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CURVATURE TENSORS IN DIMENSION FOUR
WHICH DO NOT BELONG TO ANY CURVATURE
HOMOGENEOUS SPACE

OLDRICH KOWALSKI AND FRIEDBERT PRUFER

ABSTRACT. A six-parameter family is constructed of (algebraic) Riemannian
curvature tensors in dimension four which do not belong to any curvature
homogeneous space. Also a general method is given for a possible extension
of this result.

1. INTRODUCTION

According to I.M. Singer [SI], a Riemannian manifold is said to be curvature ho-
mogencous if, for every two points p, ¢ € M, there is a linear isometry ' : T, M —
T, M between the corresponding tangent spaces such that F*R, = R, (where R
denotes the curvature tensor of type (0,4)). Note that a (locally) homogeneous Rie-
mannian manifold is automatically curvature homogeneous. Explicit locally non-
homogeneous examples have been constructed by many authors ([SE],[T],[YA],[K-
T-V1] - [K-T-V3],[K1] — [K3]; see especially [K-T-V2] and [K-T-V3] for more
complete references).

Let K be a curvature-like tensor of Riemannian type (shortly: curvature tensor)
on a vector space V with a positive scalar product <, >. I. e., we assume that

(1) K(X,Y,U,V)=-K(Y,X,U,V)=K(U,V,X,Y),
K(X,Y, 2, U)+ K(Y,Z, X, U)+ K(Z,X,Y,U) = 0.

A natural problem arises whether there is always a curvature homogeneous space
(M, g) such that, under a linear isometry between V and a tangent space T, M,
K coincides with the curvature tensor R, of (M, g) at the point o € M. In such a
case we say that the tensor K belongs to the curvature homogeneous space (M, g).

In dimension n = 3, the answer to our problem is always positive, as it was
proved quite recently (see [K2],[S-T],[K-P]): every curvature tensor R in dimension

1991 Mathematics Subject Classification: Primary 53C25, Secondary 53C30.

Key words and phrases: Riemannian manifolds, curvature tensor, curvature homogeneous
spaces.

Received August 16, 1993
This research was partly supported by the grant GA CR 201/93/0469.



46 0. KOWALSKI AND F. PRUFER

three belongs to some curvature homogeneous space. Moreover, if R is not of
the type of constant curvature, one can always find an example which is not
locally homogeneous. (On the other hand, it is not always possible to construct
a homogeneous Riemannian space with a prescribed curvature tensor (see [M],[S-
T1,[K3]).)

In dimension n = 4, the situation is essentially different. In the paper [S-T] the
following example is given: let Rgs and R pz denote the typical curvature tensors
of a four-dimensional sphere and a complex projective plane, respectively and let
a,b be nonzero real numbers. Then the curvature tensor aRgs« + bRcop2 does
not belong to any curvature homogeneous space. The proof requires nontrivial
results from the almost Hermitian geometry (see [T-V]). In this paper we study
the problem more systematically, by elementary methods, and we give a new and
broader family of curvature tensors with the above property. For our purposes we
introduce the notion of ¢ -rank (cyclic rank) of a curvature tensor, which may be
of some interest by itself.

The authors are obliged to F. Tricerri and K. Voss for valuable informations.

2. GENERIC CURVATURE TENSORS AND THE CHERN BASES

Let 'V be a vector space with a (positive) scalar product <, > and let R denote the
space of all curvature tensors on 'V (satisfying the identities (1)). The orthogonal
group O(V) acts on R in a natural way. A tensor R € R is said to be generic
if the subgroup H = {4 € O(V)|A(R) = R} is finite. Another characterization
of a generic tensor R € R is that its orbit in R under O(V) has the maximal
dimension (equal to n(n — 1)/2). Finally, R € R is generic if and only if there
is no nonzero skew-symmetric endomorhpism P of V (acting as a derivation on
the tensor algebra of V) such that P - R = 0. Indeed, the last identity means
(exptP)(R) = R, t € (—0o0, +00).

Let us consider now the four-dimensional case.

According to S.S. Chern [C], or R. Klinger [KL], dimR = 20, and for every
R € R there exists an orthonormal basis {e1,ea,e3,e4} of V (called a Chern
basis) such that the components R;;; satisfy

(2) 1213 = Ri214 = R1223 = R1224 = 0, Ry314 = 1323 = 0.

We have also the following observations:

a) If R € R is generic, then its Chern basis is uniquely determined up to a
finite group of reflections.

b) If R € R is an Einsteinian curvature tensor, then its Singer-Thorpe basis
{11, f2, f3, fa} (see [SI-TH]) is always a Chern basis.

¢) For the curvature tensor R = c¢g A ¢ of a space form, each orthonormal
basis is a Chern basis.

For the purpose of this paper, we shall introduce the following notation w.r. to a
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Chern basis:

Ay = Ryo1a, Az = Ryasy,

By = Ri313, B2 = Hiza4, B3 = Raissa,
(3) C1 = Ria1a, Oy = Risoa, Cs = Riy3a,

Dy = Ragzz3, D2 = Razza, D3 = Rassa,

F1 = Raazq, Bz = Hausa,

F1 = R34z

All curvature components in (3) are independent, in general, and they uniquely
determine the tensor R w.r. to a given basis.

Let us recall that an Einstein curvature tensor is characterized, w.r. to a Singer-
Thorpe basis, by the equalities (2) and the equalities

Av=F, Bi=E, Ci=D, Co=Dy=Ey=0, B3=C3=D3=0.

We give now some more examples of generic curvature tensors:

d) A curvature tensor R € R with four distinct Ricci eigenvalues is always
generic. In particular, assume that, w.r. to a Chern basis, the components
Ay, B1,Cy, Dy, By, Fy are the only (possible) nonzero components. It can
be easily seen that the Ricci eigenvalues are all distinct if and only if the
numbers |A; — F1|, |B1 — Ei], |C1 — D1 are all distinct.

In particular, if Dy = E; = F; = 0 holds but |A4],|B1], |Cy| are all
distinct, the tensor R is still generic.

e) If Ay = By = By # C1 = Dy = Iy, and all other components are zero,
then there are only two different Ricci eigenvalues but the curvature tensor
R is still generic.

To see the last result, one can use the following criterion of genericity w.r. to a
Chern basis {e1,...,e4}:
Let F;; denote the elementary skew-symetric endomorphism of V, i.e. those

defined by
(4)  Eijlei) = —¢j, Eij(ej) = e, Eijler) =0fork #1i,j, 1<i<j<4

Denote

(5) P= Z Ozi]'EZ']',
1<i<j<4
and let P act as a derivation on the tensor algebra 7(V). Then a tensor R € R
is generic if and only if P - R = 0 implies a;; = 0 for all 7,7, 1 <7< j < 4.
We conclude this Section with the following example:
f) Suppose that By = Dy, C1 = Ei, As = 2B2, A;, Fy are arbitrary,
Co=Dy=F;=0, B3y =C3=D3=0. Then A5 - R =0, and hence the

corresponding tensor R is not generic.
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3. GENERAL PROPERTIES OF CURVATURE HOMOGENEOUS SPACES

According to [SI] (see also [N-T] and [S-T]) we have the following

Theorem A. Any curvature homogeneous space (M, g) admits an open covering
{Va}aes such that, in each V,, an orthonormal moving frame {E{,... ES} ex-
ists for which all the components of the Riemannian curvature tensor field R are
constant.

Hence we obtain the first of the following corollaries:

Corollary 3.1. In each V,, there exists a flat connection v (with torsion) such
that V®g = V*R = 0. Here V? is defined as the (unique) connection for which
the vector fields F{,... EZY define an absolute parallelism.

Corollary 3.2. Suppose that (M, g) is curvature homogeneous and the typica]

curvature tensor It is generic. Then there is a unique global afline connection v
on (M, g) such that Vg = VR = 0. The connection V is locally flat.

Proof. In each neighborhood V,, we choose a point p, and a ”generalized Chern
basis® {ef, ..., e2} at p, in the sense of R. Klinger [KL]. Then we can extend this
basis to a moving frame {E{,...  ES} in V, for which all the components R;jx
are constant and each basis is a generalized Chern basis. Because R is generic,
such a moving frame is uniquely determined up to a finite group of reflections.
Hence we see V* = V7 on each intersection VN Vg, and we get a globally defined
connection V on (M, g), which is locally flat. For the uniqueness part, consider two
connections %1, ¥V, on (M, g) satisfying %Z»g = V;R = 0. Then their difference
tensor field D satisfies Dx - ¢ = Dx - R = 0 for each tangent vector X € TM.
Suppose that Dx # 0 for some vector X € T, M. Because Dx is a skew-symmetric
endomorphism of T, M such that Dx - & = 0, we obtain a contradiction to the
genericity of R. Hence D =0 and V; = V3 on M. |

The following simple result is basic for our further investigations:
Proposition 3.3. Let (M,g) be a curvature homogeneous space. Then, in a
neighborhood U, of each point p € M, there exists a tensor field S of type (1,2)
such that
(6) Sx -9 =0 forevery X € T, M, me U,,

(7) ng(SX “R)Y,Z,U,V)=0 for every X,Y,Z, U,V € T, M,m € U,

where & denotes the cyclic sum.

Proof. Put Sx = Vx — %X, where V is a flat connection as in Corollary 2.1
and V is the Levi-Civita connection. Then (6) is trivial and (7) follows from the
second Bianchi identity for VR. O

4. THE CYCLIC RANK OF A CURVATURE TENSOR IN DIMENSION FOUR

We shall go back to the four dimensional case. Consider a curvature homogeneous
space (M, g), dim M = 4, and an orthonormal moving frame { £y, ..., E4} on some
open subset U C M for which all the curvature components are constant. We can



CURVATURE TENSORS IN DIMENSION FOUR 49

again assume that {F,..., F4} consists of Chern bases: we choose any orthonor-
mal moving frame {Fi,..., Fu} for which all components R;;z; are constant and
then transform {Fy,..., Fu} in {E1,..., B4} by a constant orthogonal matrix. (If
the curvature tensor R is not generic, then the choice of the Chern adapted frame
{E1,..., E4} is far from being unique.)

Let S be the tensor field defined on U by means of the moving frame {Ey, ..., E4}.
Here the vector fields E; are parallel with respect to the corresponding flat con-
nection V and we have

(8) Ve Ej=SpE; (i,j=1,...,4).

Let us introduce the notation

4
(9) Sp.Ej =Y _ SiEx.
k=1

Obviously, Sx - g = 0 implies
(10) SE 450, =0 (i,5,k=1,...,4).

Thus we have 24 independent functions Sfj, 1<i<4, 1<j< k<4 which have
to satisfy (7), i.e., in the classical notation

(11) & (Si - R)jriu =0

5,3,k

In detail, we obtain

(12) (SZ' - Sfi)Rpklu + (SZi - ka)Rpﬂu + (ka - SZj)Rpilu
+55 Rjkpu + S5 Riipu + Sy Rijpu + S5y Rjkip
+S% Reitp + Sp Rijip = 0

(1<i<j<k<4, 1<l <u<4 arbitrary, p is a summation index).
This gives a system of 24 linear equations for the 24 unknown functions SZk]
We shall write down all these equations explicitly using our Chern basis and thus
the conditions (2) and the notation (3). We shall first distribute these equations
in four groups putting (¢,7,k) = (1,2,3),(1,2,4),(1,3,4),(2,3,4), respectively.
Then, in each group separately, we put ({,u) = (1,2),(1,3),(1,4),(2,3),(2,4),(3,4),



50

0. KOWALSKI AND F. PRUFER

in this order. We obtain finally the following system:

(E1)
(£2)

(E3)

(E4)

(E5)

(E6)

(E7)

(E8)

(E10)

(E11)

(E12)

(A1 — D1)S3, — DoSH + (Ba — 2A2)
+(A2 + BQ)S; ( )522
(D1 — B1)ST, — DSt — BsSts + (2B — A2) Sty
+2B355, — (A2 4 B2)S3, + (B1 — A1)53,
DyS% 4 D383, — €381, + €251,
+(Ay — 2B5)S3; — B35, + C359; 4 (B1 — C1) S35
+ (245 — B3)S5) — €255, 4 (C1 — A1) S5,
—2D3S%, +2D5S1, + (B — D1)S2, + D3 S5,
+B3 S5, + (Az — 2B3)Sa3 + (A1 — D1)S5,
— D3S3; + (By —2A45)S5,
(As — 2B3)SH) + D3SPy — EaSty + (Ey — D1)St;
—DyS% + E3S5, — B3S3, — €25, — D2 S5,
+ (A1 — E1)S31 + (A2 4 B2)S3, + €253,
—B3ST 4 (D1 — F1)Sty + (245 — B)SY) — DaSY,
+ B35y — D353, 4 (F1 — B1)Sa; + (4s + B2)S3,
—C3555 — D355, — F253, 4+ B3S3, + 353,
— D357, + (A1 — E1)ST + (A2 4 Ba)SPy + CaSTy
+(By — 242)53; 4 €255 + (A1 — C1) 55,
DyS%, — E9St 4 B3SP, + CaSiy
+(Ay — 2B5)S3; — B35, + C359; 4 (B1 — C1) S35
— (As + B2)S3;, + (B1 — A1)S3,
(E1 = C1)SFy + EaST) + C387, + (A — 2B2) ST,
—2C4S3, — 2C355, + (245 — B3)S3,
— CaS4; + (C1 — A1)S4,
(Ay — 2B9)S% + D3 Sy — 257,
+(E1 — D1)Si3 — D253, — D355, 4 €355,

— 5853 + (A1 — D1)S3) — DyShy + (Ba — 245)55,

—2C55%, + 28,83, — 2D St + (C1 — E1)S3,
_EZS% - C3532 + (232 )533 D2SZ1

+ (A1 — E1)Sh) + (A2 + B)S3y + CaS5y
—C557) — CaS3) + (F1 — E1)SP, + (A2 4 B2) ST
+D5 Sty — D3Sty — E253, + (C1 — F1)S5,

+ 953, 4 (249 — By)Ss, + B3Sas

— D383 — EaS4 + B3S3, 4 C3S4,



(E13)

(E14)

(E15)

(E16)

(E17)

(E18)

(E19)

(E20)

(E21)

(E22)

(E23)

CURVATURE TENSORS IN DIMENSION FOUR

—D3S? — E5S}, + B3S3, + C357,

+(By — 245)53, 4+ CoS5; + (A1 — C1) S5,

— (A2 + B2)Si; + (B1 — A1)Si,

D357 + (By — F1)St; — (As + Bz2)Si,

+C3Sf3 +(As — 232)532)1 - BSSgl

+ C385, + (By — C1)S35 — 2B353,

EyST + (F1 — C1)SF) — CaSPy + (B2 — 245) 5T,
—B3Sts — 20555, — 20353,

+(2B2 — A9)S5; + B3Si; — C354; + (C1 — B1)Sis
— B35S + (242 — By)SY — DaSPy + (D1 — F1)Sh,
+E5S)5 — D253, — D353, 4 C355, — C2544

+(D1 = B1)S§, — D3Si; — BsSis + (2B — A1) 54
—C357) — G257 + (A2 + B2)ST

+(Fy — E1)S7, 4 DSty — D3Sis + (CL — F1)S5,
— E9S3 — C3S3, 4 (2By — A2) S5

+D9S% — EaSi, 4 B3Si, + CaSis

—2038%, 4+ 2B3S}, — 2F5,53, 4+ 2D3S}, — E255,
+(C1 — F1)S5) + C2539 + (242 — By)S3y + BsSss
+D357, + (B — F1)S4; — (As + B2)Siy + C3Sy,
—D3S3, — E9S3, + B3Say + €355, + D2 S5,

+(E1 — A1)S31 — (As + B2)S3, — Co53,

+ (A1 = D1)S3) — D254y + (By — 245) 54,

D353, + (B1 — F1)S5, — (As + B2)S5,

+C3595 — D253, + 2S5, — B3S3, — CS54,

+ (D1 — B1)Si) — DSy — B3Siy + (2B2 — A3)Si;
B985y + (F1 = C1)55, — (255, + (B — 245) S5,
—B3Sys + (C1 — E1)S3, — E253, — C355,

+(2By — A3)S35 4 D2S3 + D3S3, — C355, + 2555
—B3S3; + (242 — B) S5, — DS54 (D1 — F1)S5,
+ 0S5 + (2By — A2)S2, — D353, + E2S3,

+ (D — E1)S35 — 2D3S545 + 2D2S45

—C355, — C955, + (Ay + B2)Sy, + (Fy — E1)S3,
+D9S5%, — D3S3s 4 20252, — 2453, 4 2D4.55,
+(As = 2B2) Sty + DSty — E2Sis + (E1 — D1)Sis

51
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(E24)  —2C3S3, + 2B3S5, — 2ES5, + 2D355, + €353, + C2.53,
—(Az 4 B2)S3, + (E1 — F1)S3, — D253, + D3S35 — B3 Sh
+(245 — B9)S3, — D2S3, + (D) — F1)Siy + F2S4, = 0

We see immediately that the following linear relations hold: (E5) + (F19) =
(F10), (E6)+ (E20) = (E16), (E12)+ (E21) = (E17), (E3) + (E13) = (E8).

Hence we obtain
Proposition 4.1. The rank of the system (12) is not greater than twenty.
We shall now give the following purely algebraic definition:

Definition 4.2. Let R denote the space of all 4-dimensional curvature tensors on
(V,<,>)and let A(V,V) denote the space of all skew-symmetric endomorphismus
of (V,<,>). The o-rank of a curvature tensor R € R is defined as the difference
24 — k where k is the dimension of the subspace of all elements S € V* @ A(V,V)
satisfying the identity (7).

Hence we see that, for any orthonormal basis {e1, €2, e3,e4} of V, and any fixed
R € R, the corresponding o-rank can be defined as the rank of the corresponding
system (12) of linear algebraic equations for the 24 unknowns SZk] Especially, we
can use the Chern bases for the calculation of the o-rank.

Now, let R denote the orbit space of R (w.r. to the action of the orthogonal
group O(V)), provided with the factor topology. Every curvature tensor R € R
can be represented as a point in R'* via some Chern basis. Such representation
is not unique but a generic curvature tensor has only a finite number of repre-
sentatives (because we have only a finite number of Chern bases). Obviously, the
corresponding orbits [R] € R can be also represented as points in R'* and max-
imal orbits have only finite number of representatives. It is also obvious that all
curvature tensors belonging to the same orbit have the same o-rank and thus the
o-rank can be considered as a function on R. Now we have

Theorem 4.3. The o-rank is equal to 20 on a dense open subset of R.

Proof. It is sufficient to give an example of a curvature tensor whose o-rank is
equal to twenty. Then using the equations (E1) - (E24) written w.r. to a Chern
basis we see that the condition for the o-rank to be less than twenty would mean
a system of algebraic equations for the components (3), which is not satisfied
identically. This gives a subset of zero measure in R'* and our Theorem will
follow.

Let us suppose that a curvature tensor R is represented w.r. to a Chern basis
and

(13) Co=Dy=FEy=0, B3=C3=D3=0.

We shall omitt the equations (E13),(E19),E20),(E21) which are linearly dependent
on the others. After re-aranging the order of our unknowns Sf. in a convenient
way and after a permutation of our equations we find that the resulting coefficient
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matrix decomposes into four blocks which are (6,5)-matrices. The corresponding
subsystems of equations with separated variables are given by the following tables:

Eq. 5?1 sz 531 Sg’z 521 533
(El) D1 — Al 2A2 - Bz —(Az + Bz) Bl - Al 0 0

(E6) 245 — Bs | Dy — Fy - B Ao+ By 0 0
(E15) Fi —Cy | By —2A4, 0 0 2Bs — A5 | C1 — By
(E16) By —2As | Fy — Dy 0 0 B — Dy | Ay — 2B
(E23) 0 0 Ao+ Bo Fi—F | As—2Bs | £y — Dy

Eq. S%1 SfS S§1 ng 521 522
(E2) Dy — By | 2By — As —(Az + Bz) B; — Ay 0 0

(E5) Ay — 2By | By — Dy A — By Ao+ By 0 0

(E9) E,—-Cy | Ay — 2By 0 0 245 — By | Cp — Ay
(ElO) Ay — 2By | By — Dy 0 0 Ay — Dy | By —2A,
(E24) 0 0 —(Az + Bz) E,—F |2As— By | D —Fy

Eq. Sﬁ 5?2 591 ng 532)1 S§3
(E?) Al - E1 Az + Bz Bz - 2A2 Al - 01 0 0
(E12) Ao+ Bo - E; Ci—F | 245 — By 0 0
(E14) By — Fi —(Az + Bz) 0 0 Ay — 2By | B — (4
(E17) Ao+ Bo - E; 0 0 Ci—FEy | 2By — Ao
(E22) 0 0 245 — By | Dy —Fy | 2By — As | Dy — E;
Eq. 551 533 531 S§2 531 522
(E3) Ay —2By | By —C7 |24, —Bs | C1 — Ay 0 0
(E4) B — Dy | As—2Bs | Aj — Dy | Bs — 245 0 0
(E8) Ay — 2By | B — (4 0 0 —(Az + Bz) B; — Ay
(Ell) Ci—FEy | 2By — Ay 0 0 A — By Ao+ Bo
(E18) 0 0 01 - F1 2A2 - Bz Bl - F1 —(Az + Bz)

The rank of each of these matrices is five, in general, and hence the o-rank
is equal to twenty for a general R satisfying (13). This concludes the proof of
Theorem 4.3.

O

The previous tables will be used in the next section for the proof of our main
Theorem. Here we only make the following remark:
It is natural to call a curvature tensor R € R o-generic if its o-rank is equal

to twenty. One can ask, what is the relation between the notion ”generic” and
”g-generic“. The following examples show that there i1s no direct relation.
Example 1. Suppose, in addition to (13), that A =B, =0, Dy =F1 =F, =0
and the numbers |A;]|, | By, |C1| are all distinct. Then the corresponding tensor R
is generic (see Section 2,d)) but the o-rank is < 17, as we see from our tables.
Example 2. Suppose, in addition to (13), that By = Dy, C1 = By, As = 2B,
Ay, Dy,Eq, Fy are arbitrary and Bs # 0. Then we see that, in general, the o-rank
is maximal. But due to f) of Section 2, the corresponding curvature tensor is not
generic.
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It is not known to the authors if the o-genericity may have some geometrical
meaning.

5. THE MAIN EXISTENCE THEOREM

Theorem 5.1. Let R be a curvature tensor on (V,<,>), dimV = 4. Suppose
that, w.r. to some orthonormal basis {e1, ..., e4}, all the components Ay, By ,C},
Dy, By, Fy (written shortly as A, B, ..., F') are distinct and all the other curvature
components are zero. Further, suppose that the following two sets of inequalities

hold for A, B,..., F:

D—-A B-A 0 D—-—B B-A 0
(A) F-C 0 C-B #+ 0, E-C 0 C—A |#£0,
0 F—-F E-D 0 F D-F
A-F A-C 0 B—-D A- 0
B—-F 0 B-C #+ 0, C-F 0 A-F | #£0.
0 D—F D-F 0 C—-F B-F
(B) Under the notations
_B-C 5_3_0 _E-D 5_E_D
al—A_Ca 1_A_Baa2_E_Aa 2_D_Aa
_D—Fﬁ_D—F _F—Eﬁ_F—E
BEB-F P B M T F-c T E-C
the rank of the matrix
0 0 20[3 20[4 A
0 20[2 0 —264 B
0 —283, =203 0 C
201 0 0 2048, D
—261 0 20[363 0 F
20[161 20[262 0 0 F

is equal to five.
Then the curvature tensor R does not belong to any curvature homogeneous
space.

Remark. a) The inequalities (A) are all independent. E.g., if we take A = B =
C=u, D=FE=F =wv, u# v, then the first three determinants are zero and
the last one is non zero.

b) The coefficients «;, G; from (B) are not independent but they satisfy the equal-
ities

(14) aiﬁizﬁi—ai (i:l,...,4).

Proof of the Theorem. The four subsystems of linear equations with separated

variables coming from (E1) - (E24) are now given by the tables
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Sh Sty Sy S5, Sh Sk
D-A 0 0 B-A 0 0
0 D-F F-B 0 0 0
F-C 0 0 0 0 C-B
0 F-D 0 0 B-D 0
0 0 0 F-E 0 E-D
Sho Sty Sn S5 S Sk
D-B 0 0 B-A 0 0
0 E-D A-E 0 0 0
E-C 0 0 0 0 C-A
0 E-D 0 0 A-D 0
0 0 0 E-F 0 D-F
Sho Sty Sh S Sy Sy
A-E 0 0 A-C 0 0
0 F-E C-F 0 0 0
B-F 0 0 0 0 B-C
0 F-E 0 0 C-E 0
0 0 0 D-F 0 D-E
Sp Sy Sy Sy Sy S
0 B-C 0 C-A 0 0
B-D 0 A-D 0 0 0
0 B-C 0 0 0 B-A
C-E 0 0 0 A-E 0
0 0 C-F 0 B-F 0

We put
(15) U1:S§3, U2:Sf3, UBIsza U4:S§2

and we shall try to express the other unknown functions S¥ through Uy, Us, Us, Us
from the previous systems of equations. Now the inequalities (A) from our Theo-
rem guarantee that the Cramer’s rule can be used in all cases. We obtain easily

(16) S =0, 8, =0forall i,j, (1<i<j<4),
and
(17) Sy = arlh, S3, = AU, S31 = asUs,  S§ = Bals,

Sy = asUs, Si = BsUs, S3 = aals, S5 = Ball.

Next, we shall use the known identities

(18) [V e, Vi, Er — Vig, 2,1 Er = R(E:, E;)Ey.
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Due to (8),(9) we have

(19) [Ei,E;]=VE,Ej— Vg, B = Z (Si; — i) El
{

and (18) can be rewritten in the form
(20) EZ(S]lk) — E;(Si) + ]ukSzl - zykS]l'u - 5%521@ + S]uiSzlLk = —Rijp.

(36 equations, in which u is a summation index.)

Now, let us consider the six equations of (20) for which 1 < i< j <4, (k)=
(7,7). According to (16), all these equations are purely algebraic. Substituting
from (15)-(17) we get easily

This is a system of six linear algebraic equations for four unknown functions (U7)?,
(Us)?, (Us)?, (Us)?. The matrix of the corresponding homogeneous system is
of rank < 4. Hence, if the condition (B) of Theorem 5.1 is satisfied, then the
system (21) has no solution according to the Frobenius Theorem. But this is a
contradiction to Proposition 3.3, and a curvature homogeneous space with such a
type of curvature tensor cannot exist. This concludes the proof of Theorem 5.1.00

Remark 1. The condition (B) is a bit ackward to check. But we can obtain very
simple sufficient conditions which already imply contradictions. E.g., if we require
sgnag = sgnoy = —sgn A, then the first equation (21) is contradictory, and we
get similar conditions for the other equations.

Remark 2. For the curvature tensor of the form R = aRgs + Rop2 from the
Introduction one can check easily that, with respect to a convenient orthonormal
basis, Al = F1 I4A—|—C, Bl = 01 = D1 = E1 = A—|—C,A2 = QA,BQ = A,AC# 0,
and the other components are zero. Hence the o-rank of R is equal to eight, and
our method cannot be used in any way.
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