,1,...,N.

y1(t) and y2(t) are unique to the extent that p(t) is unique up to multiplication
by a constant.

Furthermore, if N > 2, the function p®q is nonincreasing on (0, 00) and it has a
positive limit as t — o0,

Theorem 2.1 was about deducing properties of p from those of ¢q. Theorem 2.2
goes in the opposite direction. It is valid on any interval 7.

Theorem 2.2. Let the pair of solutions y1(t), y2(t) of (1) in I be such that p(t) =
v (t) + y3(t) satisfies

(14) ()" D )2 >0t €I, n=0,1,...,N.
Then
(15) (-1)"D}q(t) >0,t€I,n=0,1,...,N.

3. ULTIMATE MONOTONICITY

We start with a result whose conclusion i1s weaker than that of Theorem 2.1 in
the sense that, for each n, (13) holds only on a subinterval (u,,o0) of (0, 00). Its
hypotheses are, in part, weaker than those of Theorem 2.1 but we need to impose
an order condition on the derivatives of ¢(¢) and ¢~1(¢). We use the usual notation
f(t) = 0(™%), t — o0, to mean that

limsup | f()[t% < o0

t—o0
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Theorem 3.1. Let (1) be oscillatory at t = oo and let N > 4 be a fixed integer.
Let

(16) (=)"¢"™(t) > 0,n=0,1,...,N +2,
. tq//(t) B
(17) tliglo 0 =p, —co<p<0.

If ¢(o0) = 0, suppose, in addition, that

(1%) (Y =0, t— oo,

Then (1) has a pair of solutions y1 (), y2(t) such that p(t) = y3(t) + y3(t) satisfies
(19) (=)"p () >0, pp<t<oco, n=0,1,...,N,

where {p,, } Is a nondecreasing sequence and p, = pn41 only if p, = 0. Moreover,
p?q is ultimately nonincreasing and has a positive limit as t — co.

Now we turn to deducing properties of zeros of a nontrivial solution of (1) from
properties of ¢(t).

We let t1,%5,... be the sequence of consecutive positive zeros of a solution y()
of (1). Our result on this sequence runs as follows.

Theorem 3.2. Let the hypotheses of Theorem 3.1 hold and let

(20) tlim O =k, 0<k<oo.

Then there is a nondecreasing sequence {l,} of non—negative integers with [, =
loy1 only if I, =0, such that

(21) (=1)"A™ %, >0, n=0,1,.... N+1, k=1L, +1,....

Remark 1. The case of Theorem 3.1 in which ¢(c0) > 0 was stated and proved in
[3, Theorem 3.1] under stronger assumptions. The case ¢(o0) > 0 of Theorem 3.2 is
a supplement to [3,Theorem 3.2] for functions ¢(¢) tending “slowly” to a nonzero
constant.

In the following section, we show that the function ¢ considered in Theorems 3.1,
3.2 is slowly varying; this will be used to establish further asymptotic properties
of q. Lemma 4.3 makes it possible to differentiate an O-term and to determine the
sign of a general differential operator. This, together with [6,Theorem 22.1,] and
[11,Theorem 2.1], will be employed for the functions ¢=! and p in the proofs of
Theorems 3.1 and 3.2, respectively.
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4. AUXILIARY RESULTS
In what follows, we need

Definition 1. A function f is n-times monotonic on an interval I, and we write
fe M) if
(=i fD)y >0, tel, i=0,1,...,n.

Clearly, sums and products of n-times monotonic functions are n-times mono-
tonic.

Lemma 4.1. Let limsup,_ . |f2(t)/f1(t)] < 1. Then there exists T such that
sgn[f1(t) + f2(t)] =sgn fi(t) fort > T.

Proof. .Ttis clear that there exists a T and an € > 0 such that |f2(2)/f1(t)] < 1—¢
and hence [f1(t) + fo(¢)]/f1(t) > efor t > T. O

In [4] J. Karamata’s notion of regularly varying functions is presented as follows:

A function f(t) is said to be p-regularly varying at infinity or simply p—varying
at infinity, if it is real-valued, positive and measurable on [b, c0) for some b > 0
and if for each = > 0,

(22) Jim f(t2)/f(1) = 2*

for some p in the interval —co < p < 0o. p is called the index of regular variation.
For example, for all real p, the functions t*, t* log(1 + t), [t log(log(e + 1))]” are
p-varying at infinity.

A function f(¢) which is regularly varying with index p = 0 is called slowly
varying (at infinity). Every function f for which f(¢) tends to a positive constant
as { — oo is slowly varying. So is log?.

If lime oo |[fO)|[t7% = 4, 0< A< o0, then f is a-varying.

Proposition 1. [12,p.7]. Any function f which is defined, positive and has con-
tinuous first derivative on [B, co) for some positive B, and satisfies

(23) Jim ¢f'(t)/ f(t) = p, —00 <p < o0
is p-varying at infinity.

Proposition 2. Suppose that f is p-varying at infinity and that f’ exists and is
monotone on [b,00). Then (23) holds and for p # 0, the function (sgnp)f'(t) is
(p — 1)-varying at infinity.

Proof. The main ideas for the proof are contained in [4], especially in the proofs
of Theorems 2.7.1 (b) and Theorem 1.2.1 (b), but since the proposition does not
appear to follow directly from results in [4] we give an indication of its proof here.
Suppose that the hypotheses of Proposition 2 hold. We have

ft) = flat) _tF@) [ (s
& L P
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Case (1): f' positive and decreasing or negative and increasing.
Suppose first that 1 < = < y and that ¢ > b. Then the integrand is < 1
throughout the range of integration, so

flyt) — f(=t) _tf'(t)

24 < y—x
>y ORI TO R
and we get, on taking lim inf as ¢ — oo,

S 7 i (3
y’ —2? <liminf y—x).
Letting y — « and then z — 1, we get
S 7 i (3
25 lim inf >p.
(25) ineo ft) =7

On the other hand, with z < y < 1 and ¢ > b, the integrand is > 1 throughout the
range of integration, we have

fyh) = St @
ORE ()

and we get, on taking lim sup as ¢ — oo,

(26)

(y—x)

y’ — x” > limsup y—z
oy )
Letting y — « and then z — 1, we get

: L (1)
27 lim sup < p.
(27) mSUp oy <

The two inequalities (25) and (27) together give (23).
Case (ii): f/ positive and increasing or negative and decreasing. The inequalities
(24) and (26) for the integral will now be reversed so we get, in this case, for

l<z<y,
: L)
y’ —x” > limsup

(y—x)

and for z <y < 1

y’ — 2? < liminf

This leads to (23) as before.

Now let p > 0 so that f’ is ultimately positive. Let € > 0 be given. By (23),
there is a T such that for ¢t > T,

p—¢ [ pte
2 = .
(28) ; <(f< ;
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Thus for ¢ > 0 and ¢ > T'/«, we have

p—¢€ t 1 Fite) p+e t 1

T <o < w =

The right-hand side of (29) approaches *~!(p+¢)/(p — €) and the left-hand side
approaches #°~1(p — €)/(p + ¢) as t — co. But the coefficients (p — €)/(p + €)
and (p + €)/(p — €) are arbitrarily close to 1. Thus the middle expression in (29)
approaches z#~1 as t — co and so f’ is (p — 1)-varying at infinity. This completes
the proof in the case p > 0. The case p < 0 can be dealt with similarly. d

(29)

Remark 2. The function ¢(¢) in Theorems 3.1 and 3.2 is slowly varying. This is evi-
dent if ¢(c0) > 0. If ¢(c0) = 0, then (18) shows that lim sup,_, .. ¢~ 2(¢)|¢' ()]t < oo,
which implies that lim; .. ¢71(¢)|¢’(£)|t = 0, i.e. ¢ is slowly varying by Proposition
1.

The following Lemma is a restatement, with a slight correction, of a result of
[3,(16)].
Lemma 4.2. Let f and ¢ be n-times differentiable functions on an interval I.
Then

UDY (@) = g™ + Y o(n, 1))
where ¢(n,t) is a homogeneous form in f', f", ..., f"=1) whose typical term is
const.(f1)* (f)*2 .. (fnT )
with
(30) 1<B,y<n—1, ey 4294+ (n— Do, 1 +8=n

and
0<a;<n—z, fort=1,2,...,n—1.

Lemma 4.3. Let f*) be monotone for k =1,2,...,n, 0< floo) < o0 and
Jim tr" /') =p<0.

If f(o0) = oo, suppose, in addition, that f'(t) = O(t~1), t — co. If f(oo) < 00,
suppose, in addition, that limy_, tf'(t) = 0. Then
k—1 k
() Timy—co "D = plp—1).(p—k+2) £ 0, k=2,...,n.
(i) fBW)=0@t*), t =00, k=2,...,n, if f(00) = oo and
lim_ oo "B () =0, k=2,...,n, if f(c0) < 0.
(iii) If the f(*) alternate in sign there exists a number Ty = T(k) such that

sen(fDONP[F()] = sgnf (1), t>Tr, k=1,2,... n,

Ty <Tpy1 and Ty =Ty only if T, =0, k=1,2, ... )n.
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Proof. In order to prove (i), we can use Propositions 1 and 2, leading to

O NGO R T L ORI

lim ————=~ =

e () e fD(0) fER(0) ()

=plp—=1)...(p—k+2)#£0, k=2,...,n.

In the cases f(o0) = oo and f(oo) < oo, we have

tk—l (k) $
lim sup ¥ | f)(2)] = tlim |f7()| limsup |f/(#)]t < oo
t—00 o0 t—o0

F(t)

and

respectively, so we have (ii). For (iii), we use Lemma 4.2 to get

Sgn(th)k(f) = Sgﬂ[fkf(k) + Z é(k, t)f(ﬁ)fv]

and (iii) will follow from Lemma 4.1 once we show
(31) lim sup |

1. Let f(oo) = oo. Then lim;_ o [f(¢)]"~* = 0 because v — k < 0. We prove
that limsup,_, _ |¢(k,t)fP)/f*F)]| < co. A typical term in the limes superior is a
constant multiple of

(32) limsup[f/]* [f7]%2 ... [fE= D] p@ [ ]2,

t—o0

In view of (i),(ii) and (30) we get

!

mn;%ﬁgwggm“WH”*WT%HM“W%*ﬂW<m

t—o0

in case oy > 1; in case oy = 0 there exists ay > 1,5 € {2,...,n — 1} such that
(32) approaches

. f(s)ts_1 o 1 i . E—l—as(s—1)[ proas—17 piros
tlir&[ 7 ] tli?&|m|h?_1>igpt [f] (]

e N A R RS

because oy — 1 4+ 2as+ -+ sa;+ -+ F=k—1—a;(s — 1) and (ii) is used.
2. Let 0 < f(00) < co. In a similar way we get lim;_ o, |¢(k, ) fP) /)| = 0 and
(31) holds.
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The conclusion (iii) now follows from Lemma 4.1.

It remains to prove T, < Ti41 and T = Tppronlyif T, =0, k= 1,2, . ... First,
using the fact that if f € M, (0,00) and if f is not constant then (—1)% f¥)(¢) >
0, k =0,....,n—1, t € (0,00) (see [13,Lemma 0.3]), we have f*¥) £ 0, for
te0,00), k=2,...,n— 1.

Let T, = min{T|sgn(fD)*(f(t)) = sgnfF)(t),for t > T}, k =1,...,n. Sup-
pose, contrary to what we wish to show, that there exists a k € {1,...,n—1} such
that Tyy1 < Tp or Ty =T > 0. I k € {1,2....,n— 2}, suppose without loss of
generality, that f5+1 (1) < 0 and f*)(t) > 0 for t € (0,00), k =1,2,...,n — 2.
Putting Fr = (fD:)*(f), k= 1,...,n— 1, we have Fy1y = fD;(F}). It follows
that Dy F, < 0, for ¢ > Tpy1, Frp > 0, for t > Tj. Thus, because of the
continuity of I and the definition of Ty, we get Fi.(T)) = 0 and Fj(¢) is decreasing
for t > Ty, > Thy1, i.e. Fip(t) < 0 for t > Ty, which is a contradiction.

Similarly, if ¥ = n — 1 then F,_1(T,—1) = 0, F,_1(t) < 0 for t > T,_1,
DiFy_1(t) > 0 for t > T, > T, 1, which is a contradiction. O
Lemma 4.4. Let the hypotheses of Theorem 3.1 hold. Then

(i) timy—oo T = 5 < 0;
(ii) sgn[g= (1)]*®) = —sgnq®)(t), for sufficiently large t.
Proof. Because of Remark 2, we have
Jim [tq'(1)/q(¥] = 0, lim [t¢"(2)/¢'(1)] = p, —o0 < p <0.
By a routine computation,

tlg= ()] tq'(t tq"(t
im 7[(]_1()]/ = —2 lim q()—i—hm q/():
t—co [¢71(1)] t—oo q(t)  t—oo (1)
so we get (i). To prove (ii), we show by mathematical induction that

<0,

b1
()" = —¢72¢") + > " (7, k, 1)
y=3
where ¢(7, k,1) is a homogeneous form in ¢, ..., ¢* =1 whose typical term is

const.(q ) (¢")** ... (q(k_l))“k—l,

where 0 < oy <k, i=1,...,k—1, Zfz_lliozi =k, and Zfz_llozi =~-1.
If we prove
L = limsup |—Z¢(7Lf’f,3)q ’
t—00 —q “q
then the conclusion (ii) will follow from Lemma 4.1. We shall use Lemma 4.3
(i),(i1) and the fact that lim;_.«[t¢’(¢)/q(¢)] = 0. A typical term of L is a constant
multiple of

| <1,

q—'y+2(q/)oz1 (q//)OZQ o (q(k—l))ozk_l [q(k)]—l.
Now by the similar decomposition as in the proof of Lemma 4.3 (iii) we get that
this is asymptotic to a constant multiple of [tql(t)/q(t)]V_2 which approaches 0 as
t — 00. The conclusion (ii) now follows from Lemma 4.1. O
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Lemma 4.5. [10,pp. 1241-1242] Let ¢'(t) be (n — 1)-times monotonic on I and
let f be n-times monotonic on ¢(I). Then f[g(t)] is n-times monotonic on I. Let
¢'(t) be (n — 1)-times monotonic on Iand let Dy f(x) be n-times monotonic on
g(I). Then D, f[g(t)] is n-times monotonic on I.

Remark 3. Lemma 4.5 shows that (¢7')" € M, (b, 00) implies that (¢=*/2) €
My (b, 00).

Lemma 4.6. [14,Lemmal] Let f be n-times monotonic on (b, 00). Then lim;_ o, t*

Mty =0fork=1,...,n—1.
5. Proofs of the theorems.

Proof of Theorem 2.1. The hypothesis (12) may be expressed as

(=1)" [q(l—t)Dt]n (thz—l(t)) >0, n=0,1,...,N.

Thus it follows from a result of P. Hartman [6,Theorem 22.1,] that under the
present hypotheses, the equation (1) possesses a pair of solutions y1 (¢), ya2(t) such
that if p(t) = y7(t) + y3(t), then p/(¢) is an N-times monotonic function of @ for
0 <t < oo. Moreover, p(t) is determined up to a multiplicative constant. But /(%)
is an N-times monotonic function of ¢. Thus by Lemma 4.5, p/(¢) is an N-times
monotonic function of ¢, i.e. (13) holds.

If N > 2, we see from the Appell equation [1]

P +4qp +2¢'p =0
that

(33) (p*q) = —pp"'/2 <0,

so p?q is nonincreasing. That its limit is positive is most easily seen from the
Mammana identity [2]

(34) pla= (') /A—pp"/2+ 0
since p,p’, p" all — 0 ast — oo (Here w is the constant Wronskian of y; and y2.)0

Proof of Theorem 2.2. If we write () = [p(t)]'/?, we have from (34) that

7“” wz

H=—q
a(t) r + r4

See, for example, [2,p. 32]. But —" is obviously N-times monotonic, and from
Lemma 4.5, so are 1/r and w?/r*. Hence, ¢(t) is N-times monotonic. d
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Proof of Theorem 3.1. According to Lemma 4.4 (ii), we have
Sgn(q—l)(k) — —sgnq(k) — (_1)k+1

for sufficiently large ¢. By Lemma 4.6, we get liny_.o t¢'(t) = 0. If ¢(c0) > 0, then
limg oo t(qg71) = —limy_ o tg=2%¢' = 0, s0 (¢~ 1) = O(¢t~1). This condition is part
of our hypotheses in the case ¢(co) = 0. Thus, all the hypotheses of Lemma 4.3
(with f replaced by 1/q) are satisfied and we have

sgn Dy g(1)] ™" = sgn(g™ D) g(1)]
=sgn(g"H" Y = (=1)", n=0,1,...,N+1

for t > pp, for ¢ > pn where pn < pingr and pp = ppgq only if p, =0, n =
0,..., N+ 1. Now, applying a modified form of Theorem 2.1, with hypotheses on
(ftn+1, 00) rather than (0, 00), we get (19) and the last assertion of the Theorem.O

Proof of Theorem 3.2. According to [11,Theorem 2.1], we have
sgn[A" 4] = sgn(pDy)™ (p),

where p(t) is given in Theorem 3.1. We shall show that the function p(t) satisfies
the hypotheses imposed on f in Lemma 4.3, in particular that

(a) limsup,_, ., tp' () < oo, if p(co) = 00, and lim;_, o tp/(t) = 0, if p(o0) < o0,

(b) limy—. oo [tp" (1) /p'(1)] = p < 0. The condition 0 < p(o0) < oo is an automatic
consequence of 0 < g(o0) < oo, since p?q approaches a finite positive constant as
t approaches infinity. Then we will get sgn(pD;)"(p) = sgnp™ = (=1)"*! on
pn < t < oo and sgn[A" ] = (=1)"* k = 1,,l, +1,..., which is what we
have to prove. Moreover, [, = I(n) denotes the smallest integer for which the zero
t;, is > p,. Since the sequence {p,} is nondecreasing and p, = p,41 only if
tn = 0, the same property must hold for {l,}.

We have

(35) p(t) = [Q(t)]_l/z[c-l- w(t)], w(t)—0, ¢=const. >0

Thus p?q = (¢ + w)? implies (p?q)’ = 2(c + w)w’. On the other hand, (p?q) =
—pp’" /2 <0 (see (33)) and from this

1 1" 1
(36) W' = prp _ 1/2]7///.

From (35), (36), we get

1 1
(37) p/:__q—3/2q/(c_|_w)__q—1p///
2 4
or
1 1 gl/2p"
f_ L s/ I A
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If p(co) < oo, and hence g(co0) > 0, then lim;_o ¢p'(¢¥) = 0, from (37), be-
cause by Lemma 4.6, applied to ¢,p respectively, we have lim;_..t¢'(t) = 0,
lim; oo t2p"'(t) = 0. Let p(00) = oo, and hence ¢(co) = 0. We then have
1/2, 11 1
. qa'p 1 1/2 7: 2, 1
(39) tliglo (c + w)q’ - tli»Iga 1 tliglot p

climy_oo t2¢' 0.
(The first two limits are zero and the one in the denominator is non-zero, by
(20).) Thus the quantity in square brackets in (38) approaches 0 as ¢ approaches
infinity. Since (¢71) = O(t71), i.e. limsup,_ ., t¢~2|¢'| < 0o, we see from (38) that
lim sup,_, o, tp'(t) < oco.

To prove (b), we use (37) which we can write (since (39) holds both for ¢(c0) > 0
and ¢(o0) = 0),

Y = —g(e+ w)a™ [+ O]

Differentiating (37), we get, using (36),

3 _ : 1 _ 3 _ T _
p//:_q 5/2q2(c—|—w)—§q 3/2q//(c+w)+_q 2q/p///__q 1])(4).

4 8 4
Thus lim;—« tp"(¢)/p'(t) is a sum of four terms. The first of these is
/
B W
2 t—oo q

using Remark 2. The second term is

tq//(t)
1m =
s gty P

by hypothesis (17). The third term is
3 tzp”/(t)
—— lm —— =
4 1—o0 tq1/2(t) (e + w)
This is obvious if ¢(oc) > 0 and if ¢(c0) = 0, then

Jim tg'2(t) = lim [tq(t)]H 2% = oo,
since from (20) and the fact that lim;_ . t¢'(¢)/q(t) = limy_ oo [t?¢"(¢)]/[tq(¢)] = 0,
it follows that lim;_ oo tq(¢) > 0. The fourth and last term is

I 0 e DR )

- _ - . 1/2 . _
2 U e wi+om] ~ 2 am O M E ey =

Putting these four terms together, we have
Jim tp"()/p'(t) =p, p<O,
— 00

and the proof is complete. a
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6. APPLICATIONS

Theorem 2.1 may be applied to the generalized Airy equation
(40) y' +t%y =0

in case —1/2 < & < 0. This shows in the usual notation for Bessel functions that
for 1/2 < v < 2/3, the first derivative of the function

(41) p(t) = t[J2 (20t )y £ V2 (20t (2]

is completely monotonic on (0, c0). We may contrast this with the facts that:

(i) for 1/3 < v < 1/2 the function (41) is completely monotonic on (0, o0)
[11, Theorem 5.1];
(i) for |v| > 1/2 the function ¢[J2(t) + Y2(¢)] is completely monotonic on
(0, 00).
We note that Theorem 3.1 is not applicable to (40). However (35) and Remark
3 suggest the following

Conjecture:. (7) holds for (40) in the case —2 < o < 0 at least for sufficiently
large t.

In the case ¢(o0) = 0, the results of Theorems 3.1 and 3.2 are applicable to the
equation

"+ (logt) Tty =0

and more generally, to the equation
v+ k)] y =0

< 1 and [;(¢) is the iterated logarithm,
1,2,.... (On the contrary, a function
In

he case ¢(oo) > 0, Theorem 3.1 is

on a suitable ¢-interval, where 0 < p
Le. lo(t) = t, () = log(ls-1(t), k =
not satisfying ((18)) is ¢(¢) = t*, & < 0).
applicable to the equations

(42) ' +[14+t7"]y=0,7v>0,

see also [3,Corollary 1]

(43) y' +[1+ (logt)~ 'y =0,
and
(44) v+ [+ k(1) ly=0.

The conclusion of Theorem 3.2 is applicable to the equations (43) and (44). For
equation (42), the corresponding conclusion was proved in [3, Corollary 1].
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