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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 73 { 84LANDESMAN { LAZER TYPE PROBLEMS ATAN EIGENVALUE OF ODD MULTIPLICITY�Ludov�it PindaAbstract. The aim of this paper is to establish some a priori bounds for solutionsof Landesman-Lazer problem. We show the application for the solution structureof the nonlinear di�erential equation of the fourth order1. The general theoryLet X be a real Banach space with the norm k � k and let D(L) � X be thedomain of the closed Fredholm operatorL : D(L) ! Xwith index zero. We shall suppose that 0 is an isolated eigenvalue of odd multiplic-ity of L, hence there exists such a �0 > 0 that for � 2 (��0; �0), � 6= 0, (L�� �I)�1exists on X and that mapping is continuous.Let there exists a continuous positive de�nite bilinear formh� ; �i : X �X ! Rsuch that z 2 R(L) (range of L) i� hz ; ui = 0 for all u 2 NS(L) (nullspace of theoperator L).Let P0 : X ! X be a continuous linear projection onto NS(L). We denote theoperator LP0 : D(L) \NS(P0)! R(L)de�ned by LP0 = LjD(L)\NS(P0):The operator LP0 is one-to-one on D(L) \ NS(P0) and therefore there exists aninverse operator which we denote by L�1P0 = KP0 . We suppose that KP0 be acompletely continuous. Let F : X ! X1991 Mathematics Subject Classi�cation : 34B10, 34B27.Key words and phrases: completelycontinuousmapping, linear projection,Fredholmoperatorof index zero, Cauchy function, Hilbert-Schmidt operator, algebraic multiplicity.Received May 24, 1992.



74 �LUDOV�IT PINDAbe a L-completely continuous mapping i.e. P1 � F and KP0 � (I � P1) � F arecompletely continuous, where P1 : X ! X is a continuous linear projection withNS(P1) = R(L)and I : X ! X is the identity mapping. Let F satisfy(1) limjjujj!1 jjF (u)jjjjujj = 0Let(2) R(L) = NS(P0)be true. Then we can take P0 = P1.Let h 2 X. We assume that there exists a number d > 0 su�ciently smallwhich has following property :For each y 2 NS(L), jjyjj = 1 each sequence fyng � NS(L), jjynjj = 1 ; yn ! yas n!1, each sequence ftng, tn !1 as n!1 and for each sequence fzng �NS(P0), jjznjj < d(3) hh ; yi > lim infn!1 hF (tnyn + tnzn) ; yior(4) hh ; yi < lim supn!1 hF (tnyn + tnzn) ; yiis valid.In [3] instead of (1) the assumption is consideredjjF (u)jj � c1jjujj�+ d1for constants c1 > 0, d1 � 0, � 2< 0; 1) and all u 2 X and instead of (3), (4) thehypotheses are consideredhh ; yi > lim infn!1 hF (tnyn + t�nzn) ; yior hh ; yi < lim supn!1 hF (tnyn + t�nzn) ; yiwhere the sequences ftng, fyng have the same meaning as above and fzng is anybounded sequence in NS(P0).We now considere the equation(5) L(u)� �u+ F (u) = hwhere � is a real parameter. First we shall introduce the modi�cation of Theorem3.6.2 [2] p.99 which we use in the proof of next theorem.Denote L0(x) = L(x) � �x the operator which maps D onto B. Then forj�j < �0, L�10 2 L(B ; D).



LANDESMAN { LAZER TYPE PROBLEMS AT AN EIGENVALUE 75Lemma 1. Let B be a Banach space and D � B be the subspace (it need notbe closed). Let L, L0 : D ! B be such operators that the inverse operatorsL�1 ; L�10 2 L(B;D). If � = j�j jjL�1jj < 1, then jjL�1 � L�10 jj � (1 � �)�1� �jjL�1jj.Let 0 � � � 12 . Then we calculate the norm of the operator L�10 .jjL�10 jj � jjL�1jj+ jjL�10 � L�1jj � jjL�1jj+ jjL�1jj = 2 � jjKP0 jj :Theorem 1. Let all assumptions given above be satis�ed. Let condition (3) and(7) 0 < � = min��0 ; 12 � jjKP0 jj� :be satis�ed. Then for all � such that 0 � � � � there exists an R0 > 0 for whichany solution u of (5) satis�es jjujj � R0.Proof. Let u be a solution of (5) and write u = u1 + u2, u1 2 NS(L) ; u2 2NS(P0). We can write the equation in the following form(8) L(u2) � �(u1 + u2) + F (u1 + u2)� h = 0Then(9) h��u1 + F (u1 + u2) � h ; vi = 0 ; v 2 NS(L) :Applying I � P1 to the equation (8) we have(10) L(u2)� �u2 + (I � P1) � F (u1 + u2)� (I � P1)h = 0 :Since NS(P0) = NS(P1) = R(L) it follows thatL� ��I : D(L) \NS(P0)! NS(P1)is invertible for j�j � �. By Lemma 1 and (7) we get thatjj(L� ��I)�1jj � 2 � jjKP0 jj ; if j�j�jjIjj � 12�jjKP0 jjBy (10) we havejju2jj � jj(L� � � I)�1jj � jjI � P1jj � jjh� F (u1 + u2)jj(11) � 2 � jjKP0jj � jjI � P1jj(jjhjj+ jjF (u1+ u2)jj)Take " such that 0 < " < d, where d is given in the assumption (3). There existssuch an "1 > 0 that(12) "1 < "8 jjKP0jj � jjI � P1jj



76 �LUDOV�IT PINDAand moreover(13) 2 jjKP0 jj � jjI � P1jj � "1 = c1 < 12Denote by(14) 2 jjKP0 jj � jjI � P1jj � jjhjj = c2From the property (1) it follows that for "1 > 0 there exists such an R("1) > 0that for each u with the norm jjujj> RjjF (u)jj � "1 jjujjis valid. By (11) and (14) we have(15) jju2jj � c2 + c1 jju1 + u2jj ; for u with the norm jjujj > RIn the case that the solution u of (5) ful�ls the astimate jjujj < R is nothing toprove. We suppose that this astimate is not ful�lled.1. Let R < jjujj and 0 � jju1jj � R. By (15) it follows thatjjujj � jju1jj+ jju2jj � jju1jj+ c2 + c1 jju1+ u2jj� R + c2 + c1 jjujjThen jjujj � c2 + R1� c12. Let R < jjujj and jju1jj > R > 0. By (15) it follows(16) jju2jjjju1jj � c21� c1 � 1jju1jj + c11� c1 � c21� c1 � 1jju1jj + 2 c1We suppose that the set of all solution of the equation (5) for 0 � � � � is notbounded. Therefore there exists a sequence of fung of equation (5) correspondingto values � = �n 2 [0; �] such that jjunjj ! 1. From (16) it follows that necessarilyjju1njj ! 1. Let u1n = tn yn ; tn = jju1njj ; yn = u1njju1njj ; yn 2 NS(L) ; jjynjj =1. Then there exists a subsequence fynkg in the �nite-dimensional space NS(L)which converges to y 2 NS(L), jjyjj = 1. By rewriting ynk to yn we have un =tn � yn + tn � zn where zn = u2njju1njj is the sequence from NS(P0). By divergencejju1njj ! 1 it follows that for chosen " > 0 there exists such an n0 2 N that foreach n � n0 c21� c1 � 1jju1njj < "2



LANDESMAN { LAZER TYPE PROBLEMS AT AN EIGENVALUE 77is valid. By (12) and (13) we have 2 c1 < "2Therefore jjznjj = jju2njjjju1njj < " < d(9) implies that h��n tn yn ; yi + hF (tn yn + tn zn) ; yi = hh ; yiBecause yn ! y as n!1hyn ; yi = hy ; yi + hyn � y ; yi > 0for n large. For such n hF (tn yn + tn zn) ; yi � hh ; yiand lim infn!1 hF (tn yn + tn zn) ; yi � hh ; yiwhich contradicts with (3). This completes the proof of theorem. �Using a similar argument we can prove the next theorem.Theorem 2. Let all conditions of Theorem 1 be satis�ed and let instead of thecondition (3) the assumption (4) be satis�ed. Then for all � such �� � � � 0there exists an R0 > 0 such that any solution u of (5) satis�es jjujj � R0.2. Application to the fourth order differential equationLet the space X = L2([0; 2�]) be provided with the norm jjxjj2 and let thescalar product hx; yi = 2�Z0 x(t) � y(t) dyLet the linear di�erential operator L be de�ned byL(x) = x(4) + (m2 + n2)x00where 0 � m � n, m;n 2 N and the domain of the operator L isD(L) = fx(t) 2 C3([0; 2�]) ; x(4) 2 L2([0; 2�]) :x(i)(0) = x(i)(2�) ; i = 0; 1; 2; 3gTherefore the operator L maps D(L) � X into X. A fundamental system ofsolutions of the equation L(x) = 0 is y1(t) = 1, y2(t) = t, y3(t) = cospm2 + n2 t,y4(t) = sinpm2 + n2 t and so � = 0 is the eigenvalue of the operator L. If ism2 + n2 = k2, k 2 Z, k 6= 0 holds thenNS(L) = fy 2 D(L) : y(t) = c1 + c2 cos kt + c3 sin kt ;ci 2 R ; i = 0; 1; 2; 3g:Now we consider this case.



78 �LUDOV�IT PINDALemma 2. Let the operator L be de�ned on D(L). ThenNS(L) \R(L) = f0g :Proof. The problem L(x) = 0, x(i)(0) = x(i)(2�) ; i = 0; 1; 2; 3 is self-adjoint andtherefore the assertion of the lemma is true. �For � < �14(n2 � m2)2 �m2n2 there exists the inverse operator (L � ��I)�1,(Lemma 1 [4] p. ) and this operator is completely continuous, (Lemma 4.4, [1]p. 145). The conditions of Theorem 1 [5] p. 555 hold and we have that L is aFredholm operator of index zero and it is a closed operator.Now we take continuous projectorsP0 : X ! X ; P1 : X ! Xsuch that R(P0) = NS(L), NS(P1) = R(L). Let NS(P0) = R(L). Then wecan take P0 = P1. The operator LjD(L)\NS(P1) is one-to-one and therefore thereexists the inverse operator KP0 : R(L)! D(L) \ NS(P0). Now we construct theoperator KP0 . The Cauchy function for the equation L(x) = 0 isK1(t; s) = k�3[k (t� s) + sin k(s � t)] ; for 0 � s < t � 2� :Let x 2 D(L) \ NS(P0) be the solution of the equation L(x) = y, y 2 R(L2).Then it has the form(17) x(t) = c1 + c2 cos kt + c3 sinkt + tZ0 K1(t; s) y(s) ds :The function x(t) 2 D(L) \ NS(P0) and it follows that x is orthogonal to allfunctions belonging to NS(L) and therefore we have0 =hx(t) ; 1i = 2� c1 + 2�Z0 tZ0 K1(t; s) y(s) ds dt ;0 =hx(t) ; cos kti = � c2 + 2�Z0 tZ0 K1(t; s) y(s) ds dt ;(18) 0 =hx(t) ; sin kti = � c3 + 2�Z0 tZ0 K1(t; s) y(s) ds dt :From periodic conditions it follows that y 2 R(L) if and only if2�Z0 @iK1(2�; s)@ti � y(s) ds = 0 ; for i = 0; 1; 2; 3 :



LANDESMAN { LAZER TYPE PROBLEMS AT AN EIGENVALUE 79is true. By Fubini's theorem in (18) as well as by putting the constants ci, i = 1; 2; 3in (17) we get thatx(t) =� 1� 2�Z0 �4�(� + s) � 3s24 k2 + 2� � s2 k3 (sin ks� cos ks � 2)� 32 k4 sinks � � �K(t; s)� y(s) ds ;where K(t; s) = � K1(t; s) ; 0 � s � t � 2� ;0 ; 0 � t < s � 2�Then the operator KP0 is(19) KP0 (y)(t) = � 1� 2�Z0 �4�(� + s) � 3s24 k2 + 2� � s2 k3 (sin ks � cos ks � 2)� 32 k4 sin ks� � �K(t; s)� y(s) dsWe have the following estimate for the norm of the operator KP0jjKP0jj � 4 � �2�2k2 + 5� + 2k�2k3 + 32 k4 � < +1and the operator KP0 is Hilbert-Schmidt operator. By (19) it follows that KP0has the continuous kernel on [0; 2�]� [0; 2�] and by Lemma 4.4, [1], p.145 we havethat the operator KP0 is completely continuous operator on R(L2).Now we calculate the algebraic multiplicity of the eigenvalue � = 0. To the �rstcorresponding eigenfunction u10(t) = 1 we look for such a function u11(t) that theequality L(u11) = u10is valid. From the assertion of Lemma 1 it follows that such a function fromD(L)does not exists. Therefore the length of the chain determined by the eigenfunctionu10 is equal to one. A similar results holds for the eigenfunctions u20(t) = cos kt,u30(t) = sin kt. And hence the algebraic multiplicity of the eigenvalue � = 0 isequal to three.We shall assume that the function F : R! R is continuous and is such thatlimjjujj!1 jF (u)jjjujj = 0and h 2 X is 2�-periodic function.We now consider the equation(20) L(x) � �m2n2 x(t) + F (x)(t) = h(t)on D(L2). The veri�cation of the conditions (3) a (4) may, in general be verydi�cult. In what follows two theorems we shall show that these conditions can bereplased by other two conditions.



80 �LUDOV�IT PINDATheorem 3. Let the function F be bounded in R and let(21) lim sups!1 F (s) < h(t) < lim infs! �1F (s)be valid. Then the condition (3) is ful�eld.Proof. Let y 2 NS(L), jjyjj = 1. We take a sequence postupnos"t fyng � NS(L),jjynjj = 1, with yn ! y as n ! 1 and the real sequence ftng1n=1, tn ! 1 asn ! 1. Let fzng1n=1 � NS(P0) be such a sequence that jjznjj < d, where d is anumber su�ciently small. Choose " > 0. There exists an "0 > 0, such that(22) 1� �"0 + dd+ "� > 0is true. By (21) it follows that there exists an a > 0 such thatlim sups!1 F (s) + 2 a < h(t) < lim infs!�1 F (s) � 2 ais valid. Denote by M1 =ft 2 [0; 2�] : y(t) � d+ "gM2 =ft 2 [0; 2�] : y(t) � �(d+ ")gM3 =ft 2 [0; 2�] : jy(t)j < d+ "gWe shall show the validity of the condition (3).1. Consider the set M1 and a sequence(23) � tn (yn(t) + zn(t))tn y(t) �1n=1on it. Because yn ! y as n ! 1, jjynjj = jjyjj = 1 and jjznjj < d for "0 > 0, by(22) there exists n00 2 N such that for all n � n00 the inequality1� �"0 + dd+ "� � tn (yn(t) + zn(t))tn y(t) � 1 +�"0 + dd+ "�is valid for each t 2M1. Thereforetn(d+ ") �1��"0 + dd+ "�� � tn y(t) �1� �"0 + dd+ "��� tn (yn(t) + zn(t))As n ! 1 tn(d + ") h1� �"0 + dd+"�i ! 1 then tn yn(t) + +tn zn(t) ! 1 uni-formly on M1, too. Under the assmption (21) it follows the existence of suchconstants k1, h1 that lim sups!1 F (s) = k1 < h1 � h(t)



LANDESMAN { LAZER TYPE PROBLEMS AT AN EIGENVALUE 81It is true that for the above determined a > 0 there exists such an s00 that for eachs � s00 and each t 2 [0; 2�] F (s) � k1 + 2 a < h1 � h(t)We have that for each n su�ciently greatF (tnyn(t) + tnzn(t)) � k1 + 2 a < h(t)for all t 2M1. Multiplying the last inequality by the function y(t) onM1 it followsthat F (tnyn(t) + tnzn(t)) � y(t) � (k1 + 2 a) � y(t) < h(t) � y(t)Integrating these inequality on the set M1 we get thatZM1 h(t) y(t) dt � ZM1 F (tnyn + tnzn(t)) y(t) dt� ZM1 a y(t) dt � a(d+ ")�(M1) � 0Therefore(24) ZM1 h(t) y(t) dt � lim infn!1 ZM1 F (tnyn(t) + zn(t)) y(t) dt� a (d+ ")�(M1) � 02. Consider the set M2. The function y(t) is negative on M2. By (23) we obtainthat for "0 > 0 choosen at the beginning of the proof, there exists an n000 2 N suchthat for all n � n000 the inequalitytny(t) �1� �"0 + dd+ "�� � tn(yn(t) + zn(t)) �� tn y(t) �1 + �"0 + dd+ "��holds. Therefore�tn(d+ ") �1��"0 + dd+ "�� � tn y(t) �1� �"0 + dd+ "��� tn(yn(t) + zn(t))As n ! 1 �tn(d + ") �1� �"0 + dd+ "�� ! �1 so tnyn(t) + +tnzn(t) ! �1uniformly on M2. By the condition (21) the existence of constants k2, h2 followsfor which lim infs!�1 F (s) = k2 > h2 � h(t)



82 �LUDOV�IT PINDAIt is true that for the above determined a > 0 there exists such s000 that for eachs � s000 and each t 2 [0; 2�]F (s) � k2 � 2 a > h2 � h(t)We have that for each n su�ciently greatF (tnyn(t) + tnzn(t)) � k2 � 2 a > h(t)for all t 2 M2. Multiplying this inequality by the function y(t) on M2 it followsthat F (tnyn(t) + tnzn(t)) � y(t) � (k2 � 2 a) � y(t) < h(t) y(t)By the integration on the set M2 we get thatZM2 h(t) y(t) dt � ZM2 F (tnyn + tnzn(t)) y(t) dt� � ZM2 a y(t) dt � a(d+ ")�(M2) � 0Therefore(25) ZM2 h(t) y(t) dt � lim infn!1 ZM2 F (tnyn(t) + zn(t)) y(t) dt� a (d+ ")�(M2) � 0Adding inequalities (24) a (25) we get(26) ZM1[M2 h(t) y(t) dt � lim infn!1 ZM1[M2 F (tnyn(t) + tnzn(t)) � y(t) dt� a(d+ ") � �(M1 [M2) > 03. Consider the set M3. Now we make following estimations. The function F isbounded and therefore there exists such a K > 0 that(27) jF (r)j � K ; for all r 2 Rthe function h 2 X and therefore there exists such a constant H > 0 that(28) jh(t)j � H ; for all t 2M3 � [0; 2�]We denote d1 = d+". The function y 2 NS(L) and it is true that if limd!0+ �(M3) =0 then �(M1 [M2) ! 2�. So far the proof of the theorem has not depended onthe choice of numbers ", d. We choose ", d such that(H +K)�(M3) < a�(M1 [M2)



LANDESMAN { LAZER TYPE PROBLEMS AT AN EIGENVALUE 83Then by (27), (28) it follows that the estimations������ZM3 F (tnyn(t) + tnzn(t)) � y(t) dt������ < K (d+ ")�(M3)������ZM3 h(t) y(t) dt������ < H � (d+ ")�(M3)are valid. By the introduced estimates it is true that������ZM3 h(t) y(t) dt � lim infn!1 ZM3 F (tnyn(t) + tnzn(t)) � y(t) dt������� ������ZM3 h(t) y(t) dt������ + lim supn!1 ������ZM3 F (tnyn(t) + tnzn(t)) � y(t) dt������� (H +K)(d+ ")�(M3) < a(d+ ")�(M1 [M2) :Adding to the inequality (26) the inequalityZM3 h(t) y(t) dt � lim infn!1 ZM3 F (tnyn(t) + tnzn(t)) y(t) dt << a(d+ ")�(M1 [M2)we have that 2�Z0 h(t) y(t) dt � limn!1 2�Z0 F (tnyn(t) + tnzn(t)) y(t) dt > 0Thus the theorem is completely proved. �Similary the next theorem can be proved.Theorem 4. Let the function F be bounded in R and let(29) lim sups!�1 F (s) < h(t) < lim infs!1 F (s)be valid. Then the condition (4) is ful�elled.We showed that the eigenvalue � = 0 has an odd algebraic multiplicity and itis an isolated eigenvalue of the operator L, i. e. that exists such �0 > 0 that for� 2 (��0 ; �0), � 6= 0 there exists (L�� � I)�1. From the form of equation (20) wehave that the operator L0 and � in Lemma 1 areL0(x) = L(x) � �m2n2 x ;� = j�m2n2j � jjKP0 jj :If 0 � � � 12 then 0 � j�j � 12m2n2jjKP0 jj . Denote by � = min��0 ;12m2n2jjKP0 jj� > 0. By Theorem 1 and Theorem 3 the next theorem follows.



84 �LUDOV�IT PINDATheorem 5. Let the condition of Theorem 3 hold and let 0 � � � �. Then thereexists such an R0 > 0 that any solution u of the equation (20) satis�es jjujj � R0.Similarly by Theorem 2 and Theorem 4 we get Theorem 6.Theorem 6. Let the conditions of Theorem 4 hold and let �� � � � 0. Thenthere exists such an R0 > 0 that any solution u of the equation (20) satis�esjjujj � R0.If we use Theorem 9 [3] p. 144 we obtain a result about a number of solutionsof the equation (20) in a neighbourhood of 0.Corrollary 1. Let the function F be bounded in R. If (21) holds then thereexists such an �1 > 0 that(1) for 0 � � � � exists at least one 2�-periodic solution of (20)(2) for ��1 � � < 0 exists at least two 2�-periodic solutions of (20) .If (27) holds then there exists an �2 > 0 such that(3) for �� � � � 0 exists at least one 2�-periodic solution of (20)(4) for 0 < � � �2 exists at least two 2�- periodic solutions of (20) .References[1] Gregu�s, M., �Svec, M., �Seda, V., Oby�cajn�e diferenci�alne rovnice, Alfa, 1985.[2] Hutson, V. C. L., Pym, J. S., Applications of Functional Analysis and Operator Theory,Academie Press, London, New York, Toronto, Sydney, San Francisco, 1980.[3] Mawhin, J., Schmitt, K., Lamdesman{Lazer type problems a an eigenvalue of odd multiplic-ity, Results in Mathematics 14 (1988), 138-146.[4] Pinda, L., On a fourth order periodic boundary value problem, Arch. Math. (Brno) 30 no. 1(1994), 1-8.[5] �Seda, V., Some remarks to coincidence theory, Czechoslovak Matematical Journal 38 no.113 (1988), 554-572.�Ludov�it PindaDepartment of Mathematics EUOdboj�arov 10831 04 Bratislava, SLOVAK REPUBLIC
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