
Archivum Mathematicum

Nikolaos S. Papageorgiou
Parametrized relaxation for evolution inclusions of the subdifferential type

Archivum Mathematicum, Vol. 31 (1995), No. 1, 9--28

Persistent URL: http://dml.cz/dmlcz/107520

Terms of use:
© Masaryk University, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107520
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 9 { 28PARAMETRIZED RELAXATION FOR EVOLUTIONINCLUSIONS OF THE SUBDIFFERENTIAL TYPENikolaos S. PapageorgiouAbstract. In this paper we consider parametric nonlinear evolution inclusionsdriven by time-dependent subdi�erentials. First we prove some continuous depen-dence results for the solution set (of both the convex and nonconvex problems)and for the set of solution-selector pairs (of the convex problem). Then we derive acontinuous version of the \Filippov-Gronwall" inequality and using it, we prove theparametric relaxation theorem. An example of a parabolic distributed parametersystem is also worked out in detail.1. IntroductionIt is well known that if the orientor �eld (set-valued vector �eld) of a di�eren-tial inclusion is Lipschitz continuous in the state variable, then the solution setof the di�erential inclusion is dense in that of the convexi�ed problem (i.e. thedi�erential inclusion obtained by replacing the orientor �eld by its closed, convexhull). We refer to the book of Aubin-Cellina [2] (theorem 2, p. 124) for di�erentialinclusions in RN and to Papageorgiou [21], Zhu [32] for di�erential inclusions inBanach spaces, for further details on this issue. Such a density result is knownin the literature as \relaxation theorem" and plays an important role in controltheory, in connection with the study of the relaxed system and in the deriva-tion of \bang-bang principles". Recently, the relaxation theorem was extended byFrankowska [12] (theorem 2.5 and corollary 2.6) to semilinear evolution inclusionsand by Papageorgiou [23], [24] to nonlinear, nonautonomous evolution inclusions ofthe subdi�erential type (in fact in [24] a stronger result was obtained; namely thatthe set of \extremal solutions"-i.e. solutions moving through the extreme pointsof the orientor �eld - is dense in the solution set of the convexi�ed problem). In arecent paper, Fryszkowski-Rzezuchowski [13], considered parametrized di�erentialinclusions, and proved a continuous analog of the relaxation result. Their proof wasbased on a parametric version of the well known Filippov approximation result,which was obtained by Colombo et al. [6]. Recall (see Aubin-Cellina [2], theorem1991 Mathematics Subject Classi�cation : 34G20.Key words and phrases: subdi�erential, relaxation theorem, Filippov-Gronwall inequality,lower semicontinuous multifunction, continuous selector, weak norm.Received November 3, 1993.



10 NIKOLAOS S. PAPAGEORGIOU1, p. 120 and Filippov [10]), that according to Filippov's result, given the multival-ued Cauchy problem _x(t) 2 F (t; x(t)) a.e. , x(0) = x0 in which the orientor �eldF (t; x) is h � Lipschitz continuous in x; with closed but not necessarily convexvalues and y(�) an absolutely continuous function on T = [0; b] such that y(0) = x0and t! d( _y(t); F (t; y(t)) is integrable, then there exists a solution x(�) of the dif-ferential inclusion such that tR0 k _y(s) � _x(s)k ds � tR0 p(s) exp � tRs k(� ) d�� ds; withk(t) 2 L1+ being the Lipschitz constant for F (t; �): This estimate is a very usefultool in the study of di�erential inclusions and among other things, shows that thesolution set S(x0) of the multivalued Cauchy problem, as a multifunction of theinitial condition x0; is h � Lipschitz continuous. The original result of Filippov[10], was extended to Caratheodory-type orientor �elds by Himmelberg-Van Vleck[15] and to semilinear evolution inclusions by Frankowska [12] and Papageorgiou[26]. When dealing with parametrized di�erential inclusions, due to the lack ofuniqueness of a solution to obtain a continuous version of the above \Filippov-Gronwall inequality", we need to slightly relax the estimate by allowing for anarbitrarily small error � > 0 (see Colombo et al. [6]).The purpose of this paper is to extend the parametric relaxation result ofFryszkowski-Rzezuchowski [13], to nonlinear evolution inclusions of the subdif-ferential type. Such inclusions are important in the study of in�nite dimensionalsystems, because they model di�erential inclusions with multivalued terms; seefor example Flytzanis-Papageorgiou [11], Papageorgiou [22] and Tiba [27]. Ourapproach follows that of Fryszkowski-Rzezuchowski [13], and so we also prove acontinuous version of the \Filippov-Gronwall inequality", extending this way toa class of nonlinear parametric evolution inclusions the corresponding result inFrankowska [12] and Papageorgiou [26].2. PreliminariesLet (
;�) be a measurable space and X a separable Banach space. Throughoutthis paper, we will be using the following notations:Pf(c)(X) = fA � X : nonempty, closed (convex)gand P(w)k(c)(X) = fA � X : nonempty, (weakly-) compact, (convex) gAmultifunction (set-valued function) F : 
! Pf (X) is said to be \measurable"if and only if for all x 2 X; the R+� valued function ! ! d(x; F (!)) = inffkx�zk : z 2 F (!)g is measurable. We will say that F (�) is \graph measurable" ifand only if GrF = f(!; x) 2 
 � X : x 2 F (!)g 2 � � B(X); with B(X) beingthe Borel �-�eld. Recall that measurability implies graph measurability, but theconverse is not in general true. It is true if � is a Souslin family and this is thecase if there is a �nite measure �(�) de�ned on (
;�) with respect to which � iscomplete. For details we refer to the survey paper of Wagner [28]. Next let �(�) bea �nite measure de�ned on (
;�): By SpF (1 � p � 1) we will denote the set of



PARAMETRIZED RELAXATION 11measurable selectors of F (�); that belong in the Lebesgue-Bochner space Lp(X);i.e. SpF = ff 2 Lp(X) : f(!) 2 F (!)� � a:e:g. In general, this set may be empty.A straightforward application of Aumann's selection theorem (see Wagner [28],theorem 5.10) shows that for a graph measurable multifunction, SpF is nonemptyif and only if ! ! inffkxk : x 2 F (!)g 2 Lp+: A set K � Lp(X) is said to bedecomposable if for all (f; g; A) 2 K � K � �; we have that �Af + �Acg 2 K.Clearly the set SpF is decomposable in the space Lp(X).On Pf (X) we can de�ne a generalized metric, known in the literature as Haus-dor� metric, by setting for A;B 2 Pf (X)h(A;B) = max�supa2A d(a;B); supi2B d(b; A)�where d(a;B) = inffka�bk : b 2 Bg and d(b; A) = inffkb�ak : a 2 Ag . It is well-known (see for example Klein-Thompson [16]), that the metric space (Pf (X); h)is complete. A multifunction F : X ! Pf (X) is said to be Hausdor� continuous(h-continuous), if it is continuous from X into the metric space (Pf (X); h).If Y; Z are Hausdor� topological spaces and G : Y ! 2Z r f;g, we say thatG(�) is lower semicontinuous (l:s:c:); if for every C � Z closed G+(C) = fy 2Y : G(y) � Cg is closed (or equivalently for every U � Z open, G�(U ) = fy 2Y : G(y) \ U 6= ;g is open). If Y; Z are metric spaces, then lower semicontinuityis equivalent to saying that if yn ! y in Y; then G(y) � limG(yn) = fz 2 Z :limd(z;G(yn)) = 0g = fz 2 Z : z = limzn; zn 2 G(yn)n � 1g. Also in thiscase lower semicontinuity of G(�) is equivalent to the upper semicontinuity of thedistance function y ! d(z;G(y)) for every z 2 Z (see DeBlasi-Myjak [8]).Let ' : X ! �R = R[ f+1g. We will say that '(�) is proper, if it is notidentically +1. Assume that '(�) is proper, convex and lower semicontinuous(l:s:c:) (usually this family of �R-valued functions is denoted by �0(X)): By dom', we will denote the e�ective domain of '(�); i.e. dom' = fx 2 X : '(x) < +1g.The subdi�erential of '(�) at x; is the set @'(x) = fx� 2 X� : (x�; y � x) �'(y) � '(x) for all y 2 dom 'g (here (�; �) stands for the duality brackets for thepair (X;X�)): If '(�) is Gateaux di�erentiable, then @'(x) = f'0(x)g. We will saythat ' 2 �0(X) is of compact type, if for every � 2 R+; the level set fx 2 X :kxk2 + '(x) � �g is compact.Our mathematical setting is the following: T = [0; b]; H is a separable Hilbertspace (the state space) and � a complete metric space (the parameter space). Wewill be considering the following two multivalued Cauchy problems:(1) ( _x(t) 2 @'(t; x(t)) + F (t; x(t); �) a.e.x(0) = v(�) )and its convexi�ed counterpart(2) (� _x(t) 2 @'(t; x(t)) + convF (t; x(t); �) a.e.x(0) = v(�) )



12 NIKOLAOS S. PAPAGEORGIOUBy a \strong solution" of (1) (resp. of (2)), we mean a function x 2W 1;2(T;H)such that x(0) = x0 and there exists f� 2 L2(H) with f�(t) 2 F (t; x(t); �)a.e. (resp. f�(t) 2 convF (t; x(t); �) a.e.), such that � _x(t) 2 @'(t; x(t)) + f�(t)a.e. Recall (see theorem 2.2 of Barbu [3]), that W 1;2(T;H) can be identi�edwith AC1;2(T;H) the space of all absolutely continuous functions from T intoH with strong derivative in L2(H). So for every y 2 W 1;2(T;H) we can �nd ay1 2 AC1;2(T;H) such that y = y1 a.e. on (0; b) (i.e. every equivalence class inW 1;2(T;H) has an absolutely continuous representative, whose strong derivative_x(�) 2 L2(T;H)). We know that if Y is a Banach space with the RNP (Radon-Nikodym property), then every absolutely continuous function x : T ! Y , isstrongly di�erentiable a.e. and _x 2 L1(Y ): The class of RNP-spaces, includes re-exive Banach spaces and separable dual spaces. For details we refer to Diestel-Uhl[9].Following Yotsutani [31], we will make the following hypothesis on '(t; x) whichwill be valid throughout this work.H(') : ' : T �H ! �R= R[ f+1g is a function such that(1) for every t 2 T; '(t; �) is proper, convex, l:s:c: (i.e. '(t; �) 2 �0(H))and is also of compact type,(2) for any � 2 [0; 1] and � = 2 if � 2 [0; 1=2] or � = 11�� if � 2 [1=2; 1]and for any positive integer r; there exists a constant Kr > 0; an abso-lutely continuous function gr : T ! Rwith _gr 2 L�(T ) and a functionof bounded variation hr : T ! R such that if t 2 T; x 2 dom'(t; �)with kxk � r and s 2 [t; b]; then there exists bx 2 dom'(s; �) satisfyingkbx� xk � jgr(s) � gr(t)j('(t; x) +Kr)�and '(s; bx) � '(t; x) + jhr(s) � hr(t)j('(t; x) +Kr) :Remarks. (a) This hypothesis is more general than the ones used by Watanabe[29] and Yamada [30].(b) If '(t; �) = '(�) 2 �0(H) (i.e. there is no t-dependence) and '(�) is ofcompact type, then clearly H(') is satis�ed. Also assume that K : T ! Pkc(H)is a multifunction such that h(K(t0);K(t)) � t0Rt v(s) ds for all 0 � t � t0 � band with v(�) 2 L2+ and let '(t; x) = �K(t)(x) where �K(t)(x) is the indicatorfunction of K(t); i.e. �K(t)(x) = 0 if x 2 K(t); +1 otherwise. Then it is clear thathypothesis H(') is satis�ed with � = 0; Kr = 1; _gr = v and hr = 0: Recall that@'(t; x) = NK(t)(x) for all (t; x) 2 GrK; where NK(t)(x) is the normal cone toK(t)at x: Evolution inclusions of the form � _x(t) 2 NK(t)(x(t))+F (t; x(t)) a.e. arise inmechanics (see Moreau [17], where F = 0) and can be useful in the optimal controlof variational inequalities. In fact, when K(t) = K (i.e. no t � dependence); theyare called \Di�erential Variational Inequalities" and they are equivalent to theprojected di�erential inclusion _x(t) 2 proj(F (t; x(t)); TK (x(t))) a.e. This was �rstproved by Cornet [7] (see also Aubin-Cellina [2], chapter 5, section 6). Projected



PARAMETRIZED RELAXATION 13di�erential inclusions arise in mathematical economics, in the study of planningprocedures, as well as in other applied problems with state constraints.In what follows by S(�) � C(T;H); we will denote the solution set of (1) andby Sr(�) � C(T;H) the solution set of (2). Also if h 2 L2(T;H); by q�(h)(�) 2C(T;H) we will denote the unique solution of the Cauchy problem � _x(t) 2@'(t; x(t)) + h(t) a.e. x(0) = v(�) 2 dom'(0; �) (its existence and uniquenessfollows from the theorem of Yotsutani [31]). Let P (�) � C(T;H)� L2(T;H) bede�ned by P (�) = f(x; h) : x = q�(h) and h 2 S2F (�;x(�))g. Similarly Pr(�) =f(x; h) : x = q�(h) and h 2 S2convF (�;x(�))g � C(T;H)� L2(T;H):3. Continuous dependence resultIn this section we establish the continuity properties of the multifunction � !Pr(�) and from that result, we deduce the continuity properties of �! Sr(�) and�! S(�): For this we will need the following hypotheses:H(F )1 : F : T �H � �! Pf (H) is a multifunction such that(1) t! F (t; x; �) is measurable,(2) h(F (t; x; �); F (t; y; �)) � kB(t)kx� yk a.e. for all � 2 B � �compact and with kB(�) 2 L2+;(3) jF (t; x; �)j = supfkvk : v 2 F (t; x; �)g � aB(t) + cB(t)kxka.e. for all � 2 B � � compact and with aB ; cB 2 L2+;(4) �! convF (t; x; �) is l:s:c:H0 : v : �! dom '(0; �) is continuous.From Papageorgiou [23] (theorems 3.1 and 3.2) we know that with hypothesesH('); H(F ) and H0 valid, for all � 2 �; the sets S(�) and Sr(�) are nonemptyand in fact Sr(�) is compact in C(T;H) (see [23], theorem 4.1). Also Pr(�) isa compact subset of C(T;H)� L2(T;H)w; where L2(T;H)w denotes the Hilbertspace L2(T;H) furnished with the weak topology. In fact, it is easy to see thatPr(�) 2 Pf (C(T;H) � L2(T;H)) for all � 2 �:Theorem 3.1. If hypotheses H('); H(F )1; and H0 hold, then�! Pr(�) is l.s.c. from � into Pf (C(T;H)� L2(T;H)) :Proof. We need to show that if �n ! �; then Pr(�) � limPr(�n). To this end,let [x; f ] 2 Pr(�). By de�nition we have� _x(t) 2 @'(t; x(t)) + f(t)a.e.; x(0) = v(�)with f(t) 2 convF (t; x(t); �) a.e. Because of hypothesis H(F )1 (4) and theorem4.1 of Papageorgiou [20], we know that �! S2conv F (�;x(�);�) is l.s.c. So we can �ndfn 2 S2convF (�;x(�);�n) such that fn s! f in L2(T;H). Let yn(�) be the unique strong



14 NIKOLAOS S. PAPAGEORGIOUsolution of the Cauchy problem(� _yn(t) 2 @'(t; yn(t)) + fn(t) a.e.yn(0) = v(�) ) :Exploiting the monotonicity of the subdi�erential operator, we get that(� _yn(t) + _x(t); x(t)� yn(t)) � (fn(t)� f(t); x(t) � yn(t)) a.e.thus 12 ddtkyn(t)� x(t)k2 � kfn(t) � f(t)k � kyn(t)� x(t)k a.e.Integrating the above inequality from 0 to t; we getkyn(t)� x(t)k2 � 2 tZ0 kfn(s)� f(s)k � kyn(s) � x(s)k ds :Applying lemma A.5, p. 157 of Brezis [5], we getkyn(t)� x(t)k � 2kfn � fk1 for all t 2 Tand so yn ! x in C(T;H) as n!1 :Next letm(t; �n) = proj(f(t); convF (t; x(t); �n)) and u(t; z; �n) = proj(m(t; �n);convF (t; z; �n)):Here proj(�; convF (t; z; �)) denotes the metric projection on the set F (t; z; �)for all (t; z; �) 2 T � H � � . Note that because of hypotheses H(F )1 (1) and(2) and theorem 3.3 of [19] we know that (t; x) ! F (t; x; �n) is measurable, sot ! F (t; x(t); �n) is measurable thus t ! conv F (t; x(t); �n) measurable ) t !d(f(t); conv F (t; x(t); �n)) = kf(t)�m(t; �n)k is Borel measurable) t! m(t; �n)is Borel measurable. Similarly we can establish that t ! u(t; z; �n) is Borel mea-surable, while from hypothesis H(F )1 (2) and theorem 3.33, p. 322 of Attouch [1],we have that z ! u(t; z; �n) n � 1 is continuous.Let xn(�) 2W 1;2(T;H) be a solution of the evolution inclusion(� _xn(t) 2 @'(t; xn(t)) + u(t; xn(t); �n)a.e.xn(0) = v(�n) )(see theorem 3.1 of Papageorgiou [23]). Exploiting once again the monotonicity ofthe subdi�erential operator, we get(� _xn(t) + _yn(t); yn(t)� xn(t)) � (u(t; xn(t); �n)� fn(t); yn(t)� xn(t))a.e.thus 12kxn(t) � yn(t)k2 � 12kv(�n) � v(�)k2 + tZ0 ku(s; xn(s); �n)�fn(s)k � kyn(s) � xn(s)k dshence kxn(t)� yn(t)k � kv(�n)� v(�)k + tZ0 ku(s; xn(s); �n) � fn(s)k ds



PARAMETRIZED RELAXATION 15(see lemma A.5, p. 157 of Brezis [5]).Note thatZ t0 ku(s; xn(s); �n) � fn(s)k ds� Z t0 ku(s; xn(s); �n) � u(s; x(s); �n)kds+ Z t0 ku(s; x(s); �n)� fn(s)k ds� Z t0 h(F (s; xn(s); �n); F (s; x(s); �n))ds + Z t0 ku(s; x(s); �n) � f(s)kds+ Z t0 kf(s) � fn(s)k ds� Z t0 kB(s)kxn(s) � x(s)kds+ Z t0 ku(s; x(s); �n)� f(s)kds + Z t0 kf(s) � fn(s)k ds� Z t0 kB(s)kxn(s) � yn(s)kds+ Z b0 kB(s)kyn(s) � x(s)kds+ Z b0 ku(s; x(s); �n)� f(s)k ds + Z b0 kf(s) � fn(s)k ds; with B = f�n; �gn�1 :We know that Z b0 kB(s)kyn(s) � x(s)k ds! 0 as n!1 ;Z b0 kf(s) � fn(s)k ds! 0 as n!1and bR0 ku(s; x(s); �n) � f(s)k ds = bR0 d(f(s); convF (s; x(s); �n))ds: Because of hy-pothesis H(F )1 (4), we know that �! d(f(s); conv F (s; x(s); �)) is u:s:c. So fromFatou's lemma we havelimZ b0 ku(s; x(s); �n) � f(s)k ds � Z b0 limd(f(s) ; conv F (s; x(s); �n)) ds� Z b0 d(f(s); conv F (s; x(s); �)) ds = 0 :So given � > 0; we can �nd n0(�) � 1 such that for n � n0(�); we havekxn(t)� yn(t)k � �+ Z t0 kB(s)kxn(s) � yn(s)k ds; t 2 Tthus kxn(t) � yn(t)k � � exp kkBk1 for all t 2 T and all n � n0(�)hence xn ! x in C(T;H) :



16 NIKOLAOS S. PAPAGEORGIOUAlso note that Z b0 ku(t; xn(t); �n) � f(t)k2 dt� 2 Z b0 ku(t; xn(t); �n) � u(t; x(t); �n)k2 dt+ 2 Z b0 ku(t; x(t); �n)� f(t)k2 dt� 2 Z b0 kB(t)kxn(t) � x(t)k2 dt+ 2 Z b0 ku(t; x(t); �n)� f(t)k2 dt! 0as n!1 :Set hn(�) = u(�; xn(�); �n): Then [xn; hn] 2 Pr(�n) and we have just seen that[xn; hn]! [x; h] in C(T;H) � L2(T;H): Therefore we havePr(�) � limPr(�n) in C(T;H)� L2(T;H)and so �! Pr(�) is l.s.c. �From the above proof we also get:Theorem 3.2. If hypotheses H('); H(F )1 and H0 hold, then �! Sr(�) is l.s.c.from � into Pk(C(T;H)).Since for every � 2 �; Sr(�) = S(�), the closure taken in C(T;H) (see [23],theorem 5.1), we also have:Theorem 3.3. If hypotheses H('), H(F )1 and H0 hold, then �! S(�) is l.s.c.from � into 2C(T;H) r f;g.Proof. We know that Sr(�) = S(�) and that � ! Sr(�) is l.s.c. (see theorem3.2). Then the lower semicontinuity of �! S(�) follows from proposition 7.3.3, p.85 of Klein-Thompson [16]. �Remark. Our results extend theorem 1 of Colombo et al. [6] and theorem 4.2 ofZhu [32], who considered di�erential inclusions in separable Banach spaces, butwith no subdi�erential operators present. Furthermore, here we have a continuousdependence result for the multifunction � ! Pr(�) too. Note that Colombo etal. [6] assume that (t; x; �) ! F (t; x; �) is measurable. However it is enough toassume that t ! F (t; x; �) is measurable. Then because of the h-continuity ofx ! F (t; x; �) (see hypothesis H(F )1 (2) and theorem 3.3 of Papageorgiou [22],we know that (t; x) ! F (t; x; �) is jointly measurable. Furthermore, we shouldpoint out that in both [6] and [32], it is assumed that � ! F (t; x; �) is l.s.c.,while here we only require that �! convF (t; x; �) is l.s.c. From Klein-Thompson[16] (theorem 7.2.7, p. 82), we know that our hypothesis is less restrictive. Finally,additional continuous dependence results for evolution inclusions in which theparameter appears in the subdi�erential operator too, can be found in [25].



PARAMETRIZED RELAXATION 174. Filippov-Gronwall inequalityIn this section, we prove a continuous version of the \Filippov-Gronwall" esti-mate. With the help of this result, in section 5, we will prove the desired continuousversion of the relaxation theorem. Our result extends theorem 2 of Colombo et al.[6], which is about di�erential inclusions in Banach spaces with no subdi�erentialoperator present and theorem 1.2 of Frankowska [12] and theorem 4.1 of Papa-georgiou [26], which deal with semilinear evolution inclusions and no parameter� 2 � is present.We will need the following hypothesis on the orientor �eld F (t; x; �):H(F )2 : F : T �H � �! Pf (H) is a multifunction such that(1) t! F (t; x; �) is measurable,(2) h(F (t; x; �); F (t; y; �)) � k(t)kx� yk a.e. for all (t; �) 2 T � �and with k(�) 2 L1+,(3) jF (t; x; �)j � a(t) + c(t)kxk a.e. for all � 2 �; with a; c 2 L2+;(4) �! F (t; x; �) is l.s.c.Note that if �! [y(�); g(�)] is a continuous map from � into C(T;H)�L2(H);then there exists pg : �! L1+ a continuous map such that for all � 2 �(3) d(g(�)(t); F (t; y(�)(t); �)) � pg(�)(t)a.e. on T :For example, we can take pg(�)(t) = kg(�)(t)k + a(t) + c(t)ky(�)(t)k.In what follows, given h 2 L2(H); by q�(h)(�) 2 C(T;H); we will denote theunique strong solution of(� _z(t) 2 @'(t; z(t)) + h(t) a.e. on Tz(0) = v(�) )Theorem 4.1. If hypotheses H('); H(F )2; H0 hold, � ! [y(�); g(�)] is a con-tinuous map from � into C(T;H) � L2(T;H); with y(�) = q�(g(�)), � > 0 andpg : �! L1+ is a continuous map satisfying (3), then there exists �! [x(�); r(�)]a continuous map from � into C(T;H)� L2(T;H) with [x(�); r(�)] 2 P (�) andfor all � 2 � we havekx(�)(t) � y(�)(t)k � b�e�(t) + tZ0 pg(�)(s) exp[�(t) � �(s)] ds; t 2 Twith �(t) = Z t0 k(s) ds :Proof. Let �0(�)(t) = fv 2 F (t; y(�)(t); �) : kv�g(�)(t)k < pg(�)(t)+�g. Clearly�0(�) (t) 6= ; a.e. and by modifying it on a Lebesgue null set, we may assumewithout any loss of generality that �0(�)(t) 6= ; for all t 2 T: Because of hypotheses



18 NIKOLAOS S. PAPAGEORGIOUH(F )2 (1) and (2) and theorem 3.3. of [22], we know that (t; x) ! F (t; x; �) ismeasurable. So Gr�0(�) 2 L(T ) � B(H); with L(T ) being the Lebesgue �-�eldof T and B(H) the Borel �-�eld of H. Applying Aumann's selection theorem, wededuce that there exists z : T ! H a Lebesgue measurable selector of �0(�)(�):Then de�ne R0 : �! 2L1(T;H) byR0(�) = nz 2 S1F (�;y(�)(�);�) : kz(t) � g(�)(t)k < pg(�)(t) + �a.e.o :We have just seen that for all � 2 �, R0(�) 6= ;. Furthermore, from proposition4 of Bressan-Colombo [4], we know that � ! R0(�) is l.s.c. with decomposablevalues. Hence �! R0(�) is l.s.c. with decomposable values. Then apply theorem3 of Bressan-Colombo [4], to get r0 : � ! L1(T;H) a continuous map such thatr0(�) 2 R0(�) for all � 2 �. Then we have kg(�)(t)� r0(�)(t)k � pg(�)(t) + � a.e.for all � 2 �. Let x1(�)(�) 2W 1;2(T;H) be the unique strong solution of(� _x(t) 2 @'(t; x(t)) + r0(�)(t)a.e.x(0) = v(�) )We claim that by induction, we get two sequences fxn(�)(�)gn�1 � W 1;2(T;H)and frn(�)(�)gn�0 � L2(T;H) satisfying(i) xn(�) = q�(rn�1(�)),(ii) �! xn(�) is continuous from � into C(T;H) and �! rn(�) is continuousfrom � into L2(T;H);(iii) rn(�)(t) 2 F (t; xn(t); �) a.e. ,(iv) krn(�)(t) � rn�1(�)(t)k � k(t)�n(�)(t) a.e.where �n(�)(t) = tR0 pg(�)(s) (�(t)��(s))n�1(n�1)! ds+ b� nPk=0 �2k+1� �(t)n�1(n�1)! , with �(t) =tR0 k(s) ds:Suppose we were able to produce fxk(�)(�)gnk=1 and frk(�)(�)gnk=0 satisfyingproperties (i) ! (iv) above. Let xn+1(�) = q�(rn(�)). As before, because of themonotonicity of the subdi�erential operator, we getkxn+1(�)(t) � xn(�)(t)k � Z t0 krn(�)(s) � rn�1(�)(s)k � Z t0 k(s)�n(�)(s) ds� Z t0 k(s) Z s0 pg(�)(� ) (�(s) � �(� ))n�1(n � 1)! d� ds+ b nXk=0 �2k+1!Z t0 k(s) �(s)n�1(n � 1)! ds� Z t0 pg(�)(s) Z ts k(� ) (�(� ) � �(s))n�1(n� 1)! d� ds+ b nXk=0 �2k+1! �(t)nn!= Z t0 pg(�)(s) Z ts dd� � (�(� ) � �(s))nn! � d� ds+ b  nXk=0 �2k+1! �(t)nn!= Z t0 pg(�)(s) (�(t) � �(s))nn! ds+ b  nXk=0 �2k+1! �(t)nn! < �n+1(�)(t)a.e.



PARAMETRIZED RELAXATION 19Also from hypothesis H(F )2 (2), we haved(rn(�)(t); F (t; xn+1(�)(t); �)) � k(t)kxn(�)(t) � xn+1(�)(t)k< k(t)�n+1(�)(t) a.e.De�ne Rn+1 : �! 2L1(H) byRn+1(�) = nz 2 S1F (�;xn+1 (�)(�);�) : kz(t) � rn(�)(t)k < k(t)�n+1(�)(t) a.e.oAs we did with R0(�); we can verify using Aumann's selection theorem thatRn+1(�) 6= ; for all � 2 �; while proposition 4 of Bressan-Colombo [4], tellsus that � ! Rn+1(�) is l.s.c. with decomposable values. Hence � ! Rn+1(�)is l.s.c. with decomposable values. Therefore theorem 3 of Bressan-Colombo [4],gives us rn+1 : � ! L1(H) a continuous map such that rn+1(�) 2 Rn+1(�) forall � 2 �: So rn+1(�)(t) 2 F (t; xn+1(�)(t); �) a.e. and krn+1(�)(t) � rn(�)(t)k �k(t)�n+1(�)(t) a.e. So by induction we have established the existence of two se-quences fxn(�)(�)gn�1 and frn(�)(�)gn�0 satisfying (i) ! (iv) above. Then wehave: Z b0 krn(�)(t) � rn�1(�)(t)kdt < Z b0 k(t)�n(�)(t)dt < �n+1(�)(b)= Z b0 Z t0 pg(�)(s) (�(t) � �(s))nn! ds dt+ b n+1Xk=0 �2k+1!�(b)nn!� b�(b)nn! kpg(�)k1 + b�k�kn1n! :Note that since � ! pg(�) is continuous from � into L1+ ) � ! kpg(�)k1 iscontinuous, hence locally bounded. Therefore from the above inequality, and sincekxn+1(�)� xn(�)k1 � krn(�)� rn�1(�)k1; we get that fxn(�)(�)gn�1 � C(T;H)and frn(�)(�)gn�0 � L1(T;H) are Cauchy sequences, locally uniformly in � 2 �.So we get that xn(�)! x(�) in C(T;H)and rn(�) ! r(�) in L1(T;H) as n ! 1, locally uniformly in �: Therefore� ! x(�) is continuous from � into C(T;H) and � ! r(�) is continuous from �into L1(T;H). Furthermore, because of hypothesis H(F )2 (3), we actually havethat � ! r(�) is continuous from � into L2(T;H): In addition from hypothesisH(F )2 (2) we get that r(�)(t) 2 F (t; x(�)(t); �) a.e.Let w(�)(�) 2 W 1;2(T;H) be de�ned by w(�) = q�(r(�)). As before, from themonotonicity of the subdi�erential operator, we havekxn(�)(t) �w(�)(t)k � Z b0 krn(�)(t) � r(�)(t)k dt! 0 as n!1so xn(�)! w(�) in C(T;H) as n!1thus w(�) = x(�)



20 NIKOLAOS S. PAPAGEORGIOUSo we have that �! [x(�); r(�)] is continuous from � into C(T;H)�L2(T;H)and for all � 2 � we have [x(�); r(�)] 2 P (�).Finally from the triangle inequality, we haveky(�)(t) � xn(�)(t)k � ky(�)(t) � x1(�)(t)k+ n�1Xk=1 kxk(�)(t) � xk+1(�)(t)k :Recall thatkxk(�)(t) � xk+1(�)(t)k � Z t0 krk(�)(s) � rk�1(�)(s)k ds� Z t0 k(s)�k(�)(s) ds� Z t0 k(s) Z s0 pg(�)(s) (�(s) � �(� ))k�1(k � 1)! d� ds + b� Z t0 k(s) �(s)k�1(k � 1)! ds� 1k! Z t0 pg(�)(� ) Z t� dds (�(s) � �(� ))k ds d� + b�k! tZ0 dds�(s)k ds= 1k! Z t0 pg(�)(s)(�(t) � �(s))k ds + b�k!�(t)k :Also ky(�)(t) � x1(�)(t)k � tR0 kg(�)(s) � r0(�)(s)kds � tR0 (pg(�)(s) + �) ds.Summing up with respect to k � 0 and passing to the limit as n!1; we getky(�)(t) � x(�)(t)k � b� exp(�(t)) + Z t0 pg(�)(s) exp(�(t) � �(s)) ds; t 2 T : �Remark. It is easy to see from the above proof, that we also havekr(�)(t) � g(�)(t)k � b� exp(�(t)) + Z t0 pg(�)(s) exp(�(t) � �(s)) ds + pg(�)(t)a.e.5. Parametric relaxation theoremIn this section we use the parametric \Filippov-Gronwall inequality" proved insection 4 (theorem 4.1), to establish a parametric version of the relaxation theorem.We will need the following stronger variant of hypothesis H0 :H00 : v : �! dom'(0; �) is continuous and bounded, and sup�2� '(0; v(�)) <1.First note that if x(�) 2 Sr(�), then if z� = q�(0), we havekx(t)� z�(t)k � Z t0 kf(s)k ds; t 2 T ;



PARAMETRIZED RELAXATION 21where f 2 L2(H); f(t) 2 F (t; x(t); �) a.e. So for every t 2 T , we havekx(t)k � sup�2� kz�k1 + Z t0 (a(s) + c(s)kx(s)k) ds :Note that because of hypothesis H00 sup�2� kz�k1 <1 (see Yotsutani [31]).Hence by Gronwall's inequality, we get that there exists M1 > 0 such that forall t 2 T and all x(�) 2 S(�); � 2 � we have kx(t)k � M1. Then by consideringF (t; rM1(x); �) instead of F (t; x; �) (here rM1 : H ! H denotes the M1-radialretraction on H); we may assume without any loss of generality that jF (t; x; �)j � (t) a.e. with  (�) 2 L2+ (in fact, we can have  (t) = a(t) + c(t)M1). So in thissection we will assume that jF (t; x; �)j �  (t) a.e. for all (x; �) 2 H � �.Also in the proof of theorem 5.1 below, we will need the following simple con-tinuity result, concerning the solution map q : L2(H)! C(T;H). Recall that q(�)assigns to every h 2 L2(H) the unique strong solution q(h)(�) 2 C(T;H) of theCauchy problem (� _z(t) 2 @'(t; z(t)) + h(t)z(0) = x0 2 dom'(0; �) ) :In the sequel by k � kw we will denote the (weak) norm on L1(T;H) de�ned bykhkw = sup0�t�bk Z t0 h(s) dskConvergence in this norm will be denoted by k�kw�!.Lemma. If hypothesis H(') holds, fhn; hgn�1 � L2(T;H); khn(t)k ; kh(t)k � (t) a.e. with  (�) 2 L2+ and hn k�kw�! h, then q(hn)! q(h) in C(T;H).Proof. First we will show that hn w! h in L2(T;H) Since step functions aredense in L2(H), it is enough to show that (hn; s)L2(T;H) ! (h; s)L2(T;H) for alls(t) = NPk=1�(tk�1;tk)(t)v�k with 0 � tk�1 < tk � b and v�k 2 H (here (�; �)L2(T;H)stands for the inner product in L2(T;H)). We have:j(hn � h; s)L2(H)j = j NXk=1Z tktk�1 (hn(s) � h(s); v�k) dsj� NXk=1 k Z tktk�1 (hn(s)� h(s)) dskkv�kk� khn � hkw � NXk=1 kv�kk ! 0 as n!1 :So indeed hn w�! h in L2(T;H).



22 NIKOLAOS S. PAPAGEORGIOUNext since khn(t)k, kh(t)k �  (t) a.e., with  2 L2(T;H), invoking theorem 3.1of Papageorgiou [23], we know that fq(hn)(�)gn�1 � C(T;H) is relatively compact.Hence we may assume that q(hn)! v in C(T;H) as n!1. We have:12kq(hn)(t)� q(h)(t)k2 � Z t0 (hn(s) � h(s); q(hn)(s) � q(h)(s)) ds= Z t0 (hn(s) � h(s); q(hn)(s) � v(s)) ds + Z t0 (hn(s) � h(s); v(s) � q(h)(s)) ds� Z t0 2 (s)kq(hn)(s) � v(s)k ds + Z t0 (hn(s) � h(s); v(s) � q(h)(s))ds ! 0as n!1 and so q(hn)! q(h) in C(T;H) as n!1 : �Now we can state and prove our parametric relaxation theorem. For this, weneed to assume that � is also separable (i.e. � is a Polish space).Theorem 5.1. If hypotheses H('), H(F )2, H0 hold, �! [y(�); g(�)] is a contin-uous selector of the multifunction �! Pr(�) and � > 0, then there exists �! x(�)a continuous map from � into C(T;H) such that for all � 2 �, x(�) 2 S(�) andkx(�)� y(�)k1 < �.Proof. From the lemma we know that we can �nd � > 0 such that if h 2 L2(H),kh(t)k �  (t) a.e. and kg(�) � hkw � �, then ky(�) � q�(h)k1 � �4Mbb whereM = exp(�(b)) and bb = max[b; 1]. �Partition T = [0; b] into intervals Tk = [tk; tk+1]; k = 0; 1; 2; : : : ; N such thatRTk  (s)ds < �4 (it can be done because of the absolute continuity of the Lebesgueintegral). Let �(�)(t) = tR0 g(�)(s) ds. Then �(�)(�) 2 C(T;H) and by hypothesis�! �(�)(tk+1)��(�)(tk) is a continuous selector of the parametric Aumann (set-valued) integral RTk convF (t; y(�)(t); �) dt. From corollary 4.3 of Hiai-Umegaki [14],we know that cl RTk convF (t; y(�)(t); �)dt = cl RTk F (t; y(�)(t); �)dt, while from thecorollary on p. 188 of Papageorgiou [18], we know that cl RTk convF (t; y(�)(t); �)dt =RTk convF (t; y(�)(t); �)dt 2 Pwkc(H). Consider the multifunction Rk : � !Pf (L1(Tk;H)) de�ned by Rk(�) = S1F (�;y(�)(�);�). From theorem 4.1 of [20], weknow that Rk(�) is l.s.c. and clearly has decomposable values. So apply theorem1 of Fryszkowski-Rzezuchowski [13] and get rk : �! L1(Tk;H) k 2 f0; 1; : : : ; Ngcontinuous maps such that for all � 2 �, rk(�) 2 Rk(�) and k tk+1Rtk g(�)(t) dt �tk+1Rtk rk(�)(t) dtk < �2N . Let f(�)(�) = NPk=0�Tk(�)rk(�)(�) 2 L2(T;H), kf(�)(t)k �



PARAMETRIZED RELAXATION 23 (t) a.e. and set z(�) = q�(f(�)). We claim that kg(�) � f(�)kw < �. Indeed byde�nition, we havekg(�) � f(�)kw = sup �k Z t0 (g(�)(s) � f(�)(s)) dsk; t 2 T� :Let t 2 Tm for some m 2 f0; 1; : : : ; Ng. We havek Z t0 (g(�)(s) � f(�)(s))dsk= k Z[m�1k=0 Tk(g(�)(s) � f(�)(s)) dsk + k Z ttm(g(�)(s) � f(�)(s)) dsk< �2 + Z ttm 2 (s) ds < �2 + �2 = � :Since t 2 T was arbitrary, we conclude thatkg(�) � f(�)kw � � :Therefore ky(�) � z(�)k1 � �4Mbb . Note thatf(�)(t) 2 F (t; y(�)(t); �) a.e.so d(f(�)(t); F (t; z(�)(t); �)) � k(t) �4Mbb :Apply theorem 4.1 (the \Filippov-Gronwall" inequality), with pf (�)(�) == k(�) �4Mbb. Then according to that result, we get a continuous map � ! x(�)from � into C(T;H) such that for all � 2 �, x(�) 2 S(�) andkx(�)� z(�)k1 � b �4MbbM + �4MbbM Z t0 k(s) exp(��(s)) ds� �4 + �4(1 � e��(t))( since bb � 1)� �4 + �4 = �2 :Therefore, �nally we havekx(�)� y(�)k1 � kx(�)� z(�)k1 + kz(�) � y(�)k1� �4Mbb + �2 � �2 + �2 = � : �



24 NIKOLAOS S. PAPAGEORGIOU6. An application to control systemsIn this section we illustrate the abstract results obtained in this paper, withan application to parabolic distributed parameter control systems. Speci�cally wewill prove a parametric version of the \bang-bang principle".So let T = [0; b] and Z � RN a bounded domain in RN with smooth boundary@Z = �. We consider the following parametric control system:(4) 8>>>><>>>>: @x@t � a(t) NXk=1Dk(jDkxjp�2Dkx) + xjxjp�2= f(t; z; x(t; z); �)u(t; z) a.e. on T � ZxjT��=0;x(0;z)=v(z;�);u(t;z)2U(t;z) a.e. ;p�2:9>>>>=>>>>;In conjunction with (4) above, we also consider its \convexi�ed" version(5) 8>>>><>>>>: @x@t � a(t) NXk=1Dk(jDkxjp�2Dkx) + xjxjp�2= f(t; z; x(t; z); �)u(t; z) a.e. on T � ZxjT��=0;x(0;z)=v(z;�);u(t;z)2convU(t;z) a.e. ;p�2:9>>>>=>>>>;Note that as always Dk = @@zk ; k = 1; 2; : : : ; N .We will need the following hypotheses on the data:H(a) :0 < c � a(t) and ja(t0)� a(t)j � `jt0 � tj with ` > 0H(f) :f : T � Z �R� �! R is a function such that(1) (t; z)! f(t; z; x; �) is measurable,(2) jf(t; z; x; �)� f(t; z; x0; �)j � k(t; z)jx� x0j a.e. for all � 2 �, withk(�; �) 2 L1(T � Z);(3) jf(t; z; x; �)j � a(t; z) + c(t; z)jxj a.e. for all � 2 �; with a 2 L2(T � Z),c 2 L1(T � Z);(4) �! f(t; z; x; �) is continuous.H(U ):U : T � Z ! Pf (R) is a measurable multifunction such that jU (t; z)j �Mfor all (t; z) 2 T � Z:H(v) :�! v(�; �) is a continuous and bounded map from � into L2(Z) withv(�; �) 2W 1;p0 (Z) for all � 2 �:As in section 5, we assume that � is a Polish space.Theorem 6.1. If hypotheses H(a); H(f); H(U ); H(v) hold, � ! y(�) is a con-tinuous map from � into C(T; L2(Z)); for every � 2 �, y(�) is a solution of (5)and � > 0; then there exists a map � ! x(�) which is continuous from � intoC(T; L2(Z)); such that for every � 2 �; x(�) is a solution of (4) andsupt2T ZZ jx(�)(t; z)� y(�)(t; z)j2 dz < � :



PARAMETRIZED RELAXATION 25Proof. Let H = L2(Z) and let ' : T �H ! �R= R[ f+1g be de�ned by'(t; x) = ( a(t)1p RZPNk=1Dkx(z)jpdz + 1p RZ jx(z)jp dz if x 2 W 1;p0 (Z)+1 otherwise:Note that for all t 2 T; '(t; �) 2 �0(H) and dom '(t; �) = W 1;p0 (Z): SinceW 1;p0 (Z) embeds compactly into L2(Z); we get that '(t; �) is of compact type.Also using hypothesis H(a) and the fact that kxk = (RZ NPk=1 jDkx(z)jpdz)1=p is anequivalent norm on W 1;p0 (Z); we easily check that hypothesis H(') is satis�ed.Furthermore using Green's identity we can see that@'(t; x) = �a(t)�px+ xjxjp�2with �px = � NPk=1Dk(jDkxjp�2Dkx) (pseudo-Laplacian) and dom�p = D(�p) =fy 2W 1;p0 (Z) : �py 2 L2(Z)g.Next let F : T �H � �! Pf (H) be de�ned byF (t; x; �) = fv 2 L2(Z) : v(z) = f(t; z; x(z); �)u(z); u(z) 2 U (t; z) a.e. on ZgLet v 2 H = L2(Z): Then using theorem 2.2 of Hiai-Umegaki [14], we getd(v; F (t; x; �))= inf h ZZ jv(z) � f(t; z; x(z); �)u(z)jdz : u 2 L2(Z); u(z) 2 U (t; z)a.e.i= ZZ inf hjv(z) � f(t; z; x(z); �)uj : u 2 U (t; z)idz :Because of hypothesis H(U ); we can �nd a sequence of measurable functionsun : T �Z ! R such that U (t; z) = fun(t; z)gn�1 for all (t; z) 2 T �Z (see Wagner[28], theorem 4.2). Hence we haveinf [jv(z) � f(t; z; x(z); �)uj : u 2 U (t; z)]= infn�1jv(z) � f(t; z; x(z); �)un(t; z)j) t! d(v; F (t; x; �)) is measurable) t! F (t; x; �) is a measurable multifunction.Also let bf : T � L2(Z) � �! L2(Z) be the Nemitsky (superposition) operatorcorresponding to the function f ; i.e. bf(t; x; �)(�) = f(t; �; x(�); �). We haveh(F (t; x; �); F (t; x0; �)) = h( bf (t; x; �)S1U(t;�); bf (t; x0; �)S1U(t;�))� k bf(t; x; �)� bf (t; x0; �)k2M� bk(t)Mkx� x0k2



26 NIKOLAOS S. PAPAGEORGIOUwith bk(t) = kk(t; �)k1 2 L1+.Furthermore, note thath(F (t; x; �); F (t; x; �0)) � Mk bf(t; x; �)� bf (t; x; �0)k2) �! F (t; x; �) is h-continuous (see hypothesis H(f)(4)), a fortiori then l:s:c:Finally, note that because of hypotheses H(f) (3) and H(U ); we have thatjF (t; x; �)j � ba(t) + bckxk2 ae.with ba 2 L2+, bc > 0.Observe that convF (t; x; �) = conv bf (t; x; �)S1U(t;�) = bf (t; x; �)convS1U(t;�) =bf (t; x; �), S1convU(t;�) (see Hiai-Umegaki [14]). So we can rewrite systems (4) and(5) in the following equivalent subdi�erential inclusion forms:(40) (� _x(t) 2 @'(t; x(t)) + F (t; x(t); �) a:e:x(0) = bv(�) )and(50) (� _x(t) 2 @'(t; x(t)) + convF (t; x(t); �) a.e.x(0) = bv(�) )Here bv(�) = v(�; �) 2 W 1;p0 (Z) = dom'(0; �) and � ! bv(�) is continuous from� into L2(Z) (see hypothesis H(v)): So we have satis�ed hypothesis H00:Let u(t; z) be the control generating the state y(�)(�; �): Clearly then � ![y(�)(�); bf (�; y(�)(�))bu(�)] (bu(t)(�) = u(t; �)) is a continuous map from � intoC(T;H) � L2(H) such that for all � 2 �; the pair belongs in Pr(�) for problem(50). Apply theorem 5.1 to get �! x(�) continuous from � into C(T; L2(Z)) suchthat for all � 2 �, x(�)(�; �) solves (40), hence (4) too, and kx(�)� y(�)k2C(T;H) <�) t 2 T ! sup RZ jx(�)(t; z)� y(�)(t; z)j2dz < �. �Acknowledgement: The author wishes to thank an expert referee for his(her) many corrections and remarks that improved the content of this paper con-siderably. References[1] Attouch,H., Variational Convergence for Functionals and Operators, Pitman, London (1984).[2] Aubin, J.-P., Cellina, A., Di�erential Inclusions, Springer-Verlag, Berlin (1984).[3] Barbu, V., Nonlinear Semigroups and Di�erential Equations in Banach Spaces, Noordho�International Publishing, Leyden, The Netherlands (1976).[4] Bressan, A., Colombo, G., Extensions and selections of maps with decomposable values,Studia Math.90, (1988), pp. 69-86.[5] Brezis, H., Operateurs Maximaux Monotones, North Holland, Amsterdam (1973).
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