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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 45 { 57CURVATURE TENSORS IN DIMENSION FOURWHICH DO NOT BELONG TO ANY CURVATUREHOMOGENEOUS SPACEOld�rich Kowalski and Friedbert Pr�uferAbstract. A six-parameter family is constructed of (algebraic) Riemanniancurvature tensors in dimension four which do not belong to any curvaturehomogeneous space. Also a general method is given for a possible extensionof this result. 1. IntroductionAccording to I.M. Singer [SI], a Riemannian manifold is said to be curvature ho-mogeneous if, for every two points p; q 2M , there is a linear isometry F : TpM !TqM between the corresponding tangent spaces such that F �Rq = Rp (where Rdenotes the curvature tensor of type (0,4)). Note that a (locally) homogeneous Rie-mannian manifold is automatically curvature homogeneous. Explicit locally non-homogeneous examples have been constructed by many authors ([SE],[T],[YA],[K-T-V1] { [K-T-V3],[K1] { [K3]; see especially [K-T-V2] and [K-T-V3] for morecomplete references).Let K be a curvature-like tensor of Riemannian type (shortly: curvature tensor)on a vector space V with a positive scalar product <;>. I. e., we assume thatK(X;Y; U; V ) = �K(Y;X;U; V ) = K(U; V;X; Y );(1) K(X;Y; Z; U ) +K(Y; Z;X;U ) +K(Z;X; Y; U ) = 0:A natural problem arises whether there is always a curvature homogeneous space(M; g) such that, under a linear isometry between V and a tangent space ToM ,K coincides with the curvature tensor Ro of (M; g) at the point o 2M . In such acase we say that the tensor K belongs to the curvature homogeneous space (M; g).In dimension n = 3, the answer to our problem is always positive, as it wasproved quite recently (see [K2],[S-T],[K-P]): every curvature tensor R in dimension1991 Mathematics Subject Classi�cation : Primary 53C25, Secondary 53C30.Key words and phrases: Riemannian manifolds, curvature tensor, curvature homogeneousspaces.Received August 16, 1993This research was partly supported by the grant GA �CR 201/93/0469.



46 O. KOWALSKI AND F. PR�UFERthree belongs to some curvature homogeneous space. Moreover, if R is not ofthe type of constant curvature, one can always �nd an example which is notlocally homogeneous. (On the other hand, it is not always possible to constructa homogeneous Riemannian space with a prescribed curvature tensor (see [M],[S-T],[K3]).)In dimension n = 4, the situation is essentially di�erent. In the paper [S-T] thefollowing example is given: let RS4 and RCP2 denote the typical curvature tensorsof a four-dimensional sphere and a complex projective plane, respectively and leta; b be nonzero real numbers. Then the curvature tensor aRS4 + bRCP2 doesnot belong to any curvature homogeneous space. The proof requires nontrivialresults from the almost Hermitian geometry (see [T-V]). In this paper we studythe problem more systematically, by elementary methods, and we give a new andbroader family of curvature tensors with the above property. For our purposes weintroduce the notion of � -rank (cyclic rank) of a curvature tensor, which may beof some interest by itself.The authors are obliged to F. Tricerri and K. Voss for valuable informations.2. Generic curvature tensors and the chern basesLet V be a vector space with a (positive) scalar product <;> and let R denote thespace of all curvature tensors on V (satisfying the identities (1)). The orthogonalgroup O(V) acts on R in a natural way. A tensor R 2 R is said to be genericif the subgroup H = fA 2 O(V)jA(R) = Rg is �nite. Another characterizationof a generic tensor R 2 R is that its orbit in R under O(V) has the maximaldimension (equal to n(n � 1)=2). Finally, R 2 R is generic if and only if thereis no nonzero skew-symmetric endomorhpism P of V (acting as a derivation onthe tensor algebra of V) such that P � R = 0. Indeed, the last identity means(exp tP )(R) = R; t 2 (�1;+1).Let us consider now the four-dimensional case.According to S.S. Chern [C], or R. Klinger [KL], dimR = 20, and for everyR 2 R there exists an orthonormal basis fe1; e2; e3; e4g of V (called a Chernbasis) such that the components Rijkl satisfyR1213 = R1214 = R1223 = R1224 = 0; R1314 = R1323 = 0:(2)We have also the following observations:a) If R 2 R is generic, then its Chern basis is uniquely determined up to a�nite group of re
ections.b) If R 2 R is an Einsteinian curvature tensor, then its Singer-Thorpe basisff1; f2; f3; f4g (see [SI-TH]) is always a Chern basis.c) For the curvature tensor R = cg ^ g of a space form, each orthonormalbasis is a Chern basis.For the purpose of this paper, we shall introduce the following notation w.r. to a



CURVATURE TENSORS IN DIMENSION FOUR 47Chern basis: A1 = R1212; A2 = R1234;B1 = R1313; B2 = R1324; B3 = R1334;C1 = R1414; C2 = R1424; C3 = R1434;(3) D1 = R2323; D2 = R2324; D3 = R2334;E1 = R2424; E2 = R2434;F1 = R3434:All curvature components in (3) are independent, in general, and they uniquelydetermine the tensor R w.r. to a given basis.Let us recall that an Einstein curvature tensor is characterized, w.r. to a Singer-Thorpe basis, by the equalities (2) and the equalitiesA1 = F1; B1 = E1; C1 = D1; C2 = D2 = E2 = 0; B3 = C3 = D3 = 0:We give now some more examples of generic curvature tensors:d) A curvature tensor R 2 R with four distinct Ricci eigenvalues is alwaysgeneric. In particular, assume that, w.r. to a Chern basis, the componentsA1; B1; C1; D1; E1; F1 are the only (possible) nonzero components. It canbe easily seen that the Ricci eigenvalues are all distinct if and only if thenumbers jA1 � F1j; jB1 � E1j; jC1 �D1j are all distinct.In particular, if D1 = E1 = F1 = 0 holds but jA1j; jB1j; jC1j are alldistinct, the tensor R is still generic.e) If A1 = B1 = E1 6= C1 = D1 = F1, and all other components are zero,then there are only two di�erent Ricci eigenvalues but the curvature tensorR is still generic.To see the last result, one can use the following criterion of genericity w.r. to aChern basis fe1; : : : ; e4g:Let Eij denote the elementary skew-symetric endomorphism of V, i.e. thosede�ned byEij(ei) = �ej ; Eij(ej) = ei; Eij(ek) = 0 for k 6= i; j; 1 � i < j � 4:(4)Denote P = X1�i<j�4�ijEij;(5)and let P act as a derivation on the tensor algebra T (V). Then a tensor R 2 Ris generic if and only if P �R = 0 implies �ij = 0 for all i; j; 1 � i < j � 4.We conclude this Section with the following example:f) Suppose that B1 = D1; C1 = E1; A2 = 2B2; A1; F1 are arbitrary,C2 = D2 = E2 = 0; B3 = C3 = D3 = 0. Then A12 �R = 0, and hence thecorresponding tensor R is not generic.



48 O. KOWALSKI AND F. PR�UFER3. General properties of curvature homogeneous spacesAccording to [SI] (see also [N-T] and [S-T]) we have the followingTheorem A. Any curvature homogeneous space (M; g) admits an open coveringfV�g�2J such that, in each V�, an orthonormal moving frame fE�1 ; : : : ; E�ng ex-ists for which all the components of the Riemannian curvature tensor �eld R areconstant.Hence we obtain the �rst of the following corollaries:Corollary 3.1. In each V� there exists a 
at connection er� (with torsion) suchthat er�g = er�R = 0. Here er� is de�ned as the (unique) connection for whichthe vector �elds E�1 ; : : : ; E�n de�ne an absolute parallelism.Corollary 3.2. Suppose that (M; g) is curvature homogeneous and the typicalcurvature tensor R is generic. Then there is a unique global a�ne connection eron (M; g) such that erg = erR = 0. The connection er is locally 
at.Proof. In each neighborhood V� we choose a point p� and a "generalized Chernbasis\ fe�1 ; : : : ; e�ng at p� in the sense of R. Klinger [KL]. Then we can extend thisbasis to a moving frame fE�1 ; : : : ; E�ng in V� for which all the components Rijklare constant and each basis is a generalized Chern basis. Because R is generic,such a moving frame is uniquely determined up to a �nite group of re
ections.Hence we see er� = er� on each intersection V�\V�, and we get a globally de�nedconnection er on (M; g), which is locally 
at. For the uniqueness part, consider twoconnections er1; er2 on (M; g) satisfying erig = eriR = 0. Then their di�erencetensor �eld D satis�es DX � g = DX � R = 0 for each tangent vector X 2 TM .Suppose thatDX 6= 0 for some vectorX 2 TmM . Because DX is a skew-symmetricendomorphism of TmM such that DX � R = 0, we obtain a contradiction to thegenericity of R. Hence D = 0 and er1 = er2 on M .The following simple result is basic for our further investigations:Proposition 3.3. Let (M; g) be a curvature homogeneous space. Then, in aneighborhood Up of each point p 2 M , there exists a tensor �eld S of type (1; 2)such that SX � g = 0 for every X 2 TmM; m 2 Up;(6) SX;Y;Z(SX �R)(Y; Z; U; V ) = 0 for every X;Y; Z; U; V 2 TmM;m 2 Up;(7)where S denotes the cyclic sum.Proof. Put SX = rX � erX , where er is a 
at connection as in Corollary 2.1and r is the Levi-Civita connection. Then (6) is trivial and (7) follows from thesecond Bianchi identity for rR.4. The cyclic rank of a curvature tensor in dimension fourWe shall go back to the four dimensional case. Consider a curvature homogeneousspace (M; g), dimM = 4, and an orthonormal moving frame fE1; : : : ; E4g on someopen subset U � M for which all the curvature components are constant. We can



CURVATURE TENSORS IN DIMENSION FOUR 49again assume that fE1; : : : ; E4g consists of Chern bases: we choose any orthonor-mal moving frame fF1; : : : ; F4g for which all components Rijkl are constant andthen transform fF1; : : : ; F4g in fE1; : : : ; E4g by a constant orthogonal matrix. (Ifthe curvature tensor R is not generic, then the choice of the Chern adapted framefE1; : : : ; E4g is far from being unique.)Let S be the tensor �eld de�ned on U by means of the moving frame fE1; : : : ; E4g.Here the vector �elds Ei are parallel with respect to the corresponding 
at con-nection er and we have rEiEj = SEiEj (i; j = 1; : : : ; 4):(8)Let us introduce the notation SEiEj = 4Xk=1SkijEk:(9)Obviously, SX � g = 0 impliesSkij + Sjik = 0 (i; j; k = 1; : : : ; 4):(10)Thus we have 24 independent functions Skij ; 1 � i � 4; 1 � j < k � 4, which haveto satisfy (7), i.e., in the classical notationSi;j;k(Si �R)jklu = 0(11)In detail, we obtain(Spij � Spji)Rpklu + (Spki � Spik)Rpjlu + (Spjk � Spkj)Rpilu(12) +SpilRjkpu+ SpjlRkipu + SpklRijpu + SpiuRjklp+SpjuRkilp + SpkuRijlp = 0(1 � i < j < k � 4; 1 � l < u � 4 arbitrary, p is a summation index).This gives a system of 24 linear equations for the 24 unknown functions Skij .We shall write down all these equations explicitly using our Chern basis and thusthe conditions (2) and the notation (3). We shall �rst distribute these equationsin four groups putting (i; j; k) = (1; 2; 3); (1; 2; 4); (1; 3; 4); (2; 3; 4), respectively.Then, in each group separately, we put (l; u) = (1; 2); (1; 3); (1; 4); (2;3); (2;4); (3; 4),



50 O. KOWALSKI AND F. PR�UFERin this order. We obtain �nally the following system:(A1 �D1)S311 �D2S411 + (B2 � 2A2)S412(E1) +(A2 +B2)S421 + (A1 � B1)S322 = 0(D1 � B1)S211 �D3S411 � B3S412 + (2B2 �A2)S413(E2) +2B3S421 � (A2 +B2)S431 + (B1 �A1)S332 = 0D2S211 +D3S311 �C3S412 + C2S413(E3) +(A2 � 2B2)S221 �B3S321 + C3S421 + (B1 � C1)S423+ (2A2 � B2)S331 �C2S431 + (C1 �A1)S432 = 0�2D3S412 + 2D2S413 + (B1 �D1)S221 +D3S421(E4) +B3S422 + (A2 � 2B2)S423 + (A1 �D1)S331�D2S431 + (B2 � 2A2)S432 = 0(A2 � 2B2)S211 +D3S312 �E2S412 + (E1 �D1)S413(E5) �D2S221 +E2S421 � B3S322 �C2S423 �D2S331+ (A1 � E1)S431 + (A2 +B2)S332 + C2S432 = 0�B3S211 + (D1 � F1)S412 + (2A2 �B2)S311 �D2S312(E6) +E2S413 �D3S221 + (F1 �B1)S421 + (A2 + B2)S322�C3S423 �D3S331 � E2S431 +B3S332 + C3S432 = 0�D2S311 + (A1 � E1)S411 + (A2 +B2)S312 + C2S412(E7) +(B2 � 2A2)S321 +C2S421 + (A1 � C1)S422 = 0D2S211 � E2S411 +B3S312 + C2S413(E8) +(A2 � 2B2)S221 �B3S321 + C3S421 + (B1 � C1)S423� (A2 +B2)S441 + (B1 �A1)S342 = 0(E1 �C1)S211 +E2S311 + C3S312 + (A2 � 2B2)S413(E9) �2C2S221 � 2C3S321 + (2A2 � B2)S341�C2S441 + (C1 �A1)S442 = 0(A2 � 2B2)S211 +D3S312 � E2S412(E10) +(E1 �D1)S413 �D2S221 �D3S321 + C3S422�C2S423 + (A1 �D1)S341 �D2S441 + (B2 � 2A2)S442 = 0�2C2S211 + 2E2S312 � 2D2S413 + (C1 � E1)S221(E11) �E2S321 �C3S322 + (2B2 � A2)S423 �D2S341+ (A1 � E1)S441 + (A2 +B2)S342 + C2S442 = 0�C3S211 �C2S311 + (F1 �E1)S312 + (A2 + B2)S411(E12) +D2S412 �D3S413 � E2S221 + (C1 � F1)S321+C2S322 + (2A2 �B2)S422 + B3S423�D3S341 � E2S441 +B3S342 + C3S442 = 0



CURVATURE TENSORS IN DIMENSION FOUR 51�D3S311 �E2S411 +B3S312 + C3S412(E13) +(B2 � 2A2)S331 +C2S431 + (A1 �C1)S432� (A2 +B2)S441 + (B1 � A1)S342 = 0D3S211 + (B1 � F1)S411 � (A2 + B2)S312(E14) +C3S413 + (A2 � 2B2)S231 � B3S331+ C3S431 + (B1 �C1)S433 � 2B3S441 = 0E2S211 + (F1 � C1)S311 � C2S312 + (B2 � 2A2)S412(E15) �B3S413 � 2C2S231 � 2C3S331+ (2B2 �A2)S241 +B3S341 � C3S441 + (C1 � B1)S443 = 0�B3S211 + (2A2 � B2)S311 �D2S312 + (D1 � F1)S412(E16) +E2S413 �D2S231 �D3S331 + C3S432 � C2S433+(D1 � B1)S241 �D3S441 � B3S442 + (2B2 � A2)S443 = 0�C3S211 �C2S311 + (A2 + B2)S411(E17) +(F1 � E1)S312 +D2S412 �D3S413 + (C1 �E1)S231� E2S331 � C3S332 + (2B2 � A2)S433+D2S241 �E2S441 +B3S342 + C2S443 = 0�2C3S311 + 2B3S411 � 2E2S312 + 2D3S412 � E2S231(E18) +(C1 � F1)S331 + C2S332 + (2A2 � B2)S432 + B3S433+D3S241 + (B1 � F1)S441 � (A2 + B2)S342 + C3S443 = 0�D3S321 �E2S421 + B3S322 +C3S422 +D2S331(E19) +(E1 �A1)S431 � (A2 + B2)S332 � C2S432+ (A1 �D1)S341 �D2S441 + (B2 � 2A2)S442 = 0D3S221 + (B1 � F1)S421 � (A2 + B2)S322(E20) +C3S423 �D2S231 +E2S431 �B3S332 � C2S433+ (D1 � B1)S241 �D3S441 � B3S442 + (2B2 � A2)S443 = 0E2S221 + (F1 � C1)S321 � C2S322 + (B2 � 2A2)S422(E21) �B3S423 + (C1 � E1)S231 � E2S331 � C3S332+(2B2 � A2)S433 +D2S241 +D3S341 � C3S442 + C2S443 = 0�B3S221 + (2A2 � B2)S321 �D2S322 + (D1 � F1)S422(E22) +E2S423 + (2B2 � A2)S231 �D3S332 + E2S432+ (D1 �E1)S433 � 2D3S442 + 2D2S443 = 0�C3S221 �C2S321 + (A2 + B2)S421 + (F1 �E1)S322(E23) +D2S422 �D3S423 + 2C2S231 � 2E2S332 + 2D2S433+(A2 � 2B2)S241 +D3S342 � E2S442 + (E1 �D1)S443 = 0



52 O. KOWALSKI AND F. PR�UFER�2C3S321 + 2B3S421 � 2E2S322 + 2D3S422 + C3S231 +C2S331(E24) �(A2 + B2)S431 + (E1 � F1)S332 � D2S432 +D3S433 �B3S241+(2A2 � B2)S341 �D2S342 + (D1 � F1)S442 +E2S443 = 0We see immediately that the following linear relations hold: (E5) + (E19) =(E10); (E6) + (E20) = (E16); (E12) + (E21) = (E17); (E3) + (E13) = (E8).Hence we obtainProposition 4.1. The rank of the system (12) is not greater than twenty.We shall now give the following purely algebraic de�nition:De�nition 4.2. Let R denote the space of all 4-dimensional curvature tensors on(V; <;>) and let A(V;V) denote the space of all skew-symmetric endomorphismusof (V; <;>). The �-rank of a curvature tensor R 2 R is de�ned as the di�erence24� k where k is the dimension of the subspace of all elements S 2 V�
A(V;V)satisfying the identity (7).Hence we see that, for any orthonormal basis fe1; e2; e3; e4g of V, and any �xedR 2 R, the corresponding �-rank can be de�ned as the rank of the correspondingsystem (12) of linear algebraic equations for the 24 unknowns Skij. Especially, wecan use the Chern bases for the calculation of the �-rank.Now, let eR denote the orbit space of R (w.r. to the action of the orthogonalgroup O(V)), provided with the factor topology. Every curvature tensor R 2 Rcan be represented as a point in R14 via some Chern basis. Such representationis not unique but a generic curvature tensor has only a �nite number of repre-sentatives (because we have only a �nite number of Chern bases). Obviously, thecorresponding orbits [R] 2 eR can be also represented as points in R14 and max-imal orbits have only �nite number of representatives. It is also obvious that allcurvature tensors belonging to the same orbit have the same �-rank and thus the�-rank can be considered as a function on eR. Now we haveTheorem 4.3. The �-rank is equal to 20 on a dense open subset of eR.Proof. It is su�cient to give an example of a curvature tensor whose �-rank isequal to twenty. Then using the equations (E1) - (E24) written w.r. to a Chernbasis we see that the condition for the �-rank to be less than twenty would meana system of algebraic equations for the components (3), which is not satis�edidentically. This gives a subset of zero measure in R14 and our Theorem willfollow.Let us suppose that a curvature tensor R is represented w.r. to a Chern basisand C2 = D2 = E2 = 0; B3 = C3 = D3 = 0:(13)We shall omitt the equations (E13),(E19),E20),(E21) which are linearly dependenton the others. After re-aranging the order of our unknowns Skij in a convenientway and after a permutation of our equations we �nd that the resulting coe�cient



CURVATURE TENSORS IN DIMENSION FOUR 53matrix decomposes into four blocks which are (6,5)-matrices. The correspondingsubsystems of equations with separated variables are given by the following tables:Eq. S311 S412 S421 S322 S241 S443(E1) D1 �A1 2A2 � B2 �(A2 +B2) B1 � A1 0 0(E6) 2A2 � B2 D1 � F1 F1 � B1 A2 + B2 0 0(E15) F1 �C1 B2 � 2A2 0 0 2B2 � A2 C1 �B1(E16) B2 � 2A2 F1 �D1 0 0 B1 �D1 A2 � 2B2(E23) 0 0 A2 +B2 F1 � E1 A2 � 2B2 E1 �D1Eq. S211 S413 S431 S332 S341 S442(E2) D1 �B1 2B2 �A2 �(A2 +B2) B1 � A1 0 0(E5) A2 � 2B2 E1 �D1 A1 � E1 A2 + B2 0 0(E9) E1 �C1 A2 � 2B2 0 0 2A2 �B2 C1 �A1(E10) A2 � 2B2 E1 �D1 0 0 A1 �D1 B2 � 2A2(E24) 0 0 �(A2 +B2) E1 � F1 2A2 �B2 D1 � F1Eq. S411 S312 S321 S422 S231 S433(E7) A1 � E1 A2 +B2 B2 � 2A2 A1 �C1 0 0(E12) A2 +B2 F1 � E1 C1 � F1 2A2 � B2 0 0(E14) B1 � F1 �(A2 + B2) 0 0 A2 � 2B2 B1 � C1(E17) A2 +B2 F1 � E1 0 0 C1 � E1 2B2 � A2(E22) 0 0 2A2 � B2 D1 � F1 2B2 � A2 D1 � E1Eq. S221 S423 S331 S432 S441 S342(E3) A2 � 2B2 B1 �C1 2A2 �B2 C1 �A1 0 0(E4) B1 �D1 A2 � 2B2 A1 �D1 B2 � 2A2 0 0(E8) A2 � 2B2 B1 �C1 0 0 �(A2 + B2) B1 � A1(E11) C1 � E1 2B2 � A2 0 0 A1 � E1 A2 +B2(E18) 0 0 C1 � F1 2A2 �B2 B1 � F1 �(A2 +B2)The rank of each of these matrices is �ve, in general, and hence the �-rankis equal to twenty for a general R satisfying (13). This concludes the proof ofTheorem 4.3.The previous tables will be used in the next section for the proof of our mainTheorem. Here we only make the following remark:It is natural to call a curvature tensor R 2 R �-generic if its �-rank is equalto twenty. One can ask, what is the relation between the notion "generic" and"�-generic\. The following examples show that there is no direct relation.Example 1. Suppose, in addition to (13), that A2 = B2 = 0; D1 = E1 = F1 = 0and the numbers jA1j; jB1j; jC1j are all distinct. Then the corresponding tensor Ris generic (see Section 2,d)) but the �-rank is � 17, as we see from our tables.Example 2. Suppose, in addition to (13), that B1 = D1, C1 = E1, A2 = 2B2,A1, D1,E1, F1 are arbitrary and B2 6= 0. Then we see that, in general, the �-rankis maximal. But due to f) of Section 2, the corresponding curvature tensor is notgeneric.



54 O. KOWALSKI AND F. PR�UFERIt is not known to the authors if the �-genericity may have some geometricalmeaning. 5. The main existence theoremTheorem 5.1. Let R be a curvature tensor on (V; <;>); dimV = 4. Supposethat, w.r. to some orthonormal basis fe1; : : : ; e4g, all the components A1, B1 ,C1,D1, E1, F1 (written shortly as A;B; : : : ; F ) are distinct and all the other curvaturecomponents are zero. Further, suppose that the following two sets of inequalitieshold for A;B; : : : ; F :������ D � A B � A 0F �C 0 C �B0 F �E E �D ������ 6= 0; ������ D � B B � A 0E �C 0 C �A0 E � F D � F ������ 6= 0;(A) ������ A �E A� C 0B � F 0 B �C0 D � F D �E ������ 6= 0; ������ B �D A�D 0C � E 0 A� E0 C � F B � F ������ 6= 0:(B) Under the notations�1 = B �CA� C ; �1 = B � CA�B ; �2 = E �DE �A ; �2 = E �DD �A ;�3 = D � FB � F ; �3 = D � FB �D; �4 = F �EF �C ; �4 = F �EE � C ;the rank of the matrix0BBBBBB@ 0 0 2�3 2�4 A0 2�2 0 �2�4 B0 �2�2 �2�3 0 C2�1 0 0 2�4�4 D�2�1 0 2�3�3 0 E2�1�1 2�2�2 0 0 F 1CCCCCCAis equal to �ve.Then the curvature tensor R does not belong to any curvature homogeneousspace.Remark. a) The inequalities (A) are all independent. E.g., if we take A = B =C = u; D = E = F = v; u 6= v, then the �rst three determinants are zero andthe last one is non zero.b) The coe�cients �i; �i from (B) are not independent but they satisfy the equal-ities �i�i = �i � �i (i = 1; : : : ; 4):(14)Proof of the Theorem. The four subsystems of linear equations with separatedvariables coming from (E1) - (E24) are now given by the tables



CURVATURE TENSORS IN DIMENSION FOUR 55S311 S412 S421 S322 S241 S443D - A 0 0 B - A 0 00 D - F F - B 0 0 0F - C 0 0 0 0 C - B0 F - D 0 0 B - D 00 0 0 F - E 0 E - DS211 S413 S431 S332 S341 S442D - B 0 0 B - A 0 00 E - D A - E 0 0 0E - C 0 0 0 0 C - A0 E - D 0 0 A - D 00 0 0 E - F 0 D - FS411 S312 S321 S422 S231 S433A - E 0 0 A - C 0 00 F - E C - F 0 0 0B - F 0 0 0 0 B - C0 F - E 0 0 C - E 00 0 0 D - F 0 D - ES221 S423 S331 S432 S441 S3420 B - C 0 C - A 0 0B - D 0 A - D 0 0 00 B - C 0 0 0 B - AC - E 0 0 0 A - E 00 0 C - F 0 B - F 0We put U1 = S423; U2 = S413; U3 = S412; U4 = S312(15)and we shall try to express the other unknown functions Skij through U1; U2; U3; U4from the previous systems of equations. Now the inequalities (A) from our Theo-rem guarantee that the Cramer's rule can be used in all cases. We obtain easilySjii = 0; Sjji = 0 for all i; j; (1 � i < j � 4);(16)and S432 = �1U1; S342 = �1U1; S431 = �2U2; S341 = �2U2;(17) S421 = �3U3; S241 = �3U3; S321 = �4U4; S231 = �4U4:Next, we shall use the known identities[rEi;rEj ]Ek �r[Ei;Ej ]Ek = R(Ei; Ej)Ek:(18)



56 O. KOWALSKI AND F. PR�UFERDue to (8),(9) we have[Ei; Ej] = rEiEj �rEjEi =Xl (Slij � Slji)El(19)and (18) can be rewritten in the formEi(Sljk) �Ej(Slik) + SujkSliu � SuikSlju � Suijsluk + SujiSluk = �Rijkl:(20)(36 equations, in which u is a summation index.)Now, let us consider the six equations of (20) for which 1 � i < j � 4; (k; l) =(i; j). According to (16), all these equations are purely algebraic. Substitutingfrom (15)-(17) we get easily 2�3(U3)2 + 2�4(U4)2 = A;2�2(U2)2 � 2�4(U4)2 = B;�2�2(U2)2 � 2�3(U3)2 = C;2�1(U1)2 + 2�4�4(U4)2 = D;(21) �2�1(U1)2 + 2�3�3(U3)2 = E;2�1�1(U1)2 + 2�2�2(U4)2 = F:This is a system of six linear algebraic equations for four unknown functions (U1)2,(U2)2, (U3)2, (U4)2. The matrix of the corresponding homogeneous system isof rank � 4. Hence, if the condition (B) of Theorem 5.1 is satis�ed, then thesystem (21) has no solution according to the Frobenius Theorem. But this is acontradiction to Proposition 3.3, and a curvature homogeneous space with such atype of curvature tensor cannot exist. This concludes the proof of Theorem 5.1.Remark 1. The condition (B) is a bit ackward to check. But we can obtain verysimple su�cient conditions which already imply contradictions. E.g., if we requiresgn�3 = sgn�4 = �sgnA, then the �rst equation (21) is contradictory, and weget similar conditions for the other equations.Remark 2. For the curvature tensor of the form R = aRS4 + RCP2 from theIntroduction one can check easily that, with respect to a convenient orthonormalbasis, A1 = F1 = 4� + c; B1 = C1 = D1 = E1 = � + c; A2 = 2�;B2 = �; �c 6= 0,and the other components are zero. Hence the �-rank of R is equal to eight, andour method cannot be used in any way.References[CH] Chern S.S., On the Curvature and Characteristic Classes of a Riemannian manifold,Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126.[K1] Kowalski O., An explicit classi�cation of 3-dimensional Riemannian spaces satisfy-ing R(X;Y ) � R = 0. Preprint, 1991.



CURVATURE TENSORS IN DIMENSION FOUR 57[K2] Kowalski O., A classi�cation of Riemannian 3-manifolds with constant principalRicci curvatures �1 = �2 6= �3. To appear in Nagoya Math. J. 132 (1993).[K3] Kowalski O., Nonhomogeneous Riemannian 3-manifolds with distinct constant Riccieigenvalues. Comment. Math. Univ. Carolinae, 34, 3 (1993), 451-457.[KL] Klinger R., A Basis that Reduces to Zero as many Curvature Components as Possi-ble, Abh. Math. Sem. Univ. Hamburg 61 (1991), 243-248.[K-N] Kobayashi S., Nomizu K., Foundations of Di�erential geometry I, Interscience Pub-lishers, New York 1963.[K-P] Kowalski O., Pr�ufer F., On Riemannian 3-manifolds with distinct constant Riccieigenvalues, Preprint, 1993.[K-T-V1] Kowalski O., Tricerri F., Vanhecke L., New examples of non- homogeneous Rieman-nian manifolds whose curvature tensor is that of a Riemannian symmetric space, C.R. Acad. Sci. Paris, S�er. I, 311 (1990), 355-360 .[K-T-V2] Kowalski O., Tricerri F., Vanhecke L., Curvature homogeneous Riemannian mani-folds, J. Math. Pures Appl. 71 (1992), 471 - 501.[K-T-V3] Kowalski O., Tricerri F., Vanhecke L., Curvature homogeneous spaces with a solvableLie group as a homogeneous model, J. Math. Soc. Japan, 44 (1992), 461-484.[K-V] Kowalski O., Vanhecke L., Ball-Homogeneous and Disk-Homogeneous Riemannianmanifolds, Math. Z. 180 (1982), 429-444.[N-T] Nicolodi L., Tricerri F., On two Theorems of I.M. Singer about Homogeneous Spaces,Ann. Global Anal. Geom. 8 (1990), 193-209.[M] Milnor J., Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21(1976), 293-329.[SE] Sekigawa K., On some 3-dimensional Riemannian manifolds, Hokkaido Math. J. 2(1973), 259-270.[SI] Singer I.M., In�nitesimally homogeneous spaces, Comm. Pure Appl. Math. 13(1960), 685-697.[SI-TH] Singer I.M., Thorpe J.A., The curvature of 4-dimensional Einstein spaces, In: GlobalAnalysis (Papers in honor of K. Kodaira, pp. 355-366) Princeton, New Jersey, Prince-ton University Press 1969.[S-T] Spiro A., Tricerri F., 3-dimensional Riemannian metrics with prescribed Ricci prin-cipal curvatures, Preprint, 1993.[T] Tsukada T., Curvature homogeneous hypersurfaces immersed in a real space form,Tôhoku Math. J. 40 (1988), 221-244.[T-V] Tricerri F., Vanhecke L., Curvature tensors on almost Hermitian manifolds, Trans.Amer. Math. Soc. 267 (1981), 365-398.[YA] Yamato K., A characterization of locally homogeneous Riemannian manifolds ofdimension three, Nagoya Math. J. 123 (1991), 77-90.O. KowalskiMathematical Institut of the Charles UniversitySokolovsk�a 8318600 Praha, CZECH REPUBLICF. Pr�uferFachbereich Mathematik/InformatikMathematisches InstitutUniversit�at LeipzigAugustusplatz 1004109 Leipzig, GERMANY
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