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ON A MULTIPOINT BOUNDARY VALUE
PROBLEM FOR LINEAR ORDINARY
DIFFERENTIAL EQUATIONS WITH SINGULARITIES

G. D. TSKHOVREBADZE

ABSTRACT. A criterion for the unique solvability of and sufficient conditions for
the correctness of the modified Vallée-Poussin problem are established for the linear
ordinary differential equations with singularities.

INTRODUCTION

This paper is devoted to the investigation of a certain modification of the Vallée-
Poussin’s boundary value problem, and i1t seems natural to explain in first place
which modification is meant and which factors have led to it.

Let us consider the linear ordinary differential equation

(1) W= (Y 4 g(1),

where n > 2 is a natural number, pi,...,p;, ¢ are continuous functions on the
m

segment [a,b]. Let me {2,....n},n; €{l,...,n=1} (i =1,...,m), > n; = n,
i=1

—o<a=t < <ty =b<+oc0o.

As is well-known, the classical Vallée-Poussin’s boundary value problem is for-
mulated as follows: Find a solution of the differential equation (1) satisfying the
conditions

(21) WD) =0 (k=1,...,n5i=1,...,m).

The solution, naturally, is sought for in the class of n-times continuously differen-
tiable functions on the segment [a, b].
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There are a lot of works devoted to the investigation of the Vallée-Poussin’s
boundary value problem in this classical formulation (see, for example, [1] and
References from [3]).

This problem has also been studied with sufficient thoroughness in the case
when the coefficients of the equation (1) have singularities at the points t1, ..., %5
(see, for example, [2,3,5]). However, in all works devoted to the study of the Vallée-
Poussin’s problem it is assumed that

b m
() [—armmi— e T 0] d < 400 (k=1,0),
@ i=1
where
ng—k+1 for k<ny;
Nigp = ;
0 for k> n;
and ,
/ (t —a)* ™7 — )" ()| dt < 400
This assumption is not casual. The matter is that if functions py, (k=1,...,0)

have singularities of order n — ny 4+ ny1; and n — n,, + ny, at the points @ and b,
respectively (in particular, the function p; has singularities of order n at the points
a and b), then Problem (1), (21) is not, generally speaking, uniquely solvable even
in the simplest case. For example, given boundary conditions (21), the equation

(-5

(n)y -\ "2/ 7
u i—ar u

has an infinite number of solutions for n; = 1 and sufficiently small § > 0.
Therefore, to provide the solution uniqueness, we have to introduce an addi-
tional and, of course, natural condition such as, for example,

(22) sup {(t — )71 "M b — )TV a <t < b < 40,

where Ay €]ny — 1, n1[, Ay E]nm — 1, nm[-

This condition is natural because if the condition (*) is fulfilled, than (2;),
yields (22), i.e. Problem (1), (21), (22) coincides with the Vallée-Poussin’s prob-
lem. However, if the condition (*) is not fulfilled, than, as follows from the above
example, this is not so.

Problem (1), (21), (22) is the generalization of the Vallée-Poussin’s boundary
value problem and has not yet been studied with sufficient completeness. Here an
attempt is made to fill up somehow this gap. In particular, the conditions are estab-
lished, guaranteeing Problem (1), (21), (22) to be Fredholmian and its solution to
be stable with respect to integrally small perturbations of the coefficients of equa-
tion (1). It is assumed that the functions py : I, = R (k= 1,...,1), ¢ :]a,b[— R be
locally integrable on I,, and ]a, b[, respectively, where I,,, = [a, b]\{t1,...,tm}, and
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the condition (*) is not fulfilled. Note that the solution of Problem (1), (21), (22)
is sought for in the class of functions u :]a, bj[— R absolutely continuous together
with u(®) (k=1,...,n — 1) inside ]a, b[.1)

The following notation will be used throughout this paper:

m—
Ty, (1) = (t — @y~ FHL(h — g)re=kil H = [ D

m—1
Trn(t) = (t—a)" (b —t"F T 1t =t
i=2

v M) = k=1=X)...(0=2=X)] (k=1,...,0—=1,vg()) =1;

L([a,b];R) is a set of Lebesgue-integrable functions ¢ : [a,b] — R; Ligc(]a, b} R)
is a set of functions ¢ :]a,b[— R which are Lebesgue-integrable inside ]a, b[;
Ln_1-xn—1-x,(Ja,b[;R) is a set of measurable functions ¢ :]a, b[— R such that

|g(')|n—1—)\1,n—1—)\2 —

a)n—l—kl( n 1—-Xo

= [ d : t<b .
sup{( /ﬁ_ 7' a<t< }<—|—oo

1. LEMMAS ON A PRIORI ESTIMATES

In this section we consider Problem

(1) W—Zpk yul = 4 g(1),

(21) <k—1>( ;) =0 (k:l,...,ni;izl,...,m),
(22) sup {(t —a)' "M (b — )TV a < t < b < 400,

where Ay €]ni — L,na[, Ao €lnm — 1, nnl, ¢ € Lp_1-x,, no1-x.(Ja, 0 R) and

5 ija, b[— R (k=1,...,]) are measurable functions satisfying inequalities
(3) p1r(t) <pp(t) < pap(t) for a<t<b (k=1,...0).
On imposing certain restrictions on the vector function (p11, ..., p1; p21, - - -, Pai),

we obtain an a priori estimate of the solution of Problem (1), (21), (22) which is
unique for the considered set of coefficients.
Before formulating the main lemma, some definitions will be given.

Dj.e., on each segment Contalned in Ja,b[.
2in the case m = 2[[725 |t — t;|™i* denotes unity.
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Definition 1. Let ng € {1,...,n — 1} and A €]ng — 1, no[. The vector function
(h1,...,h;) with measurable components hy, :]a,b[— R (k = 1,...,1) will be said

to belong to the set S*(a,b;n,ng; A) [S‘ (a,b;n, no; /\)] if there exists o €]a, b[
such that we have the inequality

{—a)—1-A ! 1
limsup( @)

D R2EY [ = <

k

~ (b—t)y—t—* l 1 ! n—1 A—k+1
[tlgrzsup 1) ;Vkl(/\),/a(t_T) (b— T)MFt |hk(7')|d7'<1]

in the case [ € {ng+ 1,...,n} and the inequality

(t —a)l=1=* y
(n—ng—1l(ng = 1)!

lim sup
t—a

l t a
X Z Vkll(/\ /a (t— 5)"”_1/8 (r— 5)"_"”_1(7' — a)>‘_k+1|hk(7')| drds <1

[1. (b—t)i-1=* y
imsu
t—b p(n—no—l)!(no—l)!

l

1 ’ l/s 1 Ak
X —_— s—t)"o~ s— 1) T (p — )R h () drds < 1
Dol A A K Gl R UG )
in the case [ € {1,... ng}.

Definition 2. Let

(4) Tr e (IPik() € Lioc(Ja, B[R) (G =1,2; k=1,...,1),
p1r(t) < pop(t) fora<t<b (k=1,...,0),
(p1,...,p}) € S+(a,b;n,n1;/\1)OS_(a,b;n,nm;/\z),

where pi(t) = max{|p1x(t)|, [p2x(®)|} (k = 1,...,1) and moreover, under the
boundary conditions (21), (22) the differential equation

l
(1o) ul™ =3 " pp(t)ult =Y
k=1

does not have a nontrivial solution no matter what measurable functions pj :
la,b[— R (k =1,...,1), satisfying inequalities (3), are. Then the vector function
(P11, - -, 115 P21y - - -, p2) will be said to belong to the class

V(tl, .. .,tm;nl, ce ey Ny Al,Az).
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Lemma 1. Let

(5) (P11, -1 P2y - po1) EVI(E, oot N, s A, Ag) .

Then there exists a positive number py such that for any

¢ € Ln_1-xn—1-x,(Ja,b;R) and measurable functions py :a,b[— R (k =
1,...,0), satisfying inequalities (3), an arbitrary solution u of Problem (1), (2,),
(25) admits the estimate

(6) [ =D @)] < pockagre()]2()n—1-21n—1-a,
fora<t<b (k=1,...,1).

Proof. By condition (5) there are numbers o €la,taf, 8 €ltm-1,b[ and n €]0, 1]
such that
(7) a—a<l, b-—pg<1

and the functions pj (t) = max{|p1x(?)|, [p2x(t)|} (k =1,...,1) satisty the inequal-
ities

(t _ a)l—l—)q y
(n—n1—Dl(ng =!

% t—s)™ =) — )M T F (T drds <
kal(/h)/a( ) \ ( ) ( ) pi(7) <7

k=1

(81)

fora<t<ea, le{l,....,ni},

(t—a)—'n l 1 “ n—1 Akl
& Zm/ (r =)'~ r = ) () dr <

fora<t<a, le{n+1,...,n},

(b_t)l-l-)\Q y
(n —nm — Dl(ng, = D!
(91)
! 1 b s
X s—t "m_l/ s —7)r T p — ATkl (Y dr ds < g
i A Al AU U Rt U
for <t <b, le{l,...;nm},
11— l t
(b—t)mtn 1 -1 Ao—k+1, *
(9) t—m)""(b—T7)" pi(r)dr <n
(n=D! = wu) /s k

for p<t<b, le{n,+1,...,n}.
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Let us assume that the Lemma is not true. Then for each j there exist ¢; €
Ln_1-x n—1-x,(Ja, b[;R), measurable functions py; :Ja,b[— R(k =1,...,) satis-
fying inequalities

(10) plk(t) < ﬁkj(t) < pzk(t) fora<t<b (]C =1,. ..,l),

and solution u; of the differential equation

{
(11) W™ =3 e (ul* Y g5 (1)
k=1

satisfying the boundary conditions (21), (22) such that

(12) vii + 705 + 725 > G145 (Hln-1-ain-1-xs
where
{ (k 1)( )|
(131) 71]_sup{zak>\>\ a<t§a},
Juf ”( I
13 = 4 a<it<
(132) Yoj = Vralmax{ Z ) a<t< 5} ;
{ (k 1) |
(133) 'yz]_sup{ZUkAA ﬁ§t<b}.
It is assumed for each j that
(14) 7 =max{ Y} [l V1) ra <t <5},
k=1

1 f ;=0
(15) p={l o

v; forvy; >0

(T
(16) yt) =49

7
By (22), (11) and (16) we have
(17) r]_sup{ ll>\1|(l 1)()|a<t§0z}<—|—oo
and

: 9; (1)

(18) Z it ) + =

k= 7
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Ifl e {l,...,n1}, then by virtue of (2;) and (17) we have

(19) V) < (t—a)™ ™ for a<t<a (k=1,...,1).

~ (A1)

Taking (7), (10) and (19) into account, from (18) we find

) < Ly

- Ak
J

where ¢ = 2[(bb__;)z]”_1_>‘2. Taking (21) and the last inequality into account, we

easily obtain

(n—mny— {)!(nl - D!

X

3 o
/ (t— 5)"1_1/ (r— 5)"_"1_1(7' — a)>‘1_k+1p2(7') dr ds+

= 9; ()]
7;‘(711 _ Al)(Al —ny + 1) q; n—1-A1,n—1-Xs
for a<t<a.

Hence by virtue of (7), (8;) we have

Vi C1
Ty S ]’f‘+r]77+'y]’f‘(n1—/\1)(/\1—n1—|—1) |QJ()|n 1-A1,n—1-=X2
Therefore
C2
SRS CRa OIS
75
where

— €1
=(1-n"|1+ :
“2 ( 77) [ (77,1 — /\1)(A1 —ny + 1) ]
Using this estimate, from (19) we obtain

C,

(20) 01 < 22 (35 + 10Ol 1120 ) Teas(0)
J

for a<t<a (k=1,...,0),
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where
)Al—k+1

!
—Z e sup{ 'a<t<a}
vri(Ar) Tra(l) -

k=1

Ifle{ni +1,... n}, then by virtue of (7) and (17) we have

21 k=D < (224 T3 PR
(21) ol (e hg) -0

for a<t<a (k=ni1+1,...,0).

Hence on account of (21) we find

22 (k=1 )| < Vi S (- a)h R
(22) |UJ ) < [7;(/\1—711-1-1)—1_”161(’\1)]( Y

for a<t<a (k=1,...,n1).

Using inequalities (7), (10), (21) and (22), from (18) we obtain

D0l < [1+7A1_il+12/ta<r—t>"-’< () dr ) Lo

J
l a
Y s | =0 e = ) e

1

k=
+7_*|QJ( Mn—1-x1,n-1-2,(t — a)’\l_l"'l for a <t < a.
J

Hence by (8;) and (17) we have

(t—a) "M D)) <

€1
< o [’Vj + |Qj(')|n—1—)\1,n—1—>\2] +ar; for a<t<aw
J

and
€1
i< (I Oboxnaon )
where
n—1[)!

5= 1

¢1 +Cl+/\1_n1+121/kl
Therefore

C2
ri < = (5 H 1Ol 1am-1o0 )
7
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where B
~ €1
¢y = .
2= 10 7
By virtue of this inequality (21) and (22) again yield estimates (20), where
1 ~ Ar—k+1
C2 )
+ su {7:a<t§a}.
Z:: [/\1 —ni+1 Vkl(/\l) ] P Ok >\1,>\2(t)
It will be shown quite similarly that
(23) CRCIEE= (RN VIO MU SN0
J
for g<t<b (k=1,...,1),
where ¢4 1s a positive constant independent of j and k.
By (21), (14) and (16)
@0 < Lfor a<t<f (k=1,...,n)
J
and i 5
-1 ;
W V)] < Py—iak(t) for a<t<p@ (k=1,...0)
J
where
[t —to|2r for a <t < latls
or(t) = for %gtg%(i:&...,m—%,”
[t —tmog|Pmmik for fmstfimst <t < g
Therefore
1) OIS Dajoia ) for a<ti<p (k=1,...0),
J
where

a<t<p).

Cy = VI'alHlaX{ E

Using (20), (23) and (24), from (131)—(133) we find

‘O, ho (T

713 < o (% + 16O h-1-xm-1-00)

12 <o (210 Olnm1oain-1o0 )
Yoj < coj,

1) In the case m = 2 it is assumed that op(t) =1 (k=1,...,1).

179
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where

o = lmaX{C3, cq, 65} .

Inequality (12) therefore yields

— 2e
5> L oaun-1oas
Therefore
(T
(25) =20 w0 =" for > a1,
j
(26) maX{Z|v§k_1)(t)|: agtgﬁ} =1 for j>[2¢]+1,
’ 4 (1)
(27) Z YD)+ 152 for j > [2e0] + 1
P %
and
(28) |QJ(')|n—1—>\1,n—1—>\2 < - 3eo for j > [2e0] + 1.
Vi J—2¢

By virtue of (25) and (28) we obtain from (20), (23) and (24)
(29) T < Copppna(t) fora <t <b (k=1,...,0j > [2c] +2),

where

¢ = eo(1+ 3eg) .

+oo
It will be shown now that the sequences [v](»k_l)] (k = 1,...,n) are
=1

uniformly bounded and equicontinuous inside ]a, b[. For this we shall need in the
first place the estimate of the integral

/t —qi(T) dr.
s Y

Let ag and bg be arbitrary points from the intervals Ja, o and |8, b[, respectively.
It is easy to see that

< ’Vj(ao _ a)n—l—xl(b _ bo)n—l—)\2 |‘Jj(')|n—1—>\1,n—1—>\z

for ap<s, t<by (j>[2c0]+1).
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From which by virtue of (28) we have

/t (1)
s Vi

p(ao, bo)

(30) ;

< for ag <s, t<by (j>2[2c]+2),

where

1260
bg) = (M1 asne1—n, -
p(ClOa 0) (ao — a)n_l_)\l(b — bo)n_l_)\2 |q]( )| 1-A,n—1-2Az

We introduce the functions

l

) =Y pior (),

k=1

“ t
_(t_a)%_xd-/t [ (r)dr, f;(t):(b—tc)%*'/ﬁ Fr(r)dr,

1260 1260
o= — Cop = —————— .
01 (b— a)r—1-22" 02 (B —a)yr—1-M

Using (4) and (5) we have
f* S Lloc(]aa b[aR)a

/ ds/ (r—s)""™M=2f5(r)dr < 400 for 1€{1,...,n1}
and ,

/ ds/ (s — )" =25 (r)dr < oo forle {1,....nn}.

8 8
Therefore, taking into account conditions (10), (26), (29), (30), also the equalities

@)y =0 (k=1,..,01), o0 =0 (k=1 ),

from (27) we obtain

3
(31) o "0 < 1+ plao, bo) + /f*(r)dq—
for ap <t<by (j>2[2e0] +2),
3
e n- * ,b
(32) ") = ") < / f(ﬂdww

for ag <s, t <by (j > 2[2e0] +2),
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)] < (- ay i

(291) —I—/at(t—s)”l_k/sa(r—5)”_”1_2ff(7') drds

fora<t<a, le{l,...;nm} (k=1,...n1),

0] < (b=t

b s
(292) —I—/t (s—t)"’"_k/ﬁ (s — )" w2 (1) dr ds
for p<t<bd, le{l,...;nn} (k=1...nn).

From (26), (31) and (32) it follows that on the interval [ag,bo] sequences
+oo
[v§k—1)] (k=1,...,n) are uniformly bounded and equicontinuous. There-
ji=1
fore, since ap and by are arbitrary, by virtue of the Arzela-Askoli lemma 1t can be
assumed without loss of generality that they converge uniformly inside ]a, b[.
Let
u(t) = 'lifl_n vi(t) fora<t<b.
J—T00

Then

(33) u D)y = lim oV fora<t<b (k=1,...n).

j—+oo J

On the other hand, on account of (26), (29), (29;) and (292) we have

(34) max{2|u(k_1)(t)|:agtgﬁ}:l,
k=1
(35) [P V()] < Fopa,an(t) fora<t<b (k=1,...0),

¥ V()] < (¢ = @) T

(351) —1—/(;(15—5)"1_k/sa(r—5)”_”1_2ff(7-) drds

fora<t<a, le{l,....on} (k=1,...,n1),

u" D)) < (b =1y

b s
(359) +/¢ (s—t)”m_k/ﬁ (s — )" w2 (1) dr ds
forg<t<b, le{l,...;nn} (k=1,... nn).
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Our aim is to prove that u is a solution of equation (1lg), where py: Ja, bf[— R
(k=1,...,1) are the measurable functions satisfying inequalities (3).
It is assumed for each i € {1,...,m — 1} that

it i
s; = 5
and .
Pikj(t)z/ ﬁkj(T)dT fOI'tZ'<t<tZ'+1 (k:l,...,l).
+ oo
From (4) and (10) it follows that sequence [Pikj] (k =1,...,0) are uni-
ji=1

formly bounded and equicontinuous inside ]¢;,¢;41[. Therefore, by the Arzela-
Askoli lemma it can be assumed without loss of generality that these sequences
converge uniformly inside ]¢;, t;41][.
Let
Pz’ (t) = hHl Pik]'(t).

Jj—4oo

Passing to the limit in the inequality

+ 3
[ petrydr < P = i) < [ palmyar forti<s <t <t

when j — +0o0, we obtain

t t
/ p1r(T)dr < Pip(t) — Pip(s) < / par(T)dr for t; <s <t <tiqq1,

from which it is clear that P are absolutely continuous inside J¢;,#;41[ and
pir(t) < PL(t) < par(t) fort; <t <tipzn (k=1,...,0).

Therefore the functions

(36) pr(t) = PL(t) fort; <t<tipyr,i=1,...m—-1 (k=1,....0)

satisfy inequalities (3).
Due to (30) and (36) it is clear that

t

t t
lim [)kj(r)dT:/ pe(rydr (k=1,...0, tim [ 47 _g
J=too 55 j=too S Y

uniformly inside Jt;,¢;41[. By virtue of Theorem 1.2 from Ref. [4], from these
conditions and equalities (33) it follows that « is a solution of equation (1p) on
each interval Jt;,t;41[ (i = 1,...,m — 1). Since, besides, u € C*~!(]a, b[; R) and

loc

estimates (35), (351) and (352) are fulfilled, it is obvious that u is a solution of
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Problem (1g), (21), (22). Therefore by condition (5) u(¢) = 0. But this contradicts
the equality (34). The contradiction obtained proves the lemma. a

It 1s assumed for each natural number 7 that

[t = =ty + | forje {2, m—1)
85 = [a,a—i— %—:a] for j=1 ,
[b — b_g’;“l , b] for j=m

(37) 8 = 6 8

Lemma 2. Let condition (5) be fulfilled. Then there exists a natural number iy
such that for i > g

(P114y - - s P11 D214y - - 5 Do) €E V(1,0 tms e, o um AL, Aa)
where

p1ri(t) = p1r(t), pari(t) = par(t) for t € [a, b]\é;,

(38) piri(t) = =pix(®)], pori(t) = |p2x(t)]  fort € é;.

Proof. In view of (38)

(39 max{pwO] oD} =pi(t) (=1, i=1,2,..),
where
pi() = max{ [pix()], [p2e (1)}

Therefore by virtue of (5) to prove the lemma it remains for us to verify the
existence of a natural number ¢y such that for any ¢ > ¢y and measurable functions
pr :Ja, b[— R (k= 1,...,]) satisfying inequalities

plki(t) < pk(t) < kai(t) fora<t<b (]C = 1, .. ,l)

Problem (1g), (21), (22) is solved only trivially.
Let us assume the opposite. Then for each natural j there exists a natural
number 4; and measurable functions pg;: Ja,b[— R (k =1,...,1) such that

(40) plkij(t) < ]N)k]'(t) < kaij(t) fora<t<b (]C =1,. ,l)

and the equation

!
(41) u) = Zﬁkj(t)u(k_l)
k=1
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has a nontrivial solution v; satisfying the condition
l (k 1)(t)|

(42) Vralmax{ Z

We choose o €]a, ta], 8 €ltm-1,b[ and n €]0, 1[ such that inequalities (7), (8;), (%)
be fulfilled, and assume

:a<t<b}:1.
“ Ok, 2o (1

[ >|
= t <
i = SP { Z Tk ax,ns (1 ¢e<t= a} ’
o 1>< ol
= 4 a<t<
Yoj = Vralmax{ Z () a<t< 6} ,
: <’“ 1><t>|
= <t<by.
725 = SUP { Z Th a0 (1 st }
Then by (42) we have
(43) Y+ 12> 1 (j=1,2,...).
Let
7 = max{ 3 V@) a <t <8},
k=1
y 1 forv; =0
(44) 3 = { j
v; fory; >0
vi ()
ui(t) = ==~
K

Repeating the reasoning used in proving Lemma 1, we shall prove that there
exists a natural number jo and a positive constant c¢q such that

Yoj < covis v < covis Y25 <coyy, forj>jo.

On account of these inequalities it follows from (41), (43) and (44) that

(45)  max{ D"Vl a<t<pf =1 (G=jodo+1,..),
k=1

ulF ()] < 300k a4 (2)

(46) o
fora<t<d (k=1,...,0; j=jo,jo+1,...),
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(47) W@ < () fora<t<b (j=jodo+1,...),

[l D) < (¢ - ay

(461) —|—/a (t—s)"=F [ (r—s)""™mTLf(r) drds

fora<t<ea, le{l,...;nm} (k=1,...,n1),

WF @] < (b -ty mrE Ly

b
(462) —1—/ (s — t)"m_k/ (s — )"~ m= (1) drds
i 8
for p<t<b, le{l,... onntk=1,...,nm),
where l
F7(t) =3¢ Y pi(t)or a, ai(D)
k=1
: (k=1)) +°°
From (46) and (47) it follows that sequences [uj ] (k=1,... n)are
ji=1

uniformly bounded and equicontinuous inside Ja,b[. It can be assumed without
loss of generality that these sequences converge uniformly inside ]a, b[.
Let
u(t) = lim w;(t).
Jj—4oo
Then
(48) uF=1(t) = Lim W@ (k=1,..n).
J—T00
Therefore by (45) equality (34) will be fulfilled.
In view of (38) and (40) it can be assumed without loss of generality that for
any i € {1,...,m—1}

¢ ¢
(49) ' li{l_n Prj(T)dT = / pr(T)dr

J—T00 S5 54
uniformly inside J¢;, ¢;41[, where

t, .
s = i+ tz+1 ’
2

and pp:Ja,bf[— R (k = 1,...,!) are measurable functions satisfying inequalities

(3).

By Theorem 1.2 from Ref. [4] it follows from conditions (46), (461), (462), (48)
and (49) that u is a solution of Problem (1p), (21), (22). Therefore in view of (5)
u(t) = 0, which contradicts (34). The lemma is proved. d
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Lemma 3. Let condition (5) be fulfilled. Then there exist a positive number pg
and a natural number iy such that for any i > in, ¢ € Ln_1-x, n—1-x,(Ja, 0} R)

and measurable functions py: Ja,b[— R (k = 1,...,1), satisfying the conditions
(50) p1k(t) < pr(t) < poax(t) fort € [a,b]\é;,
pr(t) =0 forteé;, (k=1,...,0),

an arbitrary solution of Problem (1), (21), (22) admits estimate (6).
Proof. By virtue of Lemma 2 there exists a natural number ¢y such that
(P11igy -+ > Pllio; P21igs - - - P2tia) € VT, tms 1, oo s A1, Ag)

where p1ps, and popi, are functions given by (38).
On the other hand, by virtue of (50) we have inequalities

plki(t) S pk(t) S kai(t) fora <t <b (]C = 1, .. .,l),

for each ¢ > ¢;p. If we now use Lemma 1, then the validity of Lemma 3 becomes
obvious. d

2. UNIQUE SOLVABILITY OF PROBLEM (1), (21), (22)

In this section we are going to establish the conditions for Problem (1), (2),
(22) to be Fredholmian when it is assumed that

(51) Pk(')o'k)\l,)q(') € LIOC(]a’ b[;R) (k =1... l)’
(52) 4 € Lp_1-a,n—1-x.(Ja, b[;IR) .

In particular, we have

Theorem 1. Let
(53) (p1,- -, p1) € ST (a,b;n,n1; A1) NS (a,b;n, nm; Ag) .

Then for Problem (1), (21), (22) to be uniquely solvable, it is necessary and suffi-
cient that the corresponding homogeneous Problem (1y), (21), (22) have the trivial
solution only.

Proof. Since the necessity is obvious, we shall prove the sufficiency. Let

From condition (53) and the fact that the homogeneous Problem (1g), (21), (22)
has no nontrivial solution it follows that

(P11s-- 021, -, p20) E V(o tms N1, -, s A, Ag)
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By virtue of Lemma 3 there exists a natural number ¢y such that for any 7 > i
the equation

{
(54) u = ppa(yutt Y,
k=1

where

pr(t) fort € [a,b]\6; V)
0 for t € 6;

bl

(53) b0 = {

has no nontrivial solution, satisfying the boundary conditions (21), in the class
C"~Y([a, b]; R). Therefore by the well-known theorem on the unique solvability of
the general boundary value problem? for each i > 4y the equation

l
(56) ut =3 pu* Y i),
k=1

where

q(t) fort e [a + b?jia,b— b?jia]
(57) qi(t) =

0 fort € [a,b]\[a +zap— b

3 3 ]

has the unique solution u; € é’”_l([a, b]; k), satisfying the boundary conditions
(21). As for conditions (22) they automatically follow from (21), since

u; € C"Y([a, b]; R).

By Lemma 3 there exists a positive number py such that

WD) < pogiagae (O] () lnm1=asn—1-ra
fora<t<dbd (k=1,...,0;i>1).

However, in view of (57)
0Ol 1oaummoa < (20757 2772 ) g ()b a i

Therefore

(58) ud* 0] < P10k A r (D10 n—1-2un-1-1,
fora<t<dbd (k=1,...,0;i>1),

1) §; is a set determined by (37)
2) gee, e.g., Ref. [4], Theorem 1.1
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where
p1 = po [277,—1—)\1 _|_2n—1—)\2] )

Besides, for some « €]a, ts[, 8 €Jtm—1,b[ such that

a—a<l, b—pg<l

we have
‘ / (r— t)”_”l_lqi(r) dr‘ <alt- a)’\l_”l|f](')|n—1—,\1,n—1—,\2
t
fora<t<a,
t
‘/ (t— T)”_"m_lqi(r) dr‘ < ea(b— t)>‘2_nm|Q(')|n—1—>\1,n—1—>\2
B
for g <t < b,
where
2n—)\1 2n—)\2 2n—)\1 2n—)\2
= ape = T T g

ny— A Nm — A2

and also by virtue of (53) we have
/ ds / (r—s)" "= (r)dr < 400 forle {l,...,n},

b s
/ ds/ (s — )"l (r)dr < 400 for L€ {1,... ny},
8 8

where
!

F @) = prla()n1-nyn-1-2s D [Pe(®)]orx0 25(1)

k=1
and f*(t) € Lisc(]a, b[;R). Therefore, taking into account (55), (57) (58) and the
equalities

W@ =0 (k=1 0, oG =0 (k=1 ),

from (56) we find

n

WO < (¢ — a7 STl T )+

j=ni+1
13 a
(581) —|—/ (t—g)n1—k/ (T—S)”—nl—lf*(T) dr ds+
C1 Ai—k+1
T | T S ¢
+/\1_n1+1|q()| 1-A,n-1 >\2( a)

fora<t<a, le{l,...;nm} (k=1,...n1),
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n

O N D DI R Ol

j=nm+1
b s
(582) +/ (S—t)”m—k/ (S—T)n_nm_lf*(T)deS—i—
t 8
€2 Ao—k+1
O e toane 1o (b — )2
+/\2—nm—|—1|q()| 1-Ain—1-xs (b — 1)

for f<t<b, le{l,...;nn}t (k=1,... nn),

!
(59) ™ \Z Jel D0 + at)] < 70 + la0)]
k=
Proceeding from (52), (58) and (59), by the Arzela-Askoli lemmait can be assumed
+oo
without loss of generality that sequences [ugk_l)] (k =1,...,n) converge
i=1
uniformly inside Ja, b[.
Let
u(t) = 'hin ui(t) fora<t<b.
Then
(60) u D) = lim W) fora<t<b (k=1,...n).

Therefore by virtue of (58), (581) and (582)
)

(61) =D (@) < proeoag e (O12() ln-1-r1n-1-2a
for a<t<b (k=1,...,1),

n

WD < (= ay T Y ul ()]

j=ni+1
13 a
(611) —I-/ (t—s)"l_k/ (r—s)"~" =L (7)) dr ds+
€1 A—k+1
g retoapn—1on, (t — @)™
+A1_n1+1|Q()| 1-aun—1-xq(t — @)

fora<t<a,le{l,...;m}(k=1,...,n1),

n

I O IR R K W T (O]

j=nm+1
b s
(612) +/ (s—t)”m—k/ (S_T)n_nm_lf*(T)deS
! 6
c —
+ﬁ|Q( )|”—1—/\1,n—1_,\2(b—t)’\2 k+1

for g<t<b le{l,...;onptk=1,...,nm).
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On the other hand, for any s, ¢ €]a, b[ (56) yield

W) — s /S(Zp’“ JuE D) 4 au(r) ) dr

Taking (55), (57)-(59) also (60) into account and using the Lebesgue theorem on
the limit passage under the integral sign, from the latter equality we obtain

WD) — = (s / [Zpk Jult=D(r) +g(r)) dr.

Hence, with (61), (611) and (612) taken into account, we conclude that u is the
solution of Problem (1), (21), (22).

The solution uniqueness of this problem follows from the unique solvability of
the homogeneous Problem (1), (21), (22). The Theorem is proved. d

Corollary 1. Let

(62) pi(t) = 6 _g;’“)ff_)m G _gi’;ff_)m Fpor(t) (k=1,...0),
where
(63) ok n()por(-) € L([a,b];R) (k=1,...0),
and g1, ga2r : [a, 0] — R (k = 1,...,1) are continuous functions satisfying the
inequalities
l lg91x(a l |92 (b)
(64) ; m Z:: m <1.

Then for Problem (1), (21), (22) to be uniquely solvable it is necessary and suffi-
cient that the corresponding homogeneous Problem (1y), (21), (22) have the trivial
solution only.

Proof. By Theorem 1 to prove the corollary it suffices to verify that functions
p (k=1,...,1) satisfy condition (53).
First it will be shown that

(65) (p1,- -, p1) € ST(a,b;n,ni; A1) .

Since functions g1 (K = 1,...,1) are continuous and the first of inequalities
(64), there exists o €]a, t2] such that

(66) > ”

— %,
= il Vln+1(/\)
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where
cr :max{|g1k(t)| a<t< a} (k=1,....0.

Let l € {1,...,n1}. It will be shown that for any k € {1,...,{}

lim sup(t — a)'~17*1 x

t—a

(67) ¢ o
X / (t— 5)"1_1/ (r—s8)""" Y — )~ Y pon(r) | drds = 0,

where

For(t) = % T por(t).

Because of the continuity of ga; and condition (63) we have
/Q(T — a)"_k|]30k(7')| dr < 40
Therefore for an arbitrary € > 0 there exists a. €]a, «f such that
/%(r — ) Fpor ()| dr < (A1 — n1 + De.

Next, for a < s < a,

/ (T _ a)n—n1+>\1—k|p'0k(7_)|d7_ S/ (T— a)n—n1+>\1—k|p~0k(7_)|d7_+ "o S
<(s—ahm / (1 —a)" *|pow(r)| dr + 1o <
< (A —np+ De(s —a) ™ 4oy,
where

(a3
o :/ (7 — @)=k o (7)| dr
(a3

H

Using this estimate, we find for ¢ <t < a,
3 o
(t— a)l_1_>‘1 / (t— 5)"1_l ds / (r— 5)"_"1_1(7' — a)>‘1_k+1|]30k(7')| dr <
a ; N B3
<(t- a)"1_1_>‘1 / ds / (r— a)"_"1+>‘1_k|]30k(7')| dr < e+ ro(t — a)"1_>‘1 ,
a B3

and therefore

13 a
tlim sup(t—a)' =17 / (t—s)"l_l/ (r—s)" """ Y r—a) = Y por(r) | drds < ¢,
—a a s
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from which due to the arbitrarity of ¢ we obtain (67).
By (62), (66) and (67)

1. (t_a)l—1—>q y
0 (n—ny — 1))(ng —1)!
l 1 3 o
X t—s "l_l/ r— )TN — MR () drds <
S oy L= [ e e lards <
(t_a)l—1—>q

< lim sup
t—a

(n—n1 — Di(n; — O~

1 o
Ck ni—I n—ni—1 Ai1—n
X t—s)" T—58 T r—a)t T drds <
2 vii(A1) /a (=) /s (r=2) (r=a) =

k=1

Ck
< —_— < 1.
- l; V(A1) Vin+1(A1)
The validity of (65) in the case [ € {1,...,n1} is thereby proved. The case
le{n;+1,... n}is treated similarly.
The inclusion
(pla .. 'apl) S S_(a,b;n,nm;/\z)
is proved by the same technique. The corollary is proved. a

Remark 1. Condition (64) is unprovable in the sense that none of the inequalities
contained in it cannot be replaced by the corresponding equality. To verify this we
shall consider the boundary value problem

(68) W) = /\1(/\1_1)';5;1(/\1_n+1)u—|—t>‘1_”,
(691) WO =0 (i=1,...n1), V1) =0 (G=1,...,n9),
(692) sup {47 (1= )™ [u(®)]: 0 <t < 1} < oo,

where ny, ns € {1,...,n— 1}, ny +ns = n, Ay €lns — 1, ns[, and Ay €]ny — 1, n4q]
is choosen so that the equation

zz—1) ... (z—=n+D)=MM-1)...(Ar—n+1)

has n roots z1, ..., x, such that
(70) T <2< - <x, and Xp,41 = Ap .
Here
m=2, I=1 gu®)=(=D"""vip41 (M), g21()=0,

pori(t) =0, qt)=t"".
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Instead of condition (64) which for { =1, a = 0, b = 1 takes the form

l911(0)] l921(0)]
64 _<]l, /<1,
(64) Vin+1(A1) Vint1(A2)
the condition
l911(0)] 921(0)]
64 =1, <1,
(641) Vint1(A1) Vin+1(A2)

1s fulfilled in the case under consideration.
First it will be shown that under the boundary conditions (69;), (692) the
homogeneous equation

/\1(/\1—1)(A1—n—|—1)u

has the trivial solution only. Indeed, the general solution of the equation (68g) has
the form

l

(71) u(t) = ext™,

k=1

where ¢1, ..., ¢, are arbitrary constants. It is obvious that for (69;) and (692) to
be fulfilled 1t is necessary that

|u?)]

(72) tlg% sup =5~ < 40
and
(73) WD) =0 (j=1,...,n9).

In view of (70), (71) we find from (72) and (73)
clz...:cnlzo

and
!

Z aikckZO (i:l,...,nz),

k=ni+1

where
arp =1, aikIl‘k(l‘k—l)...(l‘k—i—l—Q) (i:?,...,nz).

Since the determinant of the latter system differs from zero, we write

g1 ==y =0,
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Therefore u(t) = 0.
Finally, it remains for us to show that Problem (68), (69,), (692) has no solution.
It is not difficult to verify that the function

uo(t) = cot™int,

where
n—1n-—1

o= -] .

k=0 ]::0
J#k

is the solution of (68). Thus the general solution of this equation has the form

I
u(t) = Z ept™* + cgtMint .
k=1

Therefore by virtue of (70)
u(®)] l
. 7 z A _
tlg%sup Y tlg%sup ‘ kE_Ith k4 oegt™tint| = 400,

no matter what the constants cq,...,c, are.

Thus Problem (68), (691), (692) has no solution though all the conditions of
Corollary 1 were fulfilled except for condition (64;) which was replaced by condi-
tion (64).

3. PrROBLEM (1), (21), (22) INTHE casE [ =1

In this section we consider the following boundary value problem

(74) ut™ = p(t)u+q(1),
(751) WD) =0 (k=1,...,n5;4i=1,...,m),
(752) sup {(t )M b= ) u(t)] a < t < b} <o,

where p(-)o1 x,2,(7) € Lioc(Ja, B[ R), ¢ € Ln_1-x, n—1-x,(]a, b[; IR).
By Theorem 1 for any r € L,_1_x, n—1-x,(Ja, b[; R) the differential equation

™ = r(t)

has the unique solution ug(r)(:): Ja,b[— R satisfying the boundary conditions

(751), (752).
Below we use the following notation

|uo(r) (V)]

ra<t< b}.
o110, (1)

P (r) = vraimax

From Ref. [6] we easily obtain the following results.
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Theorem 2. Let

r(t)
] < ———~-— for a<t<b,
Ip(t)] < )
where
re Ln—l—Al,n—l—Az(]aa b[aR) )
and

p>\1,>\2(r) <1.
Then Problem (74), (751), (752) has the unique solution.
Theorem 3. Let m = 2 and

o

(t —ay(b—1)

where 7y is the number satisfying the inequality

lp(t)| < fora<t<b,

77,1!77,2!(77,1 — /\1)(712 — /\2)(A1 —ny + 1)(A2 —ns + 1)
71(”1,712,/\1,/\2) —|—")/2(7'L1,7'L2,A1,A2)

rg <

(b—a)",
where

y1(n1,n2, A1, A2) = 2n1(ng — A))(Azs —na+ 1)(A —ny + 1+ n2 — Ag),
Yya(n1,n2, A1, A2) = 2n2(na — A2)(A1 —ni + 1)(Aa —na+ 1401 — Ay).

Then Problem (74), (751), (752) has the unique solution.

For the two points boundary value problem

(76) u” = p(t)u+ q(t),
(771) u(a) = u(b) =0,
(772) sup {(t =)™ (b =) [u(®)] s a < t < b} < 400,

where 0 < A1, Ay < 1, p € Lioe(la,b;IR) and ¢ € Li_x, 1-x,(Ja,b[;R), from
Theorem 2 we obtain

Corollary 2. Let
A(1 = Ay) n 2A1 9 A2(1 = Ag)
(t—a)? (t—a)(b—1) (b—1)?

where 7y is the number satisfying the inequality

|P(t)|§7”0[ ] fora<t<b,

(78) rog < 1.

Then Problem (76), (771), (773) has the unique solution.
The proof of Corollary 2 see in Ref. [6].
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Remark 2. Condition (78) in Corollary 2 is unprovable in the sense that the
inequality contained in it cannot be replaced by the corresponding equality (see
the example in Ref. [6]).

For the three-points boundary value problem

(79) u” = p(t)u+q(t),
(801) u(a) = u(ty) = u(b) =0,
(802) sup { (t— @)™ (b— ) Ju(t)] s a <t < b} < oo,

where a < tg < b, 0< A, A2 < 1,t — |t —to|p(?) is locally integrable on ]a, b] and
q € Loy, 2-x,(Ja, b[; R), from Theorem 2 we obtain

Corollary 3. Let

/\1(1—/\1)(2—A1) 3/\1(1—/\1) 3/\1/\2(1—/\1)

BU O < o s T TPt —t0) T - 1)
6 U= Bha(l—A) A(1—An)(2— )
C—ai—t)b—1) (-a)b-07 (—to)b—1)7 bty
fora<t<b,

where vy Is the number satisfying the inequality (78). Then Problem(79), (801),
(804) has the unique solution.

Proof. It is assumed

T(t) _ To(t _ a))\l(to _ t)(b _ t))\2 /\1(1 ?tA_l)CE)QS_ Al) i (t3_Ala()12(—t ilt)o)

3AA0(1 = Ay) 61\ 3A1A2(1 — )

(t—a)b—t) ({E—a)t—to)b—1t) (t—a)b-1)
3Xa(1 — Ay) Ao(1 = X9)(2 = As)
C(t—to)(b—1)2 (b—1)3

It is obvious that r € L,_1_x, n—1-x,(Ja, b[; R) and we can write the condition
(81) in the view
r(t)

= a (b — el —to]
On the other side, it is not difficult to see that the function

()] <

uo(r)(t) = —ro(t — a)* (t — to)(b —t)*2

is the solution of the problem
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According to condition (78)

p>\17)\2(7°) =ro<l1.

Therefore all conditions of Theorem 2 are fulfilled. Corollary is proved. |

Remark 3. Condition (78) in Corollary 3 is unprovable in the sense that the
inequality contained in it cannot be replaced by the corresponding equality. Really,
for each number ¢ € R the function

uo(t) = e(t — a)* (t — to)(b —t)*2

is the solution of the differential equation

where

M- ADE2-A) 3M(I—A)
L e g (A

3AA(1— Ay) 61\ 3A1A2(1 — Ag)

+(t —a)2(b—t) (t—a)t—to)b—1t) (t—a)(b—1)?
3Xa(1 — Ay) Ao(1 = X9)(2 = M)
(t—to)(b—1)2 (b—1)3 ’

and satisfy the boundary conditions (80;), (803).
4. THE CoNTINUOUS DEPENDENCE OF
SoLuTIONS ON EQUATION COEFFICIENTS

Alongside with (1), for each natural number j we consider the equation

{
(15) ut =" g (a4 g5(1)
k=1

Prj()ora,05() € Lioe(Ja, b} IR), ¢j € Lp—1-x; n—1-x,(]a, b R) .
As before, it will be assumed here that p; (k = 1,...,{) and ¢ satisfy conditions
(51), (52).
Theorem 4. Let condition (53) be fulfilled and Problem (1), (21), (22) has the

unique solution u. Let, besides,

t

t
(82) lim /ﬁ_b Drj (T)0k 2y a0 (T) dT = /ﬁ_b Pr(T)0k 2y 2, (T) dT

2

uniformly inside Ja,b[ (k=1,...,1),
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(83) sup{t—a" 1= Al/ 158 (7) — pu(T)| ok a0 2. (T) dT: a<t<5}—>0

fors —a, j—+oc0 (k=1,...,0),

(84) sup{(b— n-l- ’\2/ 158 (7) — pu(T)| ok a0, 2. (7) dT: 5<t<b}—>0

fors —b, j—+c0 (k=1,...,0),
(85) A i () = a()ln-1-xin-1-2, = 0

and
(86) |]3k]'(t)|0'k7)\17>\2(t)§]~)(t) fOI’Cl<t<b(k‘Il,...,l; j:l,?,...),

where
P € Lige(Ja, b[; R) .
Then, starting from some jy Problem (1;), (21), (2;) also has the unique solution
u; and
g ~1(0) — w5 D(0)|

O-k7>\1,>\2(t)

:a<t<b}—>0 for j — 400

Proof. From(53), (83) and (84) it readily follows that there exists a natural num-
ber j; such that
(88) (Bj,- -, Pij) € ST(a,byn,n1; A1) N S™ (a,b;n, np; Aa)  for j > ji.

Let us now prove that starting from some j; > j; the homogeneous equation

(89) w(? = Zpk (k 1)

has no nontrivial solution satisfying the boundary conditions (21), (22).
Let the opposite be true. Then there exists a sequence of natural numbers

+ oo
[]Z] such that for each ¢ the equation
i=1

u™ = Zpk (k 1
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has the solution u; satisfying conditions (21) and (22) and

(1)
:a<t<b}:1 (i=1,2,...).

(90) Vralmax{ Z [

Ok ,\1,,\2
In view of (86) and (90)
(91) WD) < opa, () fora<t<b (k=1,... 1Li=12..)

and
™M) <Tp(t) fora<t<b (i=1,2,...).

From these estimates it follows that sequences [ugk_l)] (k=1,...,n) are
i=1

uniformly bounded and equicontinuous inside ]a, b[.
It is obvious that for each ¢

(92) u () = 3 el V) + Gt

k=1

where

i [55.6) = 0|l 0).

k=1

According to conditions (83), (84) and (91)
sup {(t - a)"_l_kl/ |Gi(T)|dr:a<t < 5} — 0 fors—a, i —+o0
¢
and
¢
sup {(b —t)"_1_>‘2/ |Gi(T)|dr:s <t < b} —0 fors—b, i — +oo.

On the other hand, by virtue of Lemma 3.1 from Ref. [4] the uniform bound-
edness, equicontinuity and conditions (82), (86) and (91) imply that

t
Z_l}{l_noo /ﬁ_b gi(r)dr =
2

uniformly inside ]a, b[. Therefore

(93) lim |QZ( )|n—1—>\1,n—1—>\2 =0.

i—+00
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By Lemma 1 there exists a positive number py such that

O] < P00k xuae (OIG (o 1= asn—1-2s

fora<t<d (k=1,...05;i=1,2,...).
Hence with (93) taken into account we have

|:a<t<b}—>0 for ¢ — +o0,
kal,xz(t)

Vraimax{
k=

which contradicts condition (90). The contradiction obtained proves that if ju > j;
is a sufficiently great number, then the homogeneous Problem (89), (21), (22) has
the trivial solution only for each j > jy. Since, besides, condition (88) is fulfilled
too, by virtue of Theorem 1 Problem (1;), (21), (22) has the unique solution u;
for each j > jo.

To complete the proof of Theorem it remains for us to show that condition (87)

1s fulfilled. Let us assume the opposite 1s true. Then there exist a positive number
+oo

¢o and a sequence of natural numbers []Z] such that
i=1

(k- 1) u(k—l)(t)|

(94) v = Vralmax{ Z o

:a<t<b} >
kal,xz(t) =

(i=1,2,...).

Let
(1) —u(t
Ui(t) — u]z( ) u( ) )
Vi
It is obvious that each v; satisfies the boundary conditions (21), (22),

I (k=1)
(95) Vraimax{ Z [ ()]
k

7:a<t<b}:1 i=1,2,...
= Tk,a 00 (1) ( )

and
(96) v£”><t>:;pm)vﬁ’“‘”(t)+qu<t>+qzz»<t> (i=1,2,...),
where _1 e

wil) =3 (6.0~ 1:(0)) [vE’“‘%) + 7—(”]
and
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y (85), (86), (94) and (95)

(97) z—l»lfloo lg2i()n=1=21,n—1-2, =0

(98) lg1: (1) < p" (¢ ‘Zp Yol ‘_p*(t),

where
1
pr(t) = lrop(t) + 10 3 Ipk(B)low aux (1)
k=1
|u(k 1)
r_1+—vra1max{ :a<t<b},
’ Z Ok a2 (1
and

p* € Lioe(Ja, b[; R) .

~ (b-1)) T _
From (95) — (98) it follows that sequences [vi ] (k=1,...,n) are
i=1
uniformly bounded and equicontinuous inside ]a, b[. Therefore by Lemma 3.1 from

Ref. [4] and conditions (82)—(84)

(99) im g1 () l—1-an—1-2, = 0.

11— 400

By virtue of Lemma 1 there exists a positive number pg such that

|v£k_1)(t)| < poO'k,Al,Az(t) x

X |f]1i(')|n—1—,\1,n—1—,\2 + |f]2i(')|n—1—,\1,n—1—,\2
fora<t<d (k=1,...05;i=1,2,...).

Hence with (97) and (99) taken into account we have

Sl

:a<t<b}—>0 for ¢ — +o0,
O-k7>\1,>\2(t)

Vraimax{
k=1

which contradicts (95). The contradiction obtained proves Theorem. a

We shall consider, as an example, the differential equation

(1§) (n) _ng Sln]t—i—hk]( ) (k—1)+ jgo(t)Slnj2t+h0](t)

k=1 Te(t) (t —a)n—1=Aa(b — t)n=1-22’
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where 4 (t) = (t—a)" 1 =F(b—t)"H1=F [T Yt—t; Pk g e, b =R (k=0,...,{)

are continuously differentiable functions satlsfymg the conditions

and hyj: [a,0] — [-1,1] (k=0,...,; j =1,2,...) are measurable functions such
that
hl_rl_n hkj(t) =0 uniformly on [a,b].
]—» oQ
By Theorem 4, starting from some j, Problem (15), (21), (22) has the unique
solution u; and

l (k 1)

Vrannax{ E

a<t<b}—>0 for j — 4o00.
kal,xz

5. GREEN’S OPERATOR AND ITS PROPERTIES

In this section it is assumed that py: Ja,b)[— R (k = 1,...,{) are fixed functions
satisfying conditions (51) and (53), and Problem (1), (21), (22) has the trivial solu-
tion only. Then by virtue of Theorem 1 for any ¢ € L,_1-x, n—1-x,(Ja, b[; R) Prob-
lem (1), (21), (22) has the unique solution. The operator GL,_1_x, n—1-x,(la, b[; R)
—Cloc(]a, b[;R) that puts into correspondence to each ¢ € Ly-x, n1-a, (Ja, B[} R)
the solution u(?) = G(¢)(¢) of Problem (1), (21), (22), will called Green’s operator
of Problem (1y), (21), (22).

From Lemma 1 yields

Corollary 4. There exists the positive number py such that for any ¢ €
Ln_1-x n—1-x,(Ja, b[;R) the inequalities

dk—lg
(100) Ry NG I
fora<t<bk=1,...1),
d"G()t) _ d"TIG(9)(s) ! !
— < *
din=1 dsn=1 —/5 p(r)dr+ ‘/5 1
for a<s<t<hb,

where

l

P (1) = pola(n—1-rin—1-xs Y [Pe(®)low x, 2, (1)
k=1

are hold.



204 G. D. TSKHOVREBADZE
Theorem 5. Let

(101) S Ln—l—klyn—l—k2(] [ ) q; € L” 1-2A3n—1- )\2(]0 b[ )

( 1 ) )

¢ ¢
102 li (T)dr = d iformly insid b
(102) j_}inoo /%—_b g;(T)dr /%—_b q(7)dr uniformly inside ]a,b[,
(103) i g () = g()ln-1-xn-1-2, < 00
Then

o dP G (g)() A6 (a)(@)
(104) jl}inoo ) T (k=1,...,n)

uniformly inside Ja,b[.

Proof. Let us assume that Theorem is not true. Then there exist points ag €]a, b[
and bg €]ag, b[, the positive number 4 and the sequence (j; )
such that

natural numbers

4" 'G(q;, —)(V) |
dtk-1 :

(105) = max{ Z

CloStSbo}ZEo (221,2,)

It 1s assumed for each ¢ that

Gi(t) = %[qy,(t) - Q(t)]
wi(t) = G(@)(1)
Then
(106) u (1) = 3" pryul" V() + Gt

k=1

and u(-) = u;(-) satisfies the boundary conditions (2;), (22). On the other hand,
according to conditions (102), (103) and Corollary 4

(107) sup {|(j¢(~)|n_1_>\hn_1_>\2: i=1,2,.. } < 400,
'

108 li gi(r)dr =10 iformly inside ]a, b[,

(108) Jim /ﬁ_b gi(r) dr uniformly inside ]a, b]

(109) maX{Z 1@ ap <t < bo} —1 (i=1,2...)
k=1
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and

(110) ud" (0] < rookaa (1)
fora<t<b (k=1,...,,i=1,2...),

where rq is a positive number independent of ¢. According to conditions (106) and

(110)

l

<[> pul

k_
for a<t<b (i=1,2,...),

(111) (1) — ¢ < p(t)

where

l
) =70 Ipr()]or 2 (0)
k=1

and p* € Lige (Ja, b[; R).
On account of conditions (53), (107), (109), (111) and equalities

W@ =0 (k=1 n), o0 =0 (k=1,... nm)
from (106) we find
PO < (e = i

(112) —I—/at(t—s)"l_k/:u(r—s)” m=lp*(r) dr ds

fora<t<ty, le{l,...;om} (k=1,...n1)
and
|ugk_1)(t)| < rz(b_t)AQ—k+1

(1122) —I—/tb(s—t)"m_k/t:(s—r)” =1t (r) dr ds

forto <t<b, le{l,...,nn}t (k=1,...nn),

where t; = , r1 and 7y are positive constant s independent of i.

ao+bo
2
~ k=1Y T
From (108) — (111) it follows that sequences [uZ ]  (k=1,...,n) are
uniformly bounded and equicontinuous inside Ja, b[. Therefore by the Arzela-Alkoli

lemma it can be assumed without loss of generality that sequences [ugk_l)]
i=1

(k=1,...,n) converge uniformly inside ]a, b[.
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On account of conditions (108), (110), (111), (1121) and (125) we conclude that

(113) uw(t) = lim u;(2)

i—+00

is the solution of Problem (1g), (21), (22). Therefore u(t) = 0. But it is impossible,
because on account of (109) and (113) we have

max Z |u* V()] ag <t <bgp=1.
k=1

The contradiction obtained proves Theorem. a
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