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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 1 { 7NATURAL FUNCTIONS ON T �T (r) AND T �T r�W. M. MikulskiAbstract. We determine all natural functions on T �T (r) and T �T r�.All manifolds and maps are assumed to be in�nitely di�erentiable.1. Let Mfn be the category of n-dimensional manifolds and their local di�eo-morphisms. Consider a natural bundle F over n-manifolds, [2].De�nition 1. A natural function g on F is a system of functionsgM : FM ! Rfor every n-manifoldM satisfyinggM = gN � Fffor all f :M ! N fromMfn.Example 1. Let us remark that for every vector bundle E ! M , x 2 M andy 2 Ex we have a natural linear isomorphism between Ex and VyE := TyEx givenby v ! ddt jt=0(y + tv) :For any vector space W we have < ; >:W � �W ! R, < a; v >= a(v).Let T (r) = (Jr(:;R)0)� be the linear r-th order tangent bundle functor andlet T r� = Jr(:;R)0 be the r-th order cotangent bundle functor, cf. [2]. For anyn-manifoldM and s 2 f1; :::; rg we de�ne �<s>M : T �T (r)M ! R by�<s>M (a) :=< (A<s> � �)(a); q(a) > ;where q : T �T (r)M ! T (r)M is the cotangent bundle projection,A<s> : (T (r)M )� ~=T r�M ! T r�M ~=(T (r)M )�1991 Mathematics Subject Classi�cation : 58A20, 53A55.Key words and phrases: natural bundle, natural function.Received June 30, 1993.



2 W. M. MIKULSKIis a �bre bundle morphism over idM given byA<s>(jrx
) := jrx(
s); 
 :M ! R; 
(x) = 0; x 2M ;and � : T �T (r)M ! (T (r)M )� is a �bre bundle morphism over idM given by�(a) := ajVq(a)T (r)M ~=T (r)x M; a 2 (T �T (r))xM; x 2M :Furthermore we de�ne �<s>M : T �T r�M ! R by�<s>M (a) :=< (A<s> � q)(a); �(a) > ;where q : T �T r�M ! T r�M is the cotangent bundle projection, A<s> : T r�M !T r�M is as above and � : T �T r�M ! (T r�M )� is a �bre bundle morphism overidM given by�(a) := ajVq(a)T r�M ~=T r�x M; (a : Tq(a)T r�M ! R) 2 (T �T r�)xM; x 2M :Clearly, f�<s>M g is a natural function on T �T (r)jMfn and f�<s>M g is a naturalfunction on T �T r�jMfn.In [1], I. Kol�a�r has described all natural functions on T �F for F from a largeclass of natural bundles. The method presented in [1] can not be applied in thecases F = T (r)jMfn (if r � 2) and F = T r�jMfn because of the following reasons:(a) If the assumptions (I), (II), (III) of [1] were satis�ed for F = T (r)jMfn, thenusing the results of [3] we could deduce that any natural function on T �T (r)jMfnis of the form f � �<1>M , where f 2 C1(R;R). This contradicts to Theorem 1.(b) It follows from [4] that F = T r�jMfn do not satisfy Condition (I) of [1].In this paper we determine all natural functions on T �T (r)jMfn and T �T r�jMfn.We are going to proveTheorem 1. All natural functions on T �T (r)jMfn are of the form�f � (�<1>M ; :::; �<r>M )	 ;where f 2 C1(Rr) is a smooth function of r variables.Theorem 2. All natural functions on T �T r�jMfn are of the form�f � (�<1>M ; :::; �<r>M )	 ;where f 2 C1(Rr) is a smooth function of r variables.In the case r = 1 both theorems are equivalent because of a natural isomorphismT �T ~=T �T �, cf. [2].2. The proofs of Theorems 1 and 2 will be given in Item 3. In this item weprove some lemmas.Let q; �; �; �<s>M and �<s>M be as in Example 1. The usual coordinates on Rnare denoted by x1; :::; xn and the canonical vector �elds induced by x1; :::; xn onRn by @1; :::; @n. For any vector �eld X on M the complete lift of X to a naturalbundle FM is denoted by FX.It is clear that T (r)((x1)r@1) and T r�((x1)r@1) are vertical over 0. We startwith the proof of the following lemma.



NATURAL FUNCTIONS ON T �T (r) AND T �T r� 3Lemma 1. The setsfy 2 T (r)0 Rn :< T (r)((x1)r@1)(y); jr0(x1) >6= 0gand fy 2 T (r)0 Rn :< T r�((x1)r@1)(jr0(x1)); y >6= 0gare dense in T (r)0 Rn, provided the following identi�cations are used:jr0(x1) 2 T r�0 Rn ~=(VyT (r)Rn)� and(T (r)0 Rn)� ~=Vjr0 (x1)T r�Rnfor any y 2 T (r)0 Rn.Proof. Let 't be the 
ow of (x1)r@1 near 0. Then we have< T (r)((x1)r@1)(y); jr0(x1) > =< ddt jt=0T (r)0 't(y); jr0 (x1) >= ddt < T (r)'t(y); jr0 (x1) > jt=0= ddt < y; jr0(x1 � '�1t > jt=0=< y; jr0( @@t (x1 � '�1t )t=0) >= � < y; jr0((x1)r) >and similarly < T r�((x1)r@1)(jr0(x1)); y >= � < y; jr0((x1)r) >for any y 2 T (r)0 Rn. This implies our lemma. �Now we prove the following lemma.Lemma 2. Let g; h be natural functions on T �T (r)jMfn (or on T �T r�jMfn).Suppose that gRn(a) = hRn(a)for all a 2 (T �T (r))0Rn (or for all a 2 (T �T r�)0Rn) with(2:1) �(a) = jr0(x1) (or q(a) = jr0(x1) ):Then g = h.Proof. Consider a 2 (T �T (r))0Rn (or a 2 (T �T r�)0Rn). Using the invariancy ofg and h it su�ces to show that gRn(a) = hRn (a).



4 W. M. MIKULSKISuppose that �(a) = jr0(
) (or q(a) = jr0(
)) for some 
 : Rn ! R with 
(0) = 0and d0
 6= 0. By the rank theorem there is an embedding ' : Rn ! Rn, '(0) = 0,such that T r�'(jr0(
)) = jr0(x1) :Then �(T �T (r)'(a)) = jr0(x1) (or q(T �T r�'(a)) = jr0(x1) ):Now, using the invariancy of g and h with respect to ' and the assumption of thelemma we deduce that gRn(a) = hRn(a). Thus gRn = hRn on some dense subsetin (T �T (r))0Rn (or in (T �T r�)0Rn). Since gRn and hRn are both of class C1, itholds gRn = hRn over 0. �Using Lemma 2 we prove the following lemma.Lemma 3. Let g; h be natural functions on T �T (r)jMfn (or on T �T r�jMfn).Suppose that gRn(a) = hRn(a)for all a 2 (T �T (r))0Rn (or for all a 2 (T �T r�)0Rn) satisfying the conditions (2.1)and(2:2) < a; T (r)@i(q(a)) >= 0 (or < a; T r�@i(q(a)) >= 0)for i = 3; :::; n. Then g = h.Proof. Consider a 2 (T �T (r))0Rn with �(a) = jr0(x1) (or a 2 (T �T r�)0Rn withq(a) = jr0(x1)). Using Lemma 2 it is su�cient to show that gRn(a) = hRn (a).De�ne � 2 T �0Rn by< �; Z(0) >=< a; T (r)Z(q(a)) > (or < �; Z(0) >=< a; T r�Z(q(a)) >)for all constant vector �elds Z on Rn. There is a linear isomorphism : Rn ! Rnsuch that x1 �  = x1 and T �0 (�) = �d0x1 + �d0x2for some �; � 2 R. Let a = T �T (r) (a) (or a = T �T r� (a)). Since T r� (jr0 (x1)) =jr0(x1), a satis�es the condition (2.1) with a replaced by a. Moreover,< a; T (r)@i(q(a)) > =< a; T (r)(( �1)�@i)(q(a)) >=< �; (( �1)�@i)(0) >=< T � (�); @i(0) >= 0for i = 3; :::; n. (Similarly, < a; T r�@i(q(a)) >= 0for i = 3; :::; n.) Then by the assumption of the lemma gRn (a) = hRn(a). Thusby the invariancy of g and h with respect to  we obtain gRn(a) = hRn(a). �Lemmas 1 and 3 imply the following assertion.



NATURAL FUNCTIONS ON T �T (r) AND T �T r� 5Lemma 4. Let g; h be natural functions on T �T (r)jMfn (or on T �T r�jMfn).Suppose that gRn(a) = hRn(a)for all a 2 (T �T (r))0Rn (or for all a 2 (T �T r�)0Rn) satisfying the conditions (2.1)and (2.2) for i = 2; :::; n. Then g = h.Proof. Consider a 2 (T �T (r))0Rn (or a 2 (T �T r�)0Rn) with (2.1) and (2.2) for= 3; :::; n. By Lemma 3 it su�ces to show that gRn(a) = hRn(a).Using the density argument and Lemma 1 we can additionally assume that< T (r)((x1)r@1)(q(a)); jr0(x1) >= 1�(or < T r�((x1)r@1)(jr0 (x1)); �(a) >= 1�)for some � 2 R.Let < a; T (r)@2(q(a)) >= � (or < a; T r�@2(q(a)) >= �). Sincejr�10 (@2 � ��(x1)r@1) = jr�10 (@2) ;there exists an embedding ' : Rn ! Rn, '(0) = 0, such that:jr0(') = jr0(id) ;germ0(T' � (@2 � ��(x1)r@1)) = germ0(@2 � ') andgerm0(T' � @i) = germ0(@i � ')for i = 3; :::; n, cf. [2].Let a = T �T (r)'(a) (or a = T �T r�'(a)). Since ' preserves both jr0(x1) and@i for i = 3; :::; n, then a satis�es the conditions (2.1) and (2.2) for i = 3; :::; n.Moreover,< a; T (r)@2(q(a)) > =< a; T �T (r)'�1(T (r)@2(q(a))) >=< a; T (r)@2(q(a)) � ��T (r)((x1)r@1)(q(a)) >= � � �� 1� = 0(or < a; T r�@2(q(a)) >= 0):Then by the assumption of the lemma gRn(a) = hRn (a). Now, by the invariancyof g and h with respect to ' we obtain that gRn(a) = hRn(a). �Similarly, one can prove the following assertion.



6 W. M. MIKULSKILemma 5. Let g; h be natural functions on T �T (r)jMfn (or on T �T r�jMfn).Suppose that gRn(a) = hRn(a)for any a 2 (T �T (r))0Rn (or for any a 2 (T �T r�)0Rn) satisfying the conditions(2.1) and (2.2) for i = 1; :::; n. Then g = h.Proof. The proof is a replica of the proof of Lemma 4. (In the text of the proofof Lemma 4 we replace @2 by @1, Lemma 3 by Lemma 4 and i = 3; :::; n byi = 2; :::; n.) �Now, we prove the main lemma.Lemma 6. Let g; h be natural functions on T �T (r)jMfn (or on T �T r�jMfn).Suppose that gRn(a) = hRn(a)for every a 2 (T �T (r))0Rn (or for every a 2 (T �T r�)0Rn) satisfying the conditions(2.1), (2.2) for i = 1; :::; n and(2:3) < q(a); jr0(x�) >= 0 (or < �(a); jr0(x�) >= 0 )for all � = (�1; :::; �n) 2 (N[ f0g)n with 1 � j�j � r and �2+ :::+�n � 1. Theng = h.Proof. Consider a 2 (T �T (r))0Rn (or a 2 (T �T r�)0Rn) satisfying the conditions(2.1) and (2.2) for i = 1; :::; n. By Lemma 5 it is su�cient to show that gRn(a) =hRn(a).Let ct := (x1; tx2; :::; txn) : Rn ! Rn, t 6= 0. It is easy to see thatT �T (r)ct(a)! ao (or T �T r�ct(a)! ao )as t ! 0 for some ao satisfying (2.1), (2.2) for i = 1; :::; n, and (2.3) for all� = (�1; :::; �n) 2 (N [ f0g)n with 1 � j�j � r and �2 + :::+ �n � 1. Then usingthe invariancy of g and h with respect to ct we deduce that gRn(a) = gRn (ao) =hRn(ao) = hRn (a). �3. We are now in position to prove both theorems. Let g be a natural functionon T �T (r)jMfn (or on T �T r�Mfn). De�ne f : Rr ! R byf(�) = gRn (a�);where � = (�1; :::; �r) 2 Rr and a� 2 (T �T (r))0Rn (or a� 2 (T �T r�)0Rn) is theunique form satisfying the conditions:(2.1), (2.2) for i = 1; :::; n, (2.3) for all � = (�1; :::; �n) 2 (N [ f0g)n with 1 �j�j � r and �2 + :::+ �n � 1, and(2:4) < q(a�); jr0((x1)s) >= �s (or < �(a�); jr0((x1)s) >= �s)



NATURAL FUNCTIONS ON T �T (r) AND T �T r� 7for s = 1; :::; r.It is clear that f is smooth. We see thatgRn(a�) = f(�<1>Rn (a�); :::; �<r>Rn (a�))(or gRn(a�) = f(�<1>Rn (a�); :::; �<r>Rn (a�)) )for all � 2 Rr. Hence by Lemma 6 we obtaingM = f � (�<1>M ; :::; �<r>M ) (or gM = f � (�<1>M ; :::; �<r>M ) ) :2 I would like to thank Professor I. Kol�a�r for his comments.References[1] Kol�a�r, I., On cotangent bundles of some natural bundles, Supl. Rendiconti Circolo Math.Palermo, (to appear).[2] Kol�a�r, I., Michor, P., Slov�ak, J., Natural operations in di�erential geometry, Springer-Verlag,1993.[3] Mikulski, W. M., Some natural operations on vector �elds, Rendiconti di Math. Ser VII 12(1992), 783-803.[4] Mikulski, W. M., Some natural constructions on vector �elds and higher order cotangentbundles, Mh. Math. 117 (1994), 107-119.W. M. MikulskiInstitute of Math.Jagiellonian UniversityReymonta 4, Krak�owPOLAND
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