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A REMARK ON SECOND ORDER
FUNCTIONAL DIFFERENTIAL SYSTEMS

VALTER SEDA, STEFAN BELOHOREC

ABSTRACT. It is proved that under some conditions the set of solutions to initial
value problem for second order functional differential system on an unbounded inter-
val is a compact Rs-set and hence nonvoid, compact and connected set in a Fréchet
space. The proof is based on a Kubacek’s theorem.

In the paper the initial value problem for second order functional differential
system on an unbounded interval is studied. By means of the Kub&acek’s theorem in
[2] which guarantees that the set of all fixed points of a compact map in a Fréchet
space 1s a compact Rs-set it i1s shown that under some restrictions on the growth
of the right-hand side of that system the set of the solutions to that initial value
problem is a compact Rs-set in a properly chosen Fréchet space of C''-functions.
The result extend a similar theorem for first order functional differential systems
which is proved in [2].

1. INTRODUCTION

Throughout the whole paper we shall use the following denotations and as-
sumptions:

Let h > 0,6 € R, v € N and let | -| be a norm in R”. Further let H =
CY([=h, 0], R”) be provided with the norm [|z|| = max{|z(s)| + |2(s)| : —=h < 5 <
0} for each # € H and let Hy = C([—h, 0], R").

Let X = C'([b,00), RV be equipped with the topology of locally uniform con-
vergence of the functions and of their derivatives on [b, 00). The topology on the
Fréchet space X is given by the metrics

_Oo 1 Pml‘—y)
d(z,y) _Z_: 27 1+ pm (e —y)
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where pp(z) = sup{|z(®)|+ |2'(®)|: 0 St <b+m},z,ye X, m 2> 1.

Let X* = C*([b— h, 00), R”) be the Fréchet space provided with the seminorms
p () =sup{le@)|+2'@)]:b—hSt<b+m), 2 e X*,m2 1.

For # € C([b — h, ), R”) we denote by x; € Hy the function x:(s) = (¢t + s),
s € [=h,0],t Zb. Clearly (z;)'(s) = (z')i(s), s € [-h,0] and x € X*, t 2 b.

Let f € C([b,o0) x H x Hy, R”), ¢ € H. We shall consider the following initial
value problem
(1) 27({t) = f(t, 2, 25), b <t < o0
(2) =4, x, =9

A solution z of (1), (2) is a function € X* N C?([b, o), R) which satisfies (2)
and the functional differential system (1) at each point ¢ 2 b.

Now we shall state the Kubdcek theorem in [2] as Lemma 1. In that lemma a
compact Rs-set in a metric space (E, ¢) means a nonempty subset I of E which
is homeomorphic to the intersection of a decreasing sequence of compact absolute
retracts. By [1], p. 92, a metric space G is called an absolute retract when for each
metric space H and each closed K C H, each continuous map f : K — G has
a continuous extension ¢ : H — (. E.g. a nonempty convex subset of a Fréchet
space 1s an absolute retract.

Lemma 1. Let M be a nonempty closed set in a Fréchet space (F,0), T : M — E
a compact map (i.e. T is continuous and T'(M) is a relatively compact set). Denote
by S the map I — T, where I is the identity map on E. Let there exist a sequence
{Un} of closed convex sets in E fulfilling

(i) 0 €U, foreachn € N;
(i) lim diam U, =0

and a sequence {T,} of maps T, : M — FE fulfilling

(iil) T(z) — T,,(x) € Uy, for each x € M and each n € N;
(iv) the map S, = I —T,, is a homeomorphism of the set S;*(U,) onto U,.

Then the set F of all fixed points of the map T is a compact Rs-set.

In a special case, when £ = X| ¢ = d, Lemma 1 implies the following lemma.
Lemma 2. Let (X,d) be the Fréchet space given above, let ¢, ¢, € C([b, o),
(0,00)), n € N and let the following condition be satisfied:

(v) Foreacht € [b,o0) the sequence {y, (1)} is nonincreasing and lim ¢, (1) =
0.
Let r, s € RV and let

M={zeX:|jz@)—r|+|2'{t)—s| S e®), t2b xb)=r 2'(b)=s}.

Suppose that T : M — X is a compact map with the property T(z)(b) = r,
(T'(x))'(b) = s for each © € M and there exists a sequence {T,,} of compact maps
T, : M — X such that T,,(z)(b) = r, (Tn(2)) (b) = s for each x € M and

(Vi) |Ta(2)(t) = T(2)D)] + [(Ta(2))' (1) = T(2)' ()] £ pnlt), z€ M, L 20
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(vii) for every n € N there exists a function ¢., € C([b, ), (0,00)) such that
pen +on = on [b,00)
and
| To(2)(t) = v+ [(Th(2)) () — | S pun(t), €M, t20;
(viii) the map S, = I — T, is injective on M where I is the identity on X.
Then the set F of all fixed points of the map T is a compact Rs.

Proof. The set
Un = {0 € X o0+ (D]  palt), €2 b,a(b) = 0,2'(b) = 0)

is convex and closed in X for each n € N. We shall show that the sequence
{U,} satisfies all conditions of Kubdéek’s theorem when F = X, ¢ = d. Then the
statement of Lemma 2 follows from Lemma 1.

Clearly the condition (i) is fulfilled. Further for a given £ > 0 there exists an
mgy € N such that >~ (1/2™) < /2. (v) and the Dini theorem imply that the

m=maqo+1

sequence {p, } converges on [b, 00) locally uniformly to 0, therefore for £ > 0 and
mg € N there exists an ng € N such that ¢, (pn) =sup{len(t)] : 6 £t < b4+m} <

g/4mg for n 2 ng and m = 1,2,... mg. Thus for n 2 ny and z,y € U,, we have
=1 pm(z —y) = 1
d — _Pm* 7Y _ -
(7.0) = Z2m1+pmx—y Zp £y m—;+12m
= 1 € €
= 2 gm(©n — <92 —+ —=c.
mz_ am(y )+m_zm a2 M0 g T2

This implies that the condition (ii) is satisfied. The assumption (iii) follows from
(vi) and from the definition of T, T,,, n € N. To show that (iv) is fulfilled it suffices
to prove the inclusion U, C S,(M). (viii) then implies that S, is a bijection
of S;1(Uy,) onto U,, and the continuity of S is then a consequence of the
compactness of T,,.

Thus we have to prove that for each y € U, there is an z, € M such that
2y — T(2y) = y. This means that for every y € U, the map P,(x) = y + T(2)
has a fixed point. (vii) implies that

ly(t) + To()(t) — | + ¥/ (1) + (Tn(2))' (1) — 5| =
]+ |y (O] + 1Ta(2)(t) — 7|+ [(Tn(2))'(t) — 5| =
Pn(t) + @enlt) = @(1), t20,
and Pn(2)(b) = r, (Pn(2))'(b) = s for each € M. Therefore P,(M)C M. As M

is a closed, convex bounded set and P, is a compact map, by the Tichonov fixed
point theorem, P, has a fixed point. This completes the proof of the lemma. O

'l
Un

In what follows the function ¢ in Lemma 2 will be given as a solution of an
integral equation. The existence of a solution to that equation will be discussed in
the following two lemmas.
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Lemma 3. Let ¢ € H, w € C([b,>),[0,)), g € C([0,0),[0,00)) be a nonde-

creasing function. Further denote

() Ux)(t) = |1//(0)|(t—b)+/b (t = s+ Dw(s)g(l¥ll +z(s)) ds, b=t < o0,

for each x € C([b,>),[0,20)). Then the following statements are true:
1. A solution ¢ € C([b,>0),[0,00)) of the integral equation

(4) p(t) =Ulp)(t), b=t < oo,
exists Iiff there exists a function A € C([b, >0), [0, >0)) such that
(5) At) 2 UA)(), b=t <oo.

2. The solution ¢ of (4) (whenever it exists) is nondecreasing in [b, o0).

Proof. 1. Necessary condition is clear. Sufficient condition. We shall proceed by
the method of steps. Hence we prove by mathematical induction that for each
m=172 ... :

a) There exists a solution y,, € C([b,b+m], [0,00)) of (4) on [b, b+ m] satisfying
the inequalities 0 € ¥, (1) S A@E), b St < b4+ m and

b) ymr(t) = ym(t), b=t<b+m.

Consider the partially ordered Banach space X7 = C([b,b+ 1), R) with the
sup-norm where z; < z9 if and only if z1(¢) £ 2z3(t) for each t € [b,b+ 1] and each
pair z1, zz from that space. Then, by definition, the interval (z1,z2) = {y € X3 :
21(8) Sy(t) € za(t), b <t < b+ 1} The operator U @ X1 — X defined by (3)
on [b,b+ 1] is completely continuous, nondecreasing and in view of (5), it maps
the interval (0, /\|[b7b+1]) into itself. Hence, by the Schauder fixed point theorem,
there exists a fixed point y; of U which satisfies (4) in [b, 6+ 1].

Suppose, now, that there exists a solution y,, of (4) on [b, b+ m]. Then we con-
sider the space Xy 41 = C([b, b+m+1], R) with the sup-norm and the natural par-
tial ordering. X, 41 is a partially ordered Banach space. The operator U given by
(3) on [b, b+m+1] maps X, 41 into itself, it is completely continuous, nondecreas-
ing and similarly as before, it maps the interval {0, /\|[b7b+m+1]> ={y € Xmq1 :05
y(t) S A@), bt < b+ m+ 1} into itself. Moreover, U maps the closed and con-
vex set Vg1 = {2 € Xong1 : 2(t) = ym(t), St S04+ min (0, /\|[b7b+m+1]) into
itself. Hence there exists a fixed point ym41 of U in Y41 and this is the searched
function 41 with the properties (a), and (b). Then the function ¢(t) = ym(?)
for b <t < b+ mand m=1,2,...,is asolution of (4) in [b, 00) and it satisfies
the inequalities

0 p(t) SA), bSt< .

2. The statement follows from (3), (4). O
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Lemma 4. Let ¢ € H and let g € C([0,0), (0,0)) be a nondecreasing function.
Then to each function ¢ € C([b, ), [0,00)) there exists a unique pair of functions
p € C([b,),[0,00)),w € C([b,>)),[0,00)) such that

B olt)
(6) “O= T+ ey 2

and ¢ is a solution of the equation (4).
Proof. Define

@ ww:wmma—m+4%—s+ma®w,b§t<m.

If ¢ is a solution of (4) and w satisfies (6), then necessarily ¢ has the form (7).
Hence there exists at most one pair of functions ¢, w satisfying (4), and (6) simul-
taneously. On the other hand, if ¢ is determined by (7) and w satisfies (6), then
¢ is a solution of (4). The statement of the lemma is proved. d

Example 1. If g(t) = ¢, b <t < oo, then by the last lemma the function
p(t) = (W(0)| = ")t =) +2(e —€"), bSt<oo

is increasing in [b, 00) and if g(u) = ku+ ¢, u 2 0, where k 2 0, ¢ > 0, then ¢ is a
solution of (4) with

“O= fvey+e 2%

2. MAIN THEOREM
Now we shall state and prove the main theorem.

Theorem 1. Let ¢ € H, f € C([b,00) x H x Hy, R"). Let, further, w € C([b, o),
[0,0)), ¢ € C([0,0),[0,00)) be a nondecreasing function and let
(ix) |f(t, X, X)) Sw(t)g(||Xe|]) for each (3, X) € [b,o0) x M*

where

M = {a € X* < [a(t) — (O] +1e'(t) — (0)| S plt) for 12D
and xy =, xy=v¢'},

¢ Is a solution of the equation (4) in [b, 00).
Then the problem (1), (2) has a solution  satisfying the inequality

|2(t) = ()] + |2'(1) = ¢'(0) S (1), 120
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and the set I'* of all such solutions is a compact Rs-set in the space X™.

Proof. Consider the set

M = {2 € X < [o(t) — $(0)] + () — ¥/(0)] € ) for 1 2 b
and z(b) = ¢(0), 2'(b) = ¢'(0)}.

Evidently the map P : X* — X determined by P(z) = J:|[b o) is a homeomor-
phism of M* onto M. Let the map 7" : M — X be defined by

(8)  T(x)(t) =(0) + ¢'(0)(t = b) + /b (t = s)fls, (P~ ), (P~ x){] ds,

reM, t2b.

Then F* = P7L(F) where F is the set of all fixed points of the map T. As a
homeomorphic image of a compact Rs-set is again a compact Rs-set, it suffices
to prove that F'is a compact Rs-set in the space X. This will be done by using
Lemma 2 where we put » = ¢(0), s = ¢/(0). The maps T}, : M — X defined by

{¢(0)+¢’(0)(t—b) it b<t<b4+ 2t
B(0) + W (0)(t = b)+ [ (1~ £ —s)
f[sa(P_lx)Sa(P_ll‘);]dS if tzb—k—’ neN

(9) To(z)(t) =

as well as T" are compact due to (ix) and, again by that assumption,

Ads = {77 = £ — s+ Dew(s)g(|(P~ 1)) ds

As ¢ is nondecreasing in [b, 00), [|(P~12),]| < ||¢]| + ¢(s) and thus,

Ta(@)() = T(2)O)] + [(Ta(2))'(8) = (T(2)) ()] < (1),

reM, t2b
where
on(t) = { Ji (= s+ Do)l + e (s)) ds, hSigied
' fbt(t_ s+ 1)“(5)g(||1/}|| +§0(5 ds —fb t_ 14 1) ( )

1
sl + o)) ds, b+ - St<oo, mEN,
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Clearly that ¢,(t) € C([b,00),[0,00)), and lim ¢, (t) = 0, p41(t) < pn(t) for

each t 2 b can be proved. Hence these functions satisfy the assumptions (v), (vi)
of Lemma 2.
Further

T (@)() = Y(O)] + [T0 () (1) = ¢/ (0)] = pun(t)
t2b, zeM

where

(t)—{ WOt —b), bSt<b+g
T L O - b+ [ = £ = s+ D]+ pls)) ds
b+%§t<oo, nenN,

are nonnegative continuous functions on [b,00) and with respect to the meaning
of ¢ we have that ¢, () + pin(t) = ¢(t), t 2 b, n € N. Thus (vii) in Lemma 2
is satisfied, too. So it remains to show that the assumption (viii) in that lemma
holds.

If 2,y € M, # # y, then there is a ¢y € [b,00) such that z(ty) # y(to). If
b to < bt L, then a(ts) — Ta(e)(to) = (to) — (0) — ¥(0)(ts — b) £ y(to) —
P(0)— ¢ (0)(to—b) = y(to) — T (y)(to). In the other case there exists at; 2 b+ %
such that ¢, = sup{r > b : 2(t) = y(t) for b £t < 7}. Then there exists a
to € (11,11 + %) such that (tp) # y(to). This gives that

T)(t0) = 00)+ 0/ 0)t0 =0+ [ o= 2 =) flsn (P ) (P ds
= 0O+ VO =D+ [ (o= = s (P (P ds

=Ta(y)(to)

and hence, #(tg) — T, (2)(to) # y(to) — To(y)(to), n € N. Thus all assumptions of
Lemma 2 are fulfilled and the statement of Theorem 1 follows from that lemma.O



176 VALTER SEDA, STEFAN BELOHOREC

REFERENCES

[1] Dugundji, J., Granas, A., Fized point theory, PWN, Warszawa, 1982.
[2] Kubacek, Z., Remarks on the paper of K. Czarnowski and T. Pruszko “On the structure of
fized point sets ... 7, Preprint.

VALTER SEDA

DEPARTMENT OF MATHEMATICAL ANALYSIS
MFF UK, MLYNSKA DOLINA

842 15 BraTIsLAvA, SLOVAKIA

STEFAN BELOHOREC

DEPARTMENT OF MATHEMATICS AND DESCRIPTIVE GEOMETRY
Facurty oF CIvIL ENGINEERING

RADLINSKEHO 11

813 68 BraTIsLAvA, SLOVAKIA



		webmaster@dml.cz
	2012-05-10T10:51:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




