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NATURAL FUNCTIONS ON 7*7() AND T*7"*

W. M. MIKULSKI

ABSTRACT. We determine all natural functions on T*T(") and T*T7*.

All manifolds and maps are assumed to be infinitely differentiable.

1. Let M/, be the category of n-dimensional manifolds and their local diffeo-
morphisms. Consider a natural bundle I over n-manifolds, [2].

Definition 1. A natural function ¢ on F is a system of functions
gum - FM — R
for every n-manifold M satisfying

g =gy o Ff
for all f: M — N from Mf,.

Example 1. Let us remark that for every vector bundle ¥ — M, x € M and
y € F; we have a natural linear isomorphism between F, and V, £ := T, E, given

by
Clizoly +10)
v — —|i= v) .
ai t=0lY
For any vector space W we have < | >: W* x W = R, < a,v >= a(v).

Let TU) = (J7(.,,R)o)* be the linear r-th order tangent bundle functor and
let 7™ = J"(.,R)g be the r-th order cotangent bundle functor, cf. [2]. For any
n-manifold M and s € {1,...,7} we define A3/~ : T*T M — R by

Ay (a) =< (A<*Z o m)(a), q(a) >,
where ¢ : T*TU)M — TU) M is the cotangent bundle projection,
ASS> (T MY =T M — T M=(T") M)*
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is a fibre bundle morphism over idys given by
AS> (o) = 725°), 7 M — R, 4() =0, 2 € M ,
and 7 : T*TUIM — (T M)* is a fibre bundle morphism over idys given by
m(a) = a|Vy T MZTM, a € (T°T), M, v € M .
Furthermore we define p3/” : T*1T7*M — R by
pap” (a) =< (A5 0 g)(a), 7(a) >

where ¢ : T*T™ M — T"* M is the cotangent bundle projection, A<*> : T"™* M —
T M is as above and 7 : T*T™ M — (T"™ M)* is a fibre bundle morphism over
tdps given by

m(a) == alVy)T""M=T7"M, (a: Ty T™M — R) € (171" ). M, € M .

Clearly, {A5f>} is a natural function on T*T")|Mf, and {u5S>} is a natural
function on T*T"*| M f,.

In [1], T. KolaF has described all natural functions on T*F for F from a large
class of natural bundles. The method presented in [1] can not be applied in the
cases F = TU)|MF, (if r > 2) and F' = T | M f,, because of the following reasons:
(a) If the assumptions (I), (IT), (TIT) of [1] were satisfied for F' = TU)|Mf,, then
using the results of [3] we could deduce that any natural function on 77| M £,
is of the form f o A3/”, where f € C*°(R,R). This contradicts to Theorem 1.

(b) Tt follows from [4] that F' = T"*| M f,, do not satisfy Condition (T) of [1].

In this paper we determine all natural functions on 77" |M [ and T* T | M f,.

We are going to prove

Theorem 1. All natural functions on T*T")| M f, are of the form
(Fo 05 AT

where f € C°(R") is a smooth function of r variables.

Theorem 2. All natural functions on T*T"*| M f,, are of the form

{Folusi™snii )}
where f € C°(R") is a smooth function of r variables.

In the case r = 1 both theorems are equivalent because of a natural isomorphism

T*T=T*T*, cf. [2].

2. The proofs of Theorems 1 and 2 will be given in Item 3. In this item we
prove some lemmas.

Let ¢, 7,7, Ay~ and p5f” be as in Example 1. The usual coordinates on R"
are denoted by 21, ..., 2" and the canonical vector fields induced by 2!, ..., 2" on
R™ by 01, ..., On. For any vector field X on M the complete lift of X to a natural
bundle F'M is denoted by F'.X.

It is clear that T(’“)((xl)’"ﬁl) and T7*((x1)" ;) are vertical over 0. We start
with the proof of the following lemma.
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Lemma 1. The sets

{y e TR < T (1) 01)(y), ji (') ># 0}
and

{y € TV R :< T ((x) 01) (G (x1)), y ># 0}

are dense In TéT)R”, provided the following identifications are used:
jo(zl) € TP*R"=(V, T"R")* and
(Tér)Rn)*ing(xl)Tr*Rn

for any y € TéT)R”.
Proof. Let ¢; be the flow of (21)"8; near 0. Then we have

. d , .
<TO () 0w, 3 (") > =< Th=oTs ee(v). db (") >

d

= = <TWeu(), 5 (@) > li=o

d

= E < yaj(y)‘(xlogpt_l > |t:0

L0 _
=< y,jo(a(l‘l SRver 1)t:0) >
=— <y, jp(z)) >

and similarly
< T (1) 00) (g (#), y >= = <y, jg (1)) >

for any y € TéT)R”. This implies our lemma. a
Now we prove the following lemma.

Lemma 2. Let g, h be natural functions on T*T")|Mf, (or on T*T"*|Mf,).
Suppose that

gr~(a) = hrn(a)
for all a € (T*T(’”))OR” (or for all a € (T*T"™)oR™) with

(2.1 (a) = j5(x)  (or g(a) = jy(z") ).

Then g = h.

Proof. Consider a € (T*T(’”))OR” (or a € (T*T™)yR™). Using the invariancy of
¢ and h it suffices to show that gr~(a) = hr~(a).
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Suppose that w(a) = i (7) (or ¢(a) = j5(7)) for some y : R” — R with v(0) =0
and dyy # 0. By the rank theorem there is an embedding ¢ : R® — R”, ¢(0) = 0,
such that

T™e(js(v) = do (") -
Then
(T T g(a)) = ji(a') (or ¢(T*T™ p(a)) = ji(2') ).
Now, using the invariancy of ¢ and A with respect to ¢ and the assumption of the
lemma we deduce that gg~(a) = hr=(a). Thus gr» = hr= on some dense subset
n (T*T(’”))OR” (or in (T*T"™)oR™). Since gr~» and hr~ are both of class C*| it
holds gr» = hr~ over 0. O

Using Lemma 2 we prove the following lemma.

Lemma 3. Let g, h be natural functions on T*T")|Mf, (or on T*T"*|Mf,).
Suppose that

gr~(a) = hrn(a)
for all a € (T*T(’”))OR” (or for all a € (T*T"*)oR" ) satisfying the conditions (2.1)
and
(2.2) < a, T8 (q(a)) >=0 (or < a,T™0(q(a)) >=10)
fort=3,....n. Then g = h.

Proof. Consider a € (T*T(’”))OR” with 7(a) = j5(z!) (or @ € (T*T7*)oR" with
q(a) = j5(z')). Using Lemma 2 it is sufficient to show that gr«(a) = hg«(a).
Define © € Ty R" by

< 0,2(0) >=< a, T Z(q(a)) > (or <©,Z(0) >=<a,T"Z(q(a)) >)

for all constant vector fields Z on R™. There is a linear isomorphism ¢ : R®» — R"
such that ' o4 = 2! and

Tr(©) = ador® + fdox?
forsome o, 8 € R. Let @ = T*T")4p(a) (or @ = T*T"*4(a)). Since T™*¢(j5(x)) =
jb(x1), @ satisfies the condition (2.1) with a replaced by @. Moreover,
<@, TN (¢(@) > =< a, TV (™ 1).0)(g(a)) >

=< 0, ((¥71):0:)(0) >

=< T"¥(©),9;(0) >=0
for i = 3,...,n. (Similarly,

<@, T™9(q(@)) >=0

for ¢ = 3,...,n.) Then by the assumption of the lemma ggr~(@) = hr~(@). Thus
by the invariancy of g and & with respect to ¢ we obtain grn~(a) = hAr~(a). d

Lemmas 1 and 3 imply the following assertion.
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Lemma 4. Let g h be natural functions on T*T)|Mf, (or on T*T"*|Mf,).
Suppose that

grn(a) = hrn(a)

for all a € (T*T(’”))OR” (or for all a € (T*T"*)oR" ) satisfying the conditions (2.1)
and (2.2) fori = 2,...,n. Then g = h.

Proof. Consider a € (T*T(’"))OR” (or a € (T*T™)R™) with (2.1) and (2.2) for
=3,...,n. By Lemma 3 it suffices to show that gr~(a) = hr=(a).
Using the density argument and Lemma 1 we can additionally assume that

< T ((&") o) (q(a)), i (x") >= é

(or < T ((x')"01)(Jg (¢1)), 7(a) >= é)

for some o € R..

Let < a, T ds(g(a)) >= B (or < a, T"*0s(q(a)) >= B). Since

Jo (02 = aB(x!) ) = jo T (02)
there exists an embedding ¢ : R” — R, ¢(0) = 0, such that:
Jo(e) = jp(id)
germo(Tp o (02 — aﬁ(xl)rﬁl)) = germg(0; o ) and

germo(Ty 0 0;) = germg(F; o )

fori=3,...,n,cl [2].
Let @ = T*T"p(a) (or @ = T*T ™ p(a)). Since ¢ preserves both ji(z') and
9; for i = 3,...,n, then @ satisfies the conditions (2.1) and (2.2) for ¢ = 3,... ) n.
Moreover,
<@, TW(q(@) > =< o, T* T ™Y (T8, (q(@))) >
=< a, 7" (¢(a)) = BT ((x")" 01)(q(a)) >

:ﬁ—aﬁézo

(or <@, T"™d2(q(@)) >=0).

Then by the assumption of the lemma gg-(@) = Ar~(@). Now, by the invariancy
of ¢ and h with respect to ¢ we obtain that gr=(a) = Ar~(a). O

Similarly, one can prove the following assertion.
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Lemma 5. Let g h be natural functions on T*T)|Mf, (or on T*T"*|Mf,).
Suppose that

grn(a) = hrr(a)
for any a € (T*T(T))OR” (or for any a € (T*T"*)oR") satisfying the conditions
(2.1) and (2.2) fori=1,...,n. Then g = h.
Proof. The proof is a replica of the proof of Lemma 4. (In the text of the proof

of Lemma 4 we replace d by J1, Lemma 3 by Lemma 4 and i = 3,...,n by
i=2..,n) O

Now, we prove the main lemma.

Lemma 6. Let g, h be natural functions on T*T")|Mf, (or on T*T"*|Mf,).
Suppose that

grn(a) = hrr(a)

for every a € (T*T))oR” (or for every a € (T*T"*)oR" ) satisfying the conditions
(2.1), (2.2) fori =1,...,n and

(2.3) < (@) J5(=*) >=0  (or <7(a),jf(a") >=0)

for all « = (g, ...,an) € (NU{OH™ with 1 <|a| <7 and as+ ...+ o, > 1. Then
g =nh.
Proof. Consider a € (T*T(’”))OR” (or a € (T*T")yR™) satisfying the conditions
(2.1) and (2.2) for ¢ = 1,...,n. By Lemma 5 it is sufficient to show that gr=(a) =
hRn(Cl)

Let ¢; := (x1,t2?, ... ta™) : R" — R", ¢ £ 0. It is easy to see that

T*T(T)ct(a) —a’ (or T*"T"¢y(a) — a® )
as t — 0 for some a° satisfying (2.1), (2.2) for ¢ = 1,...,n, and (2.3) for all
a=(ag,...,an) € (NU{O}"” with 1 < |o| <r and g + ... + o, > 1. Then using
the invariancy of ¢ and h with respect to ¢; we deduce that gr=(a) = gr~(a®) =
hRn(ao) = hRn (Cl)

3. We are now in position to prove both theorems. Let g be a natural function
on T*T|MFf, (or on T*T™*MF,). Define f: R — R by
f(&) = grn(ag),

where £ = (é1,...,&) € R” and a¢ € (T*T))R” (or ag € (T"T7)oR™) is the
unique form satisfying the conditions:

(2.1), (2.2) for ¢ = 1,...,n, (2.3) for all @ = (a1,..., ) € (NU{O}™ with 1 <
o] <7 and ag + ... + @, > 1, and

(2.4) <qlag),jo((x)) >=&  (or <T(ae), jy((x')") >= &)
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fors=1,...,r.
It is clear that f is smooth. We see that

grn(ag) = FARR (ag), .., A\RY (ag))
(or grn(ag) = f(ugn (ag), .., pge (ag)) )

for all ¢ € R”. Hence by Lemma 6 we obtain

gu = fo (/\Jf/[b, ...,/\Jf/ID) (or gy = fo (/ij/[b, ...,/ijf>) ).

I would like to thank Professor I. Kolaf for his comments.
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