Archivum Mathematicum

Miroslav Bartušek

On the structure of solutions of a system of three differential inequalities

Archivum Mathematicum, Vol. 30 (1994), No. 2, 117--130

Persistent URL: http://dml.cz/dmlcz/107500

Terms of use:

© Masaryk University, 1994
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON THE STRUCTURE OF SOLUTIONS OF A SYSTEM OF THREE DIFFERENTIAL INEQUALITIES

Miroslav Bartušek

Abstract. The aim of this paper is to study the global structure of solutions of three differential inequalities with respect to their zeros. New information for the differential equation of the third order with quasiderivatives is obtained, too.

1. Introduction

The aim of this paper is to investigate a global structure of solutions with respect to zeros of a system of differential inequalities

$$
\begin{align*}
& \alpha_{i} y_{i}^{\prime}(t) y_{i+1} \geq 0 \\
& y_{i+1}(t)=0 \Rightarrow y_{i}^{\prime}(t)=0, \quad i=1,2,3, \quad t \in J \tag{1}
\end{align*}
$$

where $\alpha_{i} \in\{-1,1\}, y_{4}=y_{1}, J=(a, b),-\infty \leq a<b \leq \infty$.
$y=\left(y_{1}, y_{2}, y_{3}\right)$ is called a solution of (1) if $y_{i}: J \rightarrow R, R=(-\infty, \infty)$ is locally absolute continuous and (1) holds for all $t \in J$ such that y_{i}^{\prime} exists.

Put $y_{i+3 k}=y_{i}, i=1,2,3, k \in Z, Z=\{\ldots,-1,0,1, \ldots\}$.
Two special cases of (1) which are often studied.
(a) A system of three differential equations

$$
\begin{align*}
& y_{i}^{\prime}=f_{i}\left(t, y_{1}, y_{2}, y_{3}\right), \quad i=1,2,3 \tag{2}\\
& \alpha_{i} f_{i}\left(t, x_{1}, x_{2}, x_{3}\right) x_{i+1} \geq 0 \\
& x_{i+1}=0 \Rightarrow f_{i}\left(t, x_{1}, x_{2}, x_{3}\right)=0 \text { in } D, \quad i=1,2,3 \tag{3}
\end{align*}
$$

where $\alpha_{i} \in\{-1,1\}, x_{4}=x_{1}, f_{i}: D=R \times R^{3} \rightarrow R$ satisfies the local Carathéodory conditions, $i=1,2,3$. See e.g. $[2,5]$ and the references herein. $y=\left(y_{1}, y_{2}, y_{3}\right)$, defined in J, is called a solution of (2) if it is locally absolute continuous and (2) holds for almost all $t \in J$.

[^0](b) The differential equation with the quasi-derivatives of the third order
\[

$$
\begin{align*}
& L_{3} x(t)=f\left(t, x, x^{\prime}, x^{\prime \prime}\right) \tag{4}\\
& \alpha f\left(t, x_{1}, x_{2}, x_{3}\right) x_{1} \geq 0, f\left(t, 0, x_{2}, x_{3}\right)=0 \tag{5}
\end{align*}
$$
\]

where $\alpha \in\{-1,1\}, f: R \times R^{3} \rightarrow R$ fulfils the local Carathéodory conditions, $a_{j}: R \rightarrow R$ are continuous, $a_{j}(t)>0$ for $t \in R, j=0,1,2,3$ and $L_{j} x$ is the j-th quasi-derivative of $x: L_{0} x=a_{0}(t) x, L_{i} x=a_{i}(t)\left(L_{i-1} x\right)^{\prime}, i=1,2,3$. Further, suppose that $a_{0} \in C^{1}(R)$ if $f\left(t, x_{1}, x_{2}, x_{3}\right) \equiv f\left(t, x_{1}, x_{2}\right)$ and $a_{0} \in C^{2}(R), a_{1} \in$ $C^{1}(R)$ if f depends in x_{3}, too.

By the use of a standard transformation we can see that (4), (5) is equivalent to (2), (3): $y_{j}=L_{j-1} x, j=1,2,3$,

$$
\begin{align*}
y_{1}^{\prime}(t)= & \frac{y_{2}(t)}{a_{1}(t)}, \quad y_{2}^{\prime}(t)=\frac{y_{3}(t)}{a_{2}(t)} \\
y_{3}^{\prime}(t)= & \frac{1}{a_{3}(t)} f \quad t, \frac{y_{1}}{a_{0}}, \frac{y_{2}}{a_{1} a_{0}}-\frac{a_{0}^{\prime} y_{1}}{a_{0}^{2}}, \frac{y_{3}}{a_{0} a_{1} a_{2}}-\frac{y_{2}}{a_{0} a_{1}} \quad \frac{a_{1}^{\prime}}{a_{1}}+\frac{2 a_{0}^{\prime}}{a_{0}} \tag{6}\\
& -\frac{y_{1}}{a_{0}^{3} a_{1}}\left(a_{0} a_{0}^{\prime \prime} a_{1}-2 a_{1} a_{0}^{\prime 2}\right)=\bar{f}\left(t, y_{1}, y_{2}, y_{3}\right)
\end{align*}
$$

Note that $\alpha \bar{f}\left(t, y_{1}, y_{2}, y_{3}\right) y_{1} \geq 0, \bar{f}\left(t, 0, y_{2}, y_{3}\right)=0, \alpha_{1}=\alpha_{2}=1, \alpha_{3}=\alpha$.
In $[2,4]$ the structure of oscillatory solutions (defined in the usual sense) has been studied for the differential equation (4), (5) and its special forms. It is shown that there exists a relation between zeros of the derivatives of a solution. Further, in [1] oscillatory solutions of (1) are investigated under the validity of the relation

$$
\begin{equation*}
y_{i}^{\prime}(t)=0 \Rightarrow y_{i+1}(t)=0, \quad i=1,2,3 . \tag{7}
\end{equation*}
$$

Especially, it is proved that zeros of $y_{i}, i=1,2,3$ are simple in some neighbourhood of its cluster point, i.e. if $y_{i}(t)=0$, then $y_{i+1}(t) \neq 0$. In [6] non-oscillatory solutions of differential inclusions for which (1) holds are studied.

In the present paper a generalization and an extension of these results to the system (1) are going to be made. Some new results for (4) are gained, too.

Note that (7) is fulfilled if it is supposed that

$$
\begin{align*}
\alpha_{i} f_{i}\left(t, x_{1}, x_{2}, x_{3}\right) x_{i+1} & >0 \text { for } x_{i+1} \neq 0, \\
& =0 \text { for } x_{i+1}=0, \quad i=1,2,3 \tag{8}
\end{align*}
$$

is valid for (2) instead of (3). Similarly, (7) is valid if

$$
\begin{equation*}
\alpha f\left(t, x_{1}, x_{2}, x_{3}\right) x_{1}>0 \text { for } x_{1} \neq 0, f\left(t, 0, x_{2}, x_{3}\right)=0 \tag{9}
\end{equation*}
$$

holds for (4) instead of (5).

Definition. Let $y:(a, b) \rightarrow R^{3}$ be a solution of (1). Then y is called noncontinuable if two following relations are valid
(i) either $a=-\infty$ or, if $-\infty<a$, then $\lim _{t \rightarrow a^{+}} \sup _{i=1}^{3}\left|y_{i}(t)\right|=\infty$
(ii) either $b=\infty$ or, if $b<\infty$, then $\lim _{t \rightarrow b^{-}} \sup _{i=1}^{3}\left|y_{i}(t)\right|=\infty$. y is called trivial if $y_{i}(t)=0$ in $(a, b), i=1,2,3$.

In our further considerations the points of the zero initial conditions will play an important role. The "non-trivial" ones are defined in the following
Definition. Let $y: J=(a, b) \rightarrow R^{3}$ be a solution of (1). Let c be such a point that $c \in J, y_{i}(c)=0, \underset{3}{i}=1,2,3$ holds, and in any neighbourhood I of c there exists $\tau \in I$ such that ${ }_{j=1}^{3}\left|y_{j}(\tau)\right|>0$. Then c is called Z-point of y.

Let $i \in\{1,2,3\}, J_{1} \subset J$ be either $J_{1}=\left[a_{1}, b\right)$ or $J_{1}=\left(a, b_{1}\right]$ or $J_{1}=\left[a_{1}, b_{1}\right]$, $a_{1}, b_{1} \in J . J_{1}$ is called Z-interval of y_{i} if $y_{i}=0$ in J_{1} and two following relations hold:
(i) y_{i} is non-trivial in any left neighbourhood of $t=a_{1}$ if $J_{1}=\left[a_{1}, b\right)$ or $J_{1}=\left[a_{1}, b_{1}\right] ;$
(ii) y_{i} is non-trivial in any right neighbourhood of $t=b_{1}$ if $J_{1}=\left(a, b_{1}\right]$ or $J_{1}=\left[a_{1}, b_{1}\right]$.
Property V is valid in the interval J_{1} if there exists an index $i \in\{1,2,3\}$ such that J_{1} is Z-interval of both y_{i}, y_{i+1} and $y_{i+2} \neq 0$ in J_{1}.
Notation. Let y be a solution of (1). Put $Y_{1}=y_{1}, Y_{2}=\alpha_{1} y_{2}, Y_{3}=\alpha_{1} \alpha_{2} y_{3}$, $Y_{i+3 k}=Y_{i}, k \in Z, i=1,2,3$.

$$
\text { 2. Case } \alpha_{1} \alpha_{2} \alpha_{3}=-1
$$

In this chapter the case

$$
\begin{equation*}
\alpha_{1} \alpha_{2} \alpha_{3}=-1 \tag{10}
\end{equation*}
$$

will be studied. The validity of (10) will be supposed in all the considerations.
For the study of the structure of solutions of (1) the following types will be defined. Let $y: J=(c, d) \rightarrow R^{3}$.
Type I. Sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{i}\right\}, i=1,2,3, k=k_{i}, k_{i}+1, \ldots$ exist such that $k_{1}=1$, $k_{2} \in\{0,1\}, k_{3} \in\left\{0, k_{2}\right\}, t_{k}^{i} \in J, \lim _{k \rightarrow \infty} t_{k}^{i}=d$ and

$$
\begin{align*}
& t_{k}^{1} \leq \bar{t}_{k}^{1}<t_{k}^{3} \leq \bar{t}_{k}^{3}<t_{k}^{2} \leq \bar{t}_{k}^{2}<t_{k+1}^{1}, \\
& Y_{i}(t)=0 \quad \text { for } t \in\left[t_{k}^{i}, \bar{t}_{k}^{i}\right], \quad Y_{i}(t) \neq 0 \text { for } t \bar{\in}\left[t_{k}^{i}, \bar{t}_{k}^{i}\right], \\
& Y_{j}(t) Y_{1}(t)>0 \text { for } t \in\left(\bar{t}_{k}^{1}, t_{k}^{j}\right) \tag{11}\\
& \quad<0 \text { for } t \in\left(\bar{t}_{k}^{j}, t_{k+1}^{1}\right), \\
& j=2,3, \quad i=1,2,3, \text { for all admissible } k
\end{align*}
$$

hold. Moreover, $\beta_{i} \gamma_{i}=-1$ where $\beta_{i}\left(\gamma_{i}\right)$ is $\operatorname{sign} Y_{i}$ in the interval $\left(c, t_{k_{i}}^{i}\right)$ (in $\left(\bar{t}_{k_{i}}^{i}, t_{k_{i}+1}^{i}\right)$), $i=1,2,3$.

Type II. Sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{i}\right\}, i=1,2,3, k=k_{i}, k_{i}-1, k_{i}-2, \ldots$, exist such that $k_{1}=1, k_{3} \in\{0,1\}, k_{2} \in\left\{0, k_{3}\right\}, t_{k}^{i} \in J, \lim _{k \rightarrow-\infty} t_{k}^{i}=c$ and (11) hold. Moreover, $\beta_{i} \gamma_{i}=-1$ where $\beta_{i}\left(\gamma_{i}\right)$ is $\operatorname{sign} Y_{i}$ in the interval $\left(\bar{t}_{k_{i}-1}^{i}, t_{k_{i}}^{i}\right)\left(\left(\bar{t}_{k_{i}}^{i}, d\right)\right), i=1,2,3$.
Type III. Sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{i}\right\}, i=1,2,3, k \in Z$ exist such that $t_{k}^{i} \in J$, $\lim _{k \rightarrow-\infty} t_{k}^{i}=c, \lim _{k \rightarrow \infty} t_{k}^{i}=d$ and (11) holds for $k \in Z$.
Type IV. There exists $\tau \geq c$ such that
$Y_{i}, i \in\{1,2,3\} \quad$ has a finite number of Z - intervals $\left[t_{k}^{i}, \bar{t}_{k}^{i}\right]$ in (c, τ) and (11) holds until $c<\tau$;
$\left|Y_{1}\right|,\left|Y_{2}\right|$ are non-decreasing, $\left|Y_{3}\right|$ is non-increasing and $Y_{1}(t) Y_{2}(t)>0, Y_{1}(t) Y_{3}(t) \geq$ 0 holds in (τ, d).

Type V. ${ }_{i=1}^{3}\left|Y_{i}(t)\right|>0 ;\left|Y_{i}\right|, i=1,2,3$ are non-increasing,

$$
\begin{equation*}
Y_{1}(t) Y_{2}(t) \leq 0, \quad Y_{1}(t) Y_{3}(t) \geq 0, \quad Y_{2}(t) Y_{3}(t) \leq 0, \quad t \in J \tag{13}
\end{equation*}
$$

Type VI. There exists $\tau \geq c$ such that (12) holds; $\left|Y_{1}\right|,\left|Y_{3}\right|$ are non-decreasing, $\left|Y_{2}\right|$ is non-increasing,

$$
Y_{1}(t) Y_{2}(t) \geq 0, \quad Y_{1}(t) Y_{3}(t)<0 \quad \text { in } \quad(\tau, b)
$$

Type VII. There exists $\tau \geq c$ such that (12) holds; $\left|Y_{1}\right|$ is non-increasing, $\left|Y_{2}\right|,\left|Y_{3}\right|$ are non-decreasing and

$$
Y_{1}(t) Y_{2}(t) \leq 0, \quad Y_{2}(t) Y_{3}(t)>0 \quad \text { in } \quad(\tau, b)
$$

Type VIII. y is trivial in J.
Remark 1. The solutions of Type either I or III are ussually called oscillatory, the ones of Types IV-VII are non-oscillatory. The solution of Type V, $b=\infty$ is called Kneser solution.
Definition. Let $y:(a, b) \rightarrow R^{3}$ be a solution of (1), A_{i} be one of Types I-VIII, $i=0,1,2, \ldots, s$. Then y is of Type $\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}$ in (a, b) if the index $j, j \in$ $\{1,2, \ldots, s\}$ exists such that y is of Type A_{j} in (a, b). Y is successively of Types $A_{1}, A_{2}, \ldots, A_{s-1}$ and A_{s} if numbers $\tau_{0}, \ldots \tau_{s}$ exist such that $a=\tau_{0} \leq \tau_{1} \leq \tau_{2} \leq$ $\cdots \leq \tau_{s-1} \leq \tau_{s}=b, y$ is of Type A_{j} in $\left(\tau_{j-1}, \tau_{j}\right), j=1,2, \ldots, s$. At the same time if y is of Type A on (τ, τ), then Type A is missing.

Let us start with some lemmas.

Lemma 1. Let y be a solution of (1) defined in an interval J.
(a) Let $j \in\{2,3\}$ and $Y_{j}(t) \geq 0 \quad(\leq 0)$ on J. Then Y_{j-1} is non-decreasing (non-increasing) on J.
(b) If $Y_{1} \geq 0 \quad\left(Y_{1} \leq 0\right)$ in J, then Y_{3} is non-increasing (non-decreasing) in J.

Proof. Let $j=2, Y_{2}(t)=\alpha_{1} y_{2}(t) \geq 0$ in J. As, by the use of $(1) \alpha_{1} y_{1}^{\prime}(t) y_{2}(t) \geq 0$, we have $y_{1}^{\prime}=Y_{1}^{\prime} \geq 0$ for almost all $t \in J$. In the other cases the proof is similar (in (b) the assumption (10) must be used, too).

Remark 2. The following conclusions follow directly from Lemma 1.
Let $y:(c, d) \rightarrow R^{3}$ be a solution of (1).
(i) Let y be either of Type IV, $i=3$ or of the Type VI, $i=2$ or of Type VII, $i=1$. If $t_{0}, t_{0} \in(c, d)$ exists such that $y_{i}\left(t_{0}\right)=0$, then $y_{i}(t)=0$ in $\left[t_{0}, d\right)$.
(ii) Let y be of Type $\mathrm{V}, i \in\{1,2,3\}$ and let $t_{0}, t_{0} \in(c, d)$ exist such that $y_{i}\left(t_{0}\right)=0$. Then $y_{i}(t)=0$ in $\left[t_{0}, d\right)$.

Lemma 2. Let $y:\left[t_{1}, t_{2}\right] \rightarrow R^{3}$ be a solution of (1), $i \in\{1,2,3\}$, $Y_{i}\left(t_{1}\right)=Y_{i+1}\left(t_{1}\right)=0, Y_{i+2}(t) \neq 0$ in $\left[t_{1}, t_{2}\right]$. Then either

$$
\begin{equation*}
Y_{i} \equiv Y_{i+1} \equiv 0 \text { in }\left[t_{1}, t_{2}\right] \tag{14}
\end{equation*}
$$

or there exists a number τ such that $t_{1} \leq \tau<t_{2}, Y_{i}(t)=Y_{i+1}(t)=0$ in $\left[t_{1}, \tau\right]$, $(-1)^{i+1} Y_{i+1}(t) Y_{i+2}(t)>0$ in $\left(\tau, t_{2}\right]$.

Proof. Suppose that (14) is not valid, $i=1$ and $Y_{3}(t)>0$ in $\left[t_{1}, t_{2}\right]$ holds for the simplicity. Then by the use of Lemma 1 the function Y_{2} is non-decreasing, $Y_{2} \geq 0$ in $\left[t_{1}, t_{2}\right]$ and Y_{1} is non-decreasing, too. Thus, there exists $\tau, t_{1} \leq \tau<t_{2}$ such that $Y_{1}(t)=Y_{2}(t)=0$ on $\left[t_{1}, \tau\right]$ and

$$
\begin{equation*}
Y_{1}^{2}(t)+Y_{2}^{2}(t)>0 \quad \text { in } \quad\left(\tau, t_{2}\right] \tag{15}
\end{equation*}
$$

Suppose that $Y_{2}=0$ at some right neighbourhood J of τ. By the use of (1) we have $y_{1}^{\prime}(t)=0$ in J, and thus $y_{1}(t)=0, Y_{1}(t)=0$ in J. This contradiction to (15) proves the statement for $i=1$. For the other i the proof is similar.
Lemma 3. Let (10) be valid, $y: J=[a, b) \rightarrow R^{3}, b \leq \infty$ be a solution of (1) such that ${ }_{i=1}^{3}\left|y_{i}(t)\right| \neq 0$ in J and let the following relation be not valid for $t=a$:

$$
\begin{equation*}
\alpha_{1} y_{1} y_{2}<0, \quad \alpha_{1} \alpha_{2} y_{1} y_{3}>0 \tag{16}
\end{equation*}
$$

Then y is successively of Types V and $\{I, I V, V I, V I I\}$.
Proof. Let us investigate y under the validity of all possible Cauchy initial conditions at $t=a$. These conditions will be expressed by the use of the functions Y_{i}, $i=1,2,3$.

$$
\begin{array}{ll}
1^{\circ} & Y_{1}(a) Y_{3}(a) \geq 0, \quad Y_{2}(a) Y_{3}(a)>0 \\
2^{\circ} & Y_{1}(a) Y_{2}(a)>0, \quad Y_{1}(a) Y_{3}(a) \leq 0 \\
3^{\circ} & Y_{1}(a) Y_{2}(a) \leq 0, \quad Y_{1}(a) Y_{3}(a)<0 \\
4^{\circ} & Y_{1}(a)=0, \quad Y_{2}(a) Y_{3}(a)<0 \\
5^{\circ} & Y_{2}(a)=0, \quad Y_{1}(a) Y_{3}(a)>0 \\
6^{\circ} & Y_{1}(a) Y_{2}(a)<0, \quad Y_{3}(a)=0 \\
7^{\circ} & Y_{1}(a)=Y_{2}(a)=0, \quad Y_{3}(a) \neq 0 \\
8^{\circ} & Y_{1}(a) \neq 0, \quad Y_{2}(a)=Y_{3}(a)=0 \\
9^{\circ} & Y_{1}(a)=Y_{3}(a)=0, \quad Y_{2}(a) \neq 0 .
\end{array}
$$

The conditions $Y_{i}(a)=0, i=1,2,3$ and $Y_{1}(a) Y_{2}(a)<0, Y_{1}(a) Y_{3}(a)>0$ cannot be valid with respect to the assumptions of the lemma.
Ad 1°. Suppose that $Y_{1}(a) \geq 0, Y_{2}(a)>0, Y_{3}(a)>0$ (the opposite case can be studied similarly). Then we have either $Y_{1}(t) \equiv 0, Y_{j}(t)>0, j=2,3$ in J (Type IV), or there exists \bar{t}_{0} such that (see Lemma 1)

$$
\begin{aligned}
& Y_{1}(t)=0, \quad Y_{2}(t)>0, \quad Y_{3}(t)>0 \quad \text { in } \quad\left[a, \bar{t}_{0}\right] \\
& Y_{1}(t)>0 \quad \text { in some right neighbourhood of } \quad \bar{t}_{0} .
\end{aligned}
$$

In this case, according to Lemma $1, Y_{1}>0, Y_{2}>0$ are non-decreasing and $Y_{3}>0$ is non-increasing for $t>\bar{t}_{0}$ until $Y_{2}>0$. Thus y is either of Type IV ($Y_{j}>0$, $j=1,2, Y_{3} \geq 0$ in J) or there exists a number $t_{3}, t_{3}>\bar{t}_{0}$ such that

$$
Y_{1}\left(t_{3}\right)>0, \quad Y_{2}\left(t_{3}\right)>0, \quad Y_{3}\left(t_{3}\right)=0
$$

By the repetition of the considerations the following conclusions can be proved in the same way: either y is one of Types IV, VI, VII or numbers $\bar{t}_{3}, t_{2}, \bar{t}_{2}, t_{0}$ exist such that $t_{3} \leq \bar{t}_{3}<t_{2} \leq \bar{t}_{2}<t_{0}$,

$$
\begin{array}{lllll}
Y_{1}(t)>0, & Y_{2}(t)>0, & Y_{3}(t)=0 & \text { in } & {\left[t_{3}, \bar{t}_{3}\right]} \\
Y_{1}(t)>0, & Y_{2}(t)>0, & Y_{3}(t)<0 & \text { in } & \left(\bar{t}_{3}, t_{2}\right) \\
& & & \\
Y_{1}(t)>0, & Y_{2}(t)=0, & Y_{3}(t)<0 & \text { in } & {\left[t_{2}, \bar{t}_{2}\right]} \tag{18}\\
Y_{1}(t)>0, & Y_{2}(t)<0, & Y_{3}(t)<0 & \text { in } & \left(\bar{t}_{2}, t_{0}\right) \\
Y_{1}\left(t_{0}\right)=0, & Y_{2}\left(t_{0}\right)<0, \quad Y_{3}\left(t_{0}\right)<0 . &
\end{array}
$$

It is evident that the same Cauchy initial conditions (with respect to signs) at t_{0} are valid as in $t=a$. Thus by the repetition of these considerations we can see that the statement of the lemma is valid in the case 1°. According to the assumption ${ }_{i=1}^{3}\left|y_{i}(t)\right|>0$ of the lemma $\lim _{k \rightarrow \infty} t_{k}^{i}=b$ must be valid if y is of Type I.
Ad $2^{\circ}, 3^{\circ}$. The conditions are met in the case 1°, see (17), (18).
Ad 4°. For the simplicity, let $Y_{2}(a)>0$ be valid. According to Lemma $1 Y_{3}<0$, Y_{3} is constant, Y_{2} is non-increasing for $t \geq a$ until $Y_{1} \equiv 0$. Thus either $Y_{1} \equiv 0$, $Y_{2}>0, Y_{3}<0$ in J (Type VI) or there exists $\tau, a<\tau<b$ such that

$$
\begin{equation*}
Y_{1}(\tau)=0, \quad Y_{2}(\tau)=0, \quad Y_{3}(\tau)<0 \tag{19}
\end{equation*}
$$

or there exists $\tau, a<\tau<b$ such that

$$
\begin{equation*}
Y_{1}>0, \quad Y_{2}>0, \quad Y_{3}<0 \tag{20}
\end{equation*}
$$

holds in some right neighbourhood of $t=\tau$. The case (20) is studied in 2°. Let (19) be valid. Then according to Lemma 2 either $Y_{1} \equiv Y_{2} \equiv 0, Y_{3}<0$ in J (Type IV) or there exists $\tau_{1}, \tau \leq \tau_{1}<b$ such that we have $Y_{1}(t)=Y_{2}(t)=0, Y_{3}(t)<0$ in $\left[\tau, \tau_{1}\right], Y_{1}(t) \leq 0, Y_{2}(t)<0, Y_{3}(t)<0$ in some right neighbourhood of $t=\tau_{1}$. But this case is studied in 1°.
Ad $5^{\circ}, 6^{\circ}$. These cases can be studied similarly to 4°.
Ad $7^{\circ}, 8^{\circ}, 9^{\circ}$. The case 7° is met in 4°, see (19). Similarly, the cases $8^{\circ}, 9^{\circ}$ are investigated in $5^{\circ}, 6^{\circ}$, respectively. The lemma is proved.
Remark 3. (i) It is seen from the proof of the Lemma 3 that the following statement is valid.

Let $i \in\{1,2,3\}$ and (7) be valid only for i. Then $t_{k}^{i}=\bar{t}_{k}^{i}, k \in N$.
(ii) Let $y:[a, b) \rightarrow R^{3}$ be a non-continuable solution of the Type \{I, IV, VI, VII $\}$. Then b may be also finite as it is seen from the following example. For such solutions for (2) see [5].
Example. $y_{1}^{\prime}=0, y_{2}^{\prime}=y_{2}^{2} y_{3}, y_{3}^{\prime}=0$. Thus we can put $\alpha_{1}=\alpha_{2}=1, \alpha_{3}=-1$. The solution $y_{1} \equiv 0, y_{2}=\frac{1}{1-t}, y_{3} \equiv 1$, defined in $(-\infty, 1)$ is non-continuable.
Lemma 4. Let $y:(a, b] \rightarrow R^{3}$ be a solution of (1), (13) hold at b and ${ }_{i=1}^{3}\left|y_{i}(b)\right|>$ 0 . Then y is of Type V on (a, b).
Proof. Let $i \in\{1,2,3\}, Y_{i}(t)=0$ on $J=\left(\tau_{i}, b\right], a \leq \tau_{i}, Y_{i} \neq 0$ in $\left(a, \tau_{i}\right)$. If such τ_{i} do not exist, put $\tau_{i}=b$. According to Lemma $1 Y_{i+2}$ is constant and by the use of (13) and Lemma $1 Y_{i+1}(t) Y_{i+2}(t) \leq 0$ in J. Thus the statement is valid in $(\tau, b]$, $\tau=\min _{1 \leq i \leq 3} \tau_{i}$. Let $\tau>a$. Thus (13) holds at $t=\tau$ and $Y_{i} \neq 0, i=1,2,3$ in some left neighbourhood J_{1} of $t=\tau$. From this, according to Lemma 1, $Y_{1}(t) Y_{2}(t)<0$, $Y_{1}(t) Y_{3}(t)>0$ in J_{1}. We prove indirectly that these inequalities hold in (a, τ). Thus suppose that there exists $\tau_{1} \in(a, \tau)$ such that

$$
\begin{equation*}
Y_{1}\left(\tau_{1}\right)=0, \quad Y_{1}(t)>0, \quad Y_{2}(t) \leq 0 \quad \text { for } \quad t \in\left(\tau_{1}, \tau\right) \tag{21}
\end{equation*}
$$

In the other cases the proof is similar. From this and from Lemma $1 Y_{1}$ is nonincreasing in $\left(\tau_{1}, \tau\right)$ that contradicts to (21).
Lemma 5. Let $y:[c, d] \rightarrow R^{3}, c<d$ be a solution of (1),

$$
\left|y_{i}(t)\right|>0 \text { in }(c, d)
$$

(i) If c is the Z-point of y then y is of the Type II in some right neighbourhood of c.
(ii) If d is the Z-point of y then y is of the Type either I or V in some left neighbourhood of d.

Proof. (i) At first, we consider that y_{1} do not change its sign in some right neighbourhood J of $t=c$, e.g.

$$
\begin{equation*}
y_{1} \geq 0 \quad \text { in } \quad J . \tag{23}
\end{equation*}
$$

Then, by the use of Lemma 1, we have successively: Y_{i} is non-increasing, $Y_{i} \leq 0$, $i=3,2,1$ in J. From this and from (23) $y_{1} \equiv 0$ holds in J. As $y_{2}(c)=y_{3}(c)=0$, it follows from Lemma 1 that $y_{2} \equiv y_{3} \equiv 0$ in J. The contradiction to (22) proves that there exists a sequence $\left\{t_{k}^{1}\right\}, k=0,-1,-2, \ldots$ of zeros of y_{1} tending to c. The behaviour of y in $\left[t_{k}^{1}, t_{0}^{1}\right], k \in N$ is studied in Lemma 3 and thus y is of Type II in J.
(ii) If y is not of Type V in a left neighbourhood of $t=d$, then there exists $\tau, c \leq \tau<d$ such that (16) does not hold at $t=\tau$. With respect to (22) the behaviour of y in $[\tau, b)$ is studied by Lemma 3. As $y_{i}(d)=0, i=1,2,3$ Types IV, VI, VII are impossible and y must be of Type I in some left neighbourhood of $t=d$. The lemma has been proved.

Theorem 1. Let (10) be valid and let $y:(a, b) \rightarrow R^{3}$ be a non-trivial solution of (1).
(i) Let Z-points of y do not exist in (a, b). Then y is successively of Types $\{V$, $I I, I V, V I, V I I\}$ and $\{I, I V, V I, V I I\}$ in (a, b).
(ii) Let $\tau, \tau \in(a, b)$ be Z-point of y and (22) hold in (a, $\tau)$. Then y is either of the Type V in (a, τ) or there exists $\tau_{1}, a \leq \tau_{1}<\tau$ such that y is of Type I in $\left(\tau_{1}, \tau\right)$ and of Type $\{I I, I V, V, V I, V I I\}$ in $\left(a, \tau_{1}\right)$. Moreover, if y is of Type V in (a, τ) then the inequalities (13) are sharp.
(iii) Let $\tau, \tau_{1}, a<\tau<\tau_{1}<b$ be Z-points of y such that (22) holds in (τ, τ_{1}). Then y is of Type III in $\left(\tau, \tau_{1}\right)$.
(iv) Let $\tau, a<\tau<b$ be Z-point of y such that (22) holds in (τ, b). Then τ_{1}, $a<\tau_{1} \leq b$ exists such that y is of Type II in $\left(\tau, \tau_{1}\right)$ and of Type $\{I, I V, V I, V I I\}$ in $\left(\tau_{1}, b\right)$.
(v) Then there exists at most one maximal interval $J \subset(a, b)$ with Property V.

Proof. (i) According to the assumptions (22) holds for $t \in(a, b)$. Let $c \in(a, b)$. If the Cauchy initial conditions at $t=c$ do not fulfil (16), then by the use of Lemma $3 y$ is successively of Types V and \{I, IV, VI, VII $\}$ in $[c, b$). Let (16) be valid at c. Then y is either of the Type V in $[c, b)$, or $\tau, \tau>c$ exists such that $y_{1}(\tau) y_{2}(\tau) y_{3}(\tau)=0$. As (22) is valid at τ, the structure of y in $[\tau, b)$ is studied by Lemma 3 . Thus y is successively of Types V and \{I, IV, VI, VII $\}$ in $[c, b)$. The considerations about the structure of y in ($a, c]$ can be made similarly to Lemma 3 (use also Lemma 4).
(ii) The first statement follows from the proved part (i) and Lemma 5(ii). Let y be of Type V in (a, τ). We prove by the indirect proof that the inequalities (13) are sharp. Thus suppose that there exists a left neighbourhood J of τ such that $y_{1}(t)=0$ in J (see Remark 2, (ii), too). Then $Y_{2}(\tau)=Y_{3}(\tau)=0, Y_{2} \leq 0, Y_{3} \geq 0$
in J. By the use of Lemma 1 and from this, we have successively: $Y_{3} \equiv 0, Y_{2} \equiv 0$ in J. The contradiction to (22) proves this part.
(iii) The statement is a consequence of Lemmas 4 and 5 .
(iv) The conclusion follows directly from the proved part (i) and Lemma 5(i).
(v) The interval with Property V may exist only in the Type V. The result follows from this and from Remark 2, (ii).

Remark 4. If y is of Type $\{$ IV, VI, VII $\}$ in some right neighbourhood of a in the cases (i), (ii) of Theorem 1, then the number τ from the definition of these cases is equal to a.

Theoretically, an infinite number of Z-points may exist. The following theorem gives some conditions for the system of differential equations (2) under which Z-points do not exist. Thus it solves the problem of uniqueness of the Cauchy problem with zero conditions.

Theorem 2. Let $\varepsilon>0, \bar{\varepsilon}>0, K>0$ and y be a non-trivial solution of (2), (3), (10) defined in (a, b). Let continuons functions $a_{i}: R \times[0, \varepsilon]^{2} \rightarrow R_{+}, g_{i}:[0, \varepsilon] \rightarrow$ $R_{+}, i=1,2,3$ exist such that g_{i} are non-decreasing,

$$
\begin{equation*}
\left|f_{i}\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leqq a_{i}\left(t,\left|x_{i}\right|,\left|x_{i+2}\right|\right) g_{i}\left(\left|x_{i+1}\right|\right) \quad \text { in } \quad R \times[-\varepsilon, \varepsilon]^{3}, \quad i=1,2,3 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(\bar{\varepsilon} g_{2}\left(\bar{\varepsilon} g_{3}(z)\right)\right) \leq K z, \quad z \in[0, \varepsilon] \tag{25}
\end{equation*}
$$

hold. Then y has no Z-point in (a, b) and the statement of Theorem 1, (i) is valid.
Proof. On the contrary, suppose that Z-point $\tau \in(a, b)$ exists. Without loss of generality we can suppose that there exists a right neighbourhood of τ in which y is not trivial (for the left neighbourhood the proof is similar).

As $y_{i}(\tau)=0, i=1,2,3$ then an interval $J_{1}=[\tau, \tau+\delta], \delta>0$ exists such that

$$
\begin{equation*}
\left|y_{i}(t)\right| \leq \varepsilon, \quad t \in J_{1} . \tag{26}
\end{equation*}
$$

By the use of Lemma $1 y_{1}$ is not trivial in any right neighbourhood of τ. Let ε_{1} and $J=\left[\tau, \tau+\delta_{1}\right], 0<\delta_{1} \leq \delta$ be such that $0<\varepsilon_{1} \leq \bar{\varepsilon}$,

$$
\begin{equation*}
\varepsilon_{1} K<1, \quad \varepsilon_{1} \max _{\substack{0 \leq s \leq \varepsilon \\ j=1,2,3}} g_{j}(s) \leq \varepsilon, \quad \max _{j=1,2,3} \max _{J}^{0 \leq x_{1}, x_{2} \leq \varepsilon} a_{j}\left(t, x_{1}, x_{2}\right) d t \leq \varepsilon_{1} \tag{27}
\end{equation*}
$$

Then by the use of (24), (26)

$$
\times g_{i}\left(\max _{s \in J}\left|y_{i+1}(s)\right|\right), \quad t \in J, \quad i=1,2,3
$$

Thus

$$
\max _{s \in J}\left|y_{i}(s)\right| \leq \varepsilon_{1} g_{i}\left(\max _{s \in J}\left|y_{i+1}(s)\right|\right), \quad i=1,2,3
$$

From this and by the use of (25), (27) we get: $\nu=\max _{s \in J}\left|y_{1}(s)\right|>0$, $\nu \leq \varepsilon_{1} g_{1}\left(\varepsilon_{1} g_{2}\left(\varepsilon_{1} g_{3}(\nu)\right)\right) \leq \varepsilon_{1} g_{1}\left(\bar{\varepsilon} g_{2}\left(\bar{\varepsilon} g_{3}(\nu)\right)\right) \leq \varepsilon_{1} K \nu<\nu$. This contradiction proves the theorem.

The structure of solutions of (4), (5) (or (6)) can be described more precisely. Note that $\alpha_{1}=\alpha_{2}=1, \alpha_{3}=\alpha=-1$.

Theorem 3. Let $\alpha=-1, x:(a, b) \rightarrow R$ be a non-trivial solution of (4), (5).
(i) Let $\varepsilon>0, K>0$ and let continuous functions $d: R_{+} \times[0, \varepsilon]^{2} \rightarrow R_{+}$, $g:[0, \varepsilon] \rightarrow R_{+}$exist such that g is non-decreasing, $\left|f\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leq d\left(t,\left|x_{2}\right|\right.$, $\left.\left|x_{3}\right|\right) g\left(\left|x_{1}\right|\right), t \in R,\left|x_{i}\right| \leq \varepsilon, i=1,2,3$, and $g\left(x_{1}\right) \leq K x_{1}$ for $x_{1} \in[0, \varepsilon]$ hold. Let $y_{i}=L_{i-1} x, i=1,2,3$. Then x has no Z-point on (a, b) and the statement of Theorem 1, (i) is valid.
(ii) Let $\frac{a_{2}}{a_{1}} \in C^{1}(R)$. Then x has at most one Z-interval and one of the two following relations holds:
$1^{\circ} y$ is successively of Types $\{V, I I, I V, V I, V I I\}$ and $\{I, I V, V I, V I I\}$ in (a, b),
$2^{\circ} y$ is successively of Types V, VIII, II and $\{I, I V, V I, V I I\}$ in (a, b);
if y is not of Type VIII in some left neighbourdhood of b, then Types VIII and II are both present.

Proof. (i) It follows from (6) that the relation

$$
x(\tau)=x^{\prime}(\tau)=x^{\prime \prime}(\tau)=0 \Longleftrightarrow y_{i}(\tau)=0, \quad i=1,2,3
$$

holds. Put $g_{1}(x)=g_{2}(x)=x, g_{3} \equiv g$. From this the statement is a consequence of Theorem 2.
(ii) Let $\tau \in(a, b)$ be Z-point such ${ }_{i=1}^{3}\left|y_{i}(t)\right|>0$ in some left neighbourhood J of $t=\tau$. According to Lemma $5 y$ is either of Type I or of Type V . We prove by the indirect proof that it is of Type V. Thus suppose that y is of Type I in J. Let $J_{1}=[\alpha, \tau], J_{1} \subset \bar{J}$ be such interval that

Let us define for $t \in J_{1}$

$$
F(t)=-\quad{ }_{\alpha}^{t} \frac{d s}{a_{2}(s)} y_{3}(t) y_{1}(t)+\frac{1}{2} \frac{a_{2}(t)}{a_{1}(t)} \quad{ }_{\alpha}^{t} \frac{d s}{a_{2}(s)} y_{2}^{2}(t)+y_{1}(t) y_{2}(t)
$$

Then, by the use of (4), (5), (6) and (28) we have for $t \in J_{1}$

$$
F^{\prime}(t)=-{ }_{\alpha}^{t} \frac{d s}{a_{2}(s)} y_{3}^{\prime} y_{1}+\frac{3}{2 a_{1}(t)}+\frac{1}{2} \quad \frac{a_{2}(t)}{a_{1}(t)} \quad{ }_{\alpha}^{t} \frac{d s}{a_{2}(s)} y_{2}^{2}(t) \geq 0 .
$$

Thus F is non-decreasing. It follows from (11) that we have for an arbitrary zero $\beta=t_{k}^{1}$ of $y_{1}, \beta \in(\alpha, \tau)$

$$
F(\beta)=\frac{1}{2} \frac{a_{2}(\beta)}{a_{1}(\beta)} \quad \alpha \quad \frac{d s}{a_{2}(s)} y_{2}^{2}(\beta)>0, \quad F(\tau)=0
$$

and we receive the contradiction to F being non-decreasing. Thus y is of Type V in J and by use of Lemma $4 y$ is of Type V in (a, τ). From this there exists at most one Z-interval in (a, b) and the statement follows from Theorem 1.

Remark 5. (i) Let y be a solution of (4) of Type $\{I$, II, III, IV, VI, VII $\}$. Then it follows from Remark 3(i) that $t_{k}^{i}=\bar{t}_{k}^{i}, k \in N, i=1,2$ holds (see (11)). Moreover, if (9) is valid, then $t_{k}^{3}=\bar{t}_{k}^{3}$, too.
(ii) Theorem 1 generalizes and enlarges some results of [1]. Theorem 3 generalizes some results of [4] (for (4)) and of [2] (for the differential equation of the third order).
(iii) Theorem 2 generalizes the well-known condition for the non-existence of Z points, see $[2,5]$:

$$
\varepsilon>0, \quad\left|f_{i}\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leq d_{i}(t) \quad\left|x_{j}\right|, \quad t \in R, \quad\left|x_{i}\right| \leq \varepsilon, \quad i=1,2,3
$$

(iv) Some conditions are given for (4) in [6] under which solutions of Types VI, VII do not exist. The paper [3] contains conditions under which solutions of (2) of Types III, VI, VII, $b=\infty$ do not exist (so called Property A of (2)).
(v) Let $y:(a, b) \rightarrow R^{3}$ be non-continuable solution of (4), (5) and be of Type IV in some left neighbourhood of b. Then $b=\infty$ (use (6)).

3. Case $\alpha_{1} \alpha_{2} \alpha_{3}=1$

This chapter is devoted to the case

$$
\begin{equation*}
\alpha_{1} \alpha_{2} \alpha_{3}=1 \tag{29}
\end{equation*}
$$

The results will be only given. The proofs are similar to Chapter 2, or we can use the transformation of the independent variable $T=-t, t \in(a, b), y(t)=\bar{y}(T)$. Then (1) is transformed into $-\alpha_{i} \bar{y}_{i}^{\prime}(T) \bar{y}_{i+1}(T) \geq 0, \bar{y}_{i+1}(T)=0 \Rightarrow \bar{y}_{i}^{\prime}(T)=0$, $i=1,2,3, T \in(-b,-a)$. Thus the system has the same form as (1), the formula (10) is transformed into (29). This transformation conserves zeros, Z-points and Z-intervals.
Let us consider the following types of solutions of (1). Let $y: J=(c, d) \rightarrow R^{3}$.

Type I. Sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{i}\right\}, i=1,2,3, k=k_{i}, k_{i}-1, k_{i}-2, \ldots$ exist such that $k_{1}=1, k_{2} \in\{0,1\}, k_{3} \in\left\{0, k_{2}\right\}, t_{k}^{i} \in J, \lim _{k \rightarrow-\infty} t_{k}^{i}=c$ and

$$
\begin{align*}
& \bar{t}_{k-1}^{1}<t_{k}^{2} \leq \bar{t}_{k}^{2}<t_{k}^{3} \leq \bar{t}_{k}^{3}<t_{k}^{1} \leq \bar{t}_{k}^{1}, \\
& Y_{i}(t)=0 \quad \text { for } \quad t \in\left[t_{k}^{i}, \bar{t}_{k}^{i}\right], \quad Y_{i}(t) \neq 0 \quad \text { for } \quad t \in\left[t_{k}^{i}, \bar{t}_{k}^{i}\right], \\
& (-1)^{j-1} Y_{j}(t) Y_{1}(t)>0 \quad \text { for } \quad t \in\left(\bar{t}_{k-1}^{1}, t_{k}^{j}\right) \tag{30}\\
& <0 \text { for } t \in\left(\vec{t}_{k}^{j}, t_{k}^{1}\right), \\
& j=2,3 ; \quad i=1,2,3, \quad \text { for all admissible } \quad k
\end{align*}
$$

holds. Moreover $\beta_{i} \gamma_{i}=-1$ where $\beta_{i}\left(\gamma_{i}\right)$ is sign Y_{i} in the interval $\left(\bar{t}_{k_{i-1}}^{i}, t_{k_{i}}^{i}\right)$ (in $\left.\left(\bar{t}_{k_{i}}^{i}, d\right)\right), i=1,2,3$.
Type II. Sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{i}\right\}, i=1,2,3, k=k_{i}, k_{i+1}, \ldots$ exist such that $k_{1}=1$, $k_{3} \in\{0,1\}, k_{2} \in\left\{0, k_{2}\right\}, t_{k}^{i} \in J, \lim _{k \rightarrow \infty} t_{k}^{i}=d$ and (30) hold. Moreover $\beta_{i} \gamma_{i}=-1$ where $\beta_{i}\left(\gamma_{i}\right)$ is $\operatorname{sign} Y_{i}$ in the interval $\left(c, t_{k_{i}}^{i}\right)$ (in $\left(\bar{t}_{k_{i}}^{i}, t_{k_{i+1}}^{i}\right)$; $i=1,2,3$.
Type III. Sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{i}\right\}, i=1,2,3, k \in Z$ exist such that $t_{k}^{i} \in J$, $\lim _{k \rightarrow-\infty} t_{k}^{i}=c, \lim _{k \rightarrow \infty} t_{k}^{i}=d$ and (30) holds for $k \in Z$.
Type IV. $\tau \leq d$ exists such that

$$
\begin{align*}
& Y_{i}, i \in\{1,2,3\} \text { has a finite number of } Z-\text { intervals }\left[t_{k}^{i}, \bar{t}_{k}^{i}\right] \text { in } \\
& (\tau, d),(30) \text { holds until } \tau<d \tag{31}
\end{align*}
$$

$\left|Y_{1}\right|,\left|Y_{2}\right|$ are non-increasing, $\left|Y_{3}\right|$ is non-decreasing and

$$
Y_{1}(t) Y_{2}(t)<0, \quad Y_{1}(t) Y_{3}(t) \geq 0 \quad \text { in } \quad(c, \tau)
$$

Type V. ${ }_{i=1}^{{ }^{3}}\left|y_{i}(t)\right|>0$ in $J ;\left|Y_{1}\right|,\left|Y_{2}\right|,\left|Y_{3}\right|$ are non-decreasing and

$$
Y_{1}(t) Y_{2}(t) \geq 0, \quad Y_{1}(t) Y_{3}(t) \geq 0, \quad Y_{2}(t) Y_{3}(t) \geq 0, \quad t \in J
$$

Type VI. There exists $\tau \leq d$ such that (31) holds; $\left|Y_{1}\right|,\left|Y_{3}\right|$ are non-increasing, $\left|Y_{2}\right|$ is non-decreasing and

$$
Y_{1}(t) Y_{2}(t) \leq 0, \quad Y_{1}(t) Y_{3}(t)<0 \quad \text { in } \quad(c, \tau)
$$

Type VII. There exists $\tau \leq d$ such that (31) holds; $\left|Y_{1}\right|$ is non-decreasing, $\left|Y_{2}\right|$, $\left|Y_{3}\right|$ are non-increasing and

$$
Y_{1}(t) Y_{2}(t) \geq 0, \quad Y_{2}(t) Y_{3}(t)<0 \quad \text { in } \quad(c, \tau)
$$

Type VIII. y is trivial in J.

Theorem 4. Let (29) be valid and let $y:(a, b) \rightarrow R^{3}$ be a non-trivial solution of (1).
(i) Let Z-points of y do not exist in (a, b). Then y is successively of Types $\{I$, $I V, V I, V I I\}$ and $\{I I, V, I V, V I, V I I\}$ in (a, b).
(ii) Let $\tau, \tau \in(a, b)$ be Z-point of y and (22) hold in (a, τ). Then $\tau_{1}, a \leq \tau_{1}<b$ exists such that y is of Type II in $\left(\tau_{1}, b\right)$ and of Type $\{I, I V, V I, V I I\}$ in $\left(a, \tau_{1}\right)$.
(iii) Let $\tau, \tau_{1}, a<\tau<\tau_{1}<b$ be Z-points of y such that (22) holds in $\left(\tau, \tau_{1}\right)$. Then y is of Type III in $\left(\tau, \tau_{1}\right)$.
(iv) Let $\tau, \tau \in(a, b)$ be Z-points of y and (22) hold in ($\tau, b)$. Then y is either of the Type V in (τ, b) or there exists $\tau_{1}, \tau<\tau_{1} \leq b$ such that y is of Type I in $\left(\tau, \tau_{1}\right)$ and of Type $\{I I, I V, V, V I, V I I\}$ in $\left(\tau_{1}, b\right)$.
(v) Then there exists at most one maximal interval $J \subset(a, b)$ with Property V.

Theorem 5. Let the assumptions of Theorem 2 be valid and at the same time the validity of (29) is supposed instead of (10). Then y has no Z-point on (a, b) and the statement of Theorem 4, (i) is valid.
Theorem 6. Let $\alpha=1, x:(a, b) \rightarrow R$ be a non-trivial solution of (4), (5).
(i) Let the assumptions of Theorem 3(i) be valid. Then x has no Z-point in (a, b) and the statement of Theorem 4, (i) holds.
(ii) Let $\frac{a_{2}}{a_{1}} \in C^{1}(R)$. Then x has at most one Z-interval and one of the two following relations holds:
$1^{\circ} y$ is successively of Types $\{I, I V, V I, V I I\}$ and $\{I I, I V, V, V I, V I I\}$ in (a, b). $2^{\circ} y$ is successively of Types $\{I, I V, V I, V I I\}, I I, V I I I$ and V in (a, b). If y is not of the Type VIII in some right neighbourhood of a, then Types II and VIII are both present.

Remark 6. Similar conclusions hold as in Remark 5.

References

[1] Bartušek, M., On Oscillatory Solutions of Differential Inequalities, Czech. Math. J., 42 (117) 1992, 45-52.
[2] Bartušek, M., Asymptotic Properties of Oscillatory Solutions of Differential equations of the N-th Order, Folia F. S. N. Univ. Brunensis Masarykianae, Masaryk University, Brno, 1993, 92 pp .
[3] Чантурия, Т. А., Об осчиллячионньх сеойстеах систем нелинейьхх обыжновенных дифференчальных ураенений, Тр. ин-та прикл. мат. Тбилисского ун-та, 16, 1983, 163-204.
[4] Došlá, Z., Bartušek, M., On Solutions of a Third Order Nonlinear Differential Equation, Nonlinear analysis (to appear).
[5] Кигурадзе, И. Т., Чантурия, Т. А., Асимптотические сеойстеа реиений неаетономных обыкновенных диффференииальных ураенений, Наука, Москва, 1990429 с.
[6] Švec, M., Oscillatory Properties of Solutions to a Differential Inclusion of Order n, Czech. Math. J., 42 (117) 1992, 35-43.

Miroslav Bartušek
Department of Mathematical Analysis
Faculty of Science Masaryk University
Janáčkovo nám. 2a, 66295 Brno, CZECH REPUBLIC

[^0]: 1991 Mathematics Subject Classification: 34C10, 34A40, 34C15.
 Key words and phrases: system of three differential equations, oscillatory solutions, nonoscillatory solutions, structure of solutions.

 Received May 14, 1993.

