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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 1 { 8ON A FOURTH ORDER PERIODICBOUNDARY VALUE PROBLEM�Ludov�it PindaAbstract. Existence and uniqueness of the solution to a fourth order nonlinearvector periodic boundary value problem is proved by using the estimates for deriva-tives of the Green function for the corresponding homogenous scalar problemThe aim of this paper is to prove the existence and the uniqueness of a solutionfor the nonlinear vector periodic boundary value problem(1) (L1 = L0(y) +K � y �) y(4)+(m2+n2) y00+(m2n2+K) y = g(t; y; y0; y00; y000) ;(2) y(i)(0) = y(i)(2�) ; i = 0; 1; 2; 3 :where 0 < m < n, m, n 2 N and K > 14 (n2 �m2)2, the function g 2 C(D;Rd),D = [0; 2�]� Rd � Rd � Rd � Rd , d � 1.The Green function for the corresponding homogeneous boundary value prob-lem (d = 1) has also been constructed. The method of the construction of thisfunction is published for instance in [3], where a nonlinear di�erential equation ofthe third order is investigated. Similarly as in that paper where the scalar caseis considered we shall prove the existence and uniqueness to (1), (2) in the vectorcase.We consider the scalar di�erential equation of the fourth order(3) (L0(x) �) x(4) + (m2 + n2)x00 +m2n2 x = 0with periodic boundary conditions (2). Let the space X = L2([0; 2�]) be providedwith the usual norm k�k and scalar product h�; �i. Consider the di�erential operatorL0 de�ned on the subspaceD(L0) = fx 2 C3([0; 2�]) : x(4) 2 L2([0; 2�]); x(i)(0) = x(i)(2�) ; i = 0; 1; 2; 3g :1991 Mathematics Subject Classi�cation : 34B10, 34B27.Key words and phrases: symmetric operator, Green function, generalized Banach space, Lip-schitz condition, eigenvalue.Received May 24, 1990.



2 �LUDOV�IT PINDATherefore the operator L0 maps D(L0) � X into X. The functions z1(t) =cosmt, z2(t) = sinmt, z3(t) = cosnt, z4(t) = sinnt form a fundamental system ofsolutions of the equation (3) and satisfy the boundary conditions (2). Consideringthe problem(4) L0(x) = �xit is obvious that � = 0 is the eigenvalue of the operator L0. In this case the Greenfunction does not exist. Let us take the equation(5) (L1 = L0(x) +K �x �) x(4) + (m2 + n2)x00 + (m2n2 +K) x = 0instead of the equation (3) and state a condition for the constant K 2 R, in orderthat the operator L0 + K �I have not the eigenvalue � = 0. I is the identicalmapping in the space X.Lemma 1. Let K > 14 (n2 � m2)2. Then 0 is not the eigenvalue of the operatorL0 +K �I.Proof. � is the eigenvalue of the problem (4) if and only if there exists such ak 2 Z that i�k is the root of characteristic equationr4 + (m2 + n2) r2 +m2n2 � � = 0 :This happens, i� k satis�es the equationk4 � (m2 � n2) k2 +m2n2 � � = 0 :Denote g : R! R the functiong(k) = k4 � (m2 � n2) k2 +m2n2The eigenvalues of the problem (4) are the values of the function g at k 2 Z. Thefunction g is an even function and min g(k) = �14(n2 �m2)2, k 2 Z and hence alleigenvalues �j � �14 (n2 �m2)2. From the form of the function g it follows thatall eigenvalues of the problem (4) form a sequence f�jg which approaches to 1 toj !1. If we add to the function g a constant K > 14 (n2�m2)2 to that function,then g + K will be positive for all k. The corresponding characteristic equationwill be r4 + (m2 + n2) r2 +m2n2 +K = 0and the di�erential operator will be L0(x) +K �x. �From Lemma 1 it follows that the equation (L0 + K � I)(x) = 0 has only thetrivial solution for K. By Lemma 4.3, [1], p.145 it follows that the operatorL0 +K � I is one-to-one and onto X.



ON A FOURTH ORDER PERIODIC BOUNDARY VALUE PROBLEM 3Lemma 2. The operator L0 +K �I, K 2 R is symetric in D(L0) (i. e. for everyx; y 2 D(L0) the equality h(L0 +K �I)(x); yi = hx; (L0 +K �I)(y)i is true.Proof. Let x; y 2 D(L0) = D(L0 +K �I). The assertion of the lemma follows bytwice integration by parts and by using boundary condition (2). �De�ne a linear operator M in space X byM (g)(t) = 2�Z0 G(t; s) g(s) ds ; 0 � t � 2� ;where G is the Green function for the problem (5),(2). By Lemma 2 and Lemma4.5 [1] p. 147 it follows that M is the self-adjoint operator on X and(6) G(t; s) = G(s; t) ; for every (t; s) 2 [0; 2�]� [0; 2�]Hence the operator L0 +K � I is self-adjoint too and D(L0 +K � I) = D(L0).Lemma 1 assurs the existence of the Green function G(t; s) for the operatorL0 +K �I. Determine its form. The characteristic equation L0(x) +K �x = 0 isr4 + (m2 + n2) r2 +m2n2 +K = 0 :Its roots arer1 = a+ i � b ; r2 = a � i � b ; r3 = �a+ i � b ; r4 = �a � i � b ;where a =s12 �a1 +qa21 + b21� ; b =s12 ��a1 +qa21 + b21� ;a1 = �m2 + n22 ; b1 =p4 �K � (n2 �m2)2 > 0 ;and 0 < a < b is true. The Green function will be found in the formG(t; s) = 8>>>>><>>>>>: c1eat cos bt+ c2eat sin bt+ c3e�at cos bt+ c4e�at sin bt ;0 � t < s � 2� ;c5eat cos bt+ c6eat sin bt+ c7e�at cos bt+ c8e�at sin bt ;0 � s < t � 2� :From (6) follows that it is su�cient to determine the coe�cients ci ; i = 5; 6; 7; 8.These coe�cients are calculated using the standart properties of the Green func-tion. The Green function of the problem (5), (2) isG(t; s) = [ 1 ea(t�s+2�) � 2e�a(t�s+2�)i� [ a sin b(s� t+ 2�) + b cos b(s� t+ 2�)]� [ 1 ea(t�s) � 2e�a(t�s)i� [ a sin b(s� t) + b cos b(s � t)] ; 0 � s < t � 2� ;



4 �LUDOV�IT PINDAwhere 1 = �ab(a2 + b2)(e4a� � 2 e2a� cos 2b� + 1)��1 ;2 = �ab(a2 + b2)(e�4a� � 2 e�2a� cos 2b� + 1)��1 :and e4a� � 2 e2a� cos 2b� + 1 � (e2a� � 1)2 > 0 ;e�4a� � 2 e�2a� cos 2b�+ 1 � (e�2a� � 1)2 > 0 :Hence 0 < 1, 0 < 2. Let us introduce the notacionM = 1(e2a� + 1) ; N = 2(e�2a� + 1) :Lemma 3. The following estimates are vatidjG(t; s)j � (M eat + N )pa2 + b2 ;jGt(t; s)j � (M eat + N )(a+ b)pa2 + b2 ;jGtt(t; s)j � (M eat + N )(a+ b)2pa2 + b2 ;jGttt(t; s)j � (M eat + N )(a+ b)3pa2 + b2 :Proof. We consider the function f(u) =A sinu + B cosu for [0; 2�], where 0 <kAk < kBk, A, B 2 R. Look for the maximumof the function f . From the equalityf 0(u) = A cos u � B sinu = 0 it follows that sinu = AB cos u. Let A > 0 ; B > 0.Then 0 < tg u = AB < 1 and therefore there exists such u1 2 �0; �2 �, u2 2 ��; 32��,that f 0(ui) = 0 ; i = 1; 2 and cosu1 = B(A2 +B2)� 12 a cos u2 = �B(A2 +B2)� 12 .The extremal values of f in u1; u2 are f(u1) = (A2+B2) 12 ; f(u2) = �(A2+B2) 12 .We shall get the same values in the casees when A > 0, B < 0, A < 0, B > 0, andA < 0, B < 0. Therefore max jf(u)j = (A2 +B2) 12 in [0; 2�] for all A;B 2 R.We use these relations in the following estimations. The function ea(t�s+2�)attains its maximum on the set 0 � s � t at s = 0 and the function e�a(t�s+2�)at s = t. Similar results hold for the function ea(t�s), e�a(t�s). Having calculated@kG(t; s)@tk , k = 0; 1; 2; 3, we get these estimationsjG(t; s)j � �1eat(e2a� + 1) + 2(e�2a� + 1)� (a2 + b2) 12= (Meat + N )(a2 + b2) 12 ;jGt(t; s)j � �1eat(e2a� + 1) + 2(e�2a� + 1)� (a+ b)(a2 + b2) 12= (Meat + N )(a+ b)(a2 + b2) 12 ;jGtt(t; s)j � �1eat(e2a� + 1) + 2(e�2a� + 1)� (a2 + 2ab+ b2)� (a2 + b2) 12 = (Meat + N )(a+ b)2(a2 + b2) 12 ;jGttt(t; s)j � �1eat(e2a� + 1) + 2(e�2a� + 1)� (a3 + 3a2b+ 3ab2 + b3)� (a2 + b2) 12 = (Meat + N )(a+ b)3(a2 + b2) 12 : �



ON A FOURTH ORDER PERIODIC BOUNDARY VALUE PROBLEM 5Lemma 4.max0�t�2� 2�Z0 jG(t; s)j ds = K0 � 2�(Me2a� + N )(a2 + b2) 12 ;max0�t�2� 2�Z0 jGt(t; s)j ds = K1 � 2�(Me2a� +N )(a + b)(a2 + b2) 12 ;max0�t�2� 2�Z0 jGtt(t; s)j ds = K2 � 2�(Me2a� + N )(a+ b)2(a2 + b2) 12 ;max0�t�2� 2�Z0 jGttt(t; s)j ds = K3 � 2�(Me2a� +N )(a + b)3(a2 + b2) 12 :Proof. The integrals 2�R0 ���@jG(t;s)@tj ��� ds, j = 0; 1; 2; 3 are continuous functions of thevariable t in the compact interval [0; 2�] and in this interval they attain theirmaximumKj, j = 0; 1; 2; 3. From Lemma 3 we obtain the estimations above. �Let us consider the nonlinear vector periodic boundary value problem (1), (2).Firstly we introduce the following notations : x = (x1; : : : ; xd)T is a column vector,jxj = (jx1j; : : : ; jxdj)T ,Md�d is the set of all real d�dmatrices, ud = (1; : : : ; 1) 2 R,�(N ) is the spectral radius of the matrix N 2 Md�d, �(N ) = max j�ij, where �iare all eigenvalues of N .For the scalar boundary value problem (5), (2) the estimations��y(j)(t)�� � 2�Z0 ����@jG(t; s)@tj ���� � max0�s�2� jL1(y)(s)j ds=Kj � max0�t�2� jL1(y)(t)j ; j = 0; 1; 2; 3;(7)are valid, where the constants Kj are determined in Lemma 4.Futher we shall use a generalized norm. If E is a real vector space, then thegeneralized norm in E is a mapping k � kG : E ! Rd denoted by(8) kxkG = (�1(x); : : : ; �d(x))T ;such that(1) jjxjjG � 0 that is �j(x) � 0 for j = 1; : : : ; d ; x 2 E,(2) jjxjjG = 0 i� x = 0 ;(3) jjc xjjG = jcj � jjxjjG, c 2 R ; x 2 E ;(4) jjx+ yjjG � jjxjjG+ jjyjjG ; x; y 2 E.



6 �LUDOV�IT PINDAThe couple (E ; jj � jjG) is then called a generalized linear normed space. Thetopology in this space is given in the following way. For each x 2 E, and " > 0let B" = fy 2 E : jjx� yjjG < " � udg. The same topology can be inducted by thenorm which is de�ned in this way. Let jjxjjG is given by (8), then(9) jjxjj= max(�1(x); : : : ; �d(x)) ; x 2 E :The mapping jj�jj has all properties of the norm. The topology of the normed space(E ; jj � jj) is given by the basis of neighbourhoods V"(x) = fy 2 E : jjy�xjj < "g,x 2 E ; " > 0 and V"(x) = B"(x). Therefore the norms (8) and (9) de�ne the sametopology on E and in this sense are equivalent. We may use the norm (9) insteadof the generalized norm (8). The following lemma is true and it is introduced in[2], p. 78.Lemma 5. Let (E ; jj � jjG) be a generalized Banach space and let T : E ! E besuch that for all x; y 2 E and for some positive integer pjjT p(x) � T p(y)jjG � M � jjx� yjjG ;where M 2 Md�d is a nonnegative matrix with �(M ) < 1 and T p is p-th iterateof T . Then T has a unique �xed point. �Theorem 1. Let for all (t; u0; u1; u2; u3) ; (t; v0; v1; v2; v3) 2 D the function gsatisfy the Lipschitz condition(10) jg(t; u0; u1; u2; u3)� g(t; v0; v1; v2; v3; )j � 3Xl=0 Nljul � vlj ;where Nl 2 Md�d are nonnegative matrices. Let �� 3Pl=0Nl �Kl� < 1, where Klare the constant in Lemma 4. Then there exists a unique solution to (1), (2).Proof. Let us itreduce the notation for each x 2 C([0; 2�];Rd); x(t) = (x1(t); : : : ;xd(t))T max0�t�2� jx(t)j = ( max0�t�2� jx1(t)j; : : : ; max0�t�2� jxd(t)j)T . LetS1 = fx 2 C4([0; 2�] ; Rd) : x(i)(0) = x(i)(2�) ; i = 0; 1; 2; 3g :Then S1 is a real vector space and the generalized norm is de�ned on S1 byjjxjj1 = max0�t�2� jL1(x)(t)j ; pre v"setky x 2 S1 :The properties of the generalized norm can be easily checked. (S1 ; jj � jj1) is ageneralized Banach space. In fact, if fxng1n=1 � S1 a Cauchy sequence, thenthe sequence fL1(xn)(t)g1n=1 converge uniformly on [0; 2�] to the function y 2C([0; 2�]) ; Rd). The problem L1(x)(t) = y(t), (2) has a unique solution x 2 S1 alimn!1 jjxn� xjj1 = 0.



ON A FOURTH ORDER PERIODIC BOUNDARY VALUE PROBLEM 7De�ne the mapping T : S1 ! S1 by T (y) = x, where x is a solution of theequation L1(x)(t) = g(t; y(t); y0(t); y00(t); y000(t)) ;which ful�ls the boundary conditions (2). By (10) for any of two functions y ; z 2S1 we have(11) jL1(T (y))(t) � L1(T (z))(t)j � 3Xl=0 Nljy(l)(t)� z(l)(t)j ;for all t 2 [0; 2�].Denote the j-th coordinate of the functions y and z by yj , zj respectively. Thenfrom (7) we have jy(l)j (t) � z(l)j (t)j �� 2�Z0 ����@lG(t; s)@tl ���� � max0�t�2� jL1(yj)(t) � L1(zj)(t)jds� Kl max0�t�2� jL1(yj)(t) � L1(zj)(t)j ; l = 0; 1; 2; 3 :Therefore(12) jy(l)(t) � z(l)(t)j � Kl jjy � zjj1 ; l = 0; 1; 2; 3 :From (11) and (12) it followsjL1(T (y))(t) � L1(T (z))(t)j � 3Xl=0 Nl �Kljjy � zjj1 ;for all y; z 2 S1, t 2 [0; 2�] andjjT (y)� T (z)jj1 � 3Xl=0 Nl �Kljjy � zjj1 :As the assumption of Lemma 5 is ful�led, there exists a unique �xed point of T inS1. This means that the problem (1), (2) has a unique solution. �
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