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AR CHIVUM MA THEMA TICUM (BRNO)

T om us 31 (1995), 65 { 74DIAMOND IDENTITIES FOR RELATIVE CONGRUENCESG�abor Cz�edliAbstract. F or a class K of structures and A 2 K let Con

�
( A) resp. Con

K
( A)

denote the lattices of �- congruence s resp. K-congruence s of A, cf. W ea v er [25].

Let Con

�
( K) := IfCon

�
( A): A 2 Kg where I is the op erator of forming isomor-

phic copies, and Con

r
( K) := IfCon

K
( A): A 2 Kg. F or an ordered algebra A

the lattice of order congruence s of A is denoted b y Con

<
( A), and let Con

<
( K) :=IfCon

<
( A): A 2 Kg if K is a class of ordered algebras. The op erators of forming

sub direct squares and direct pro ducts are denoted b y Qs
and P , resp ectiv ely . Let� b e a lattice iden tit y and let � b e a set of lattice iden tities. Let � j= c � ( r ; Qs; P )

denote that for ev ery class K of structures whic h is closed under Qs
and P if

� holds is Con

r
( K) then so do es �. The consequence relations � j= c � ( �; Qs

),

� j= c � ( �; Qs
) and � j= c � ( H;S; P ) are de�ned analogously ; the latter is

the usual consequence relation in congruence v arieties (cf. J� onsson [19]), so it will

also b e denoted simply b y j= c . If � 6j= � (in the class of all lattices) then the

ab o v e-men tio ned consequence s are called non trivial. The presen t pap er sho ws that

if � j= mo dularit y and � j= c � is a kno wn result in the theory of congruence v ari-

eties then � j= c � ( �; Qs
), � j= c � ( �; Qs

) and � j= c � ( r ; Qs; P ) as w ell. In

most of these cases � is a diamond iden tit y in the sense of [3].1. IntroductionFor a class K of algebras let Con(K) denote IfCon(A): A 2 Kg, i.e. the class oflattices isomorphic to congruence lattices of algebras in K. If K is a variety thenthe lattice variety generated by Con(K) is called a congruence variety , cf. J�onsson[19]. For a lattice identity � and a set of lattice identities �, � is said to imply� in congruence varieties, in notation � j=c �, if every congruence variety thatsatis�es (every member of) � also satis�es �. If, in addition, � does not imply �in all lattices, in notation � 6j= �, then the consequence relation � j=c � is callednontrivial. Many nontrivial results of the form f�g j=c � have appeared so far,cf., e.g., Nation [22], Day and Freese [8], Freese, Herrmann and Huhn [11] andJ�onsson [19]; for a more detailed list and a survey cf. J�onsson [19]. These results
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mann frame, lattice iden tit y.
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EDLIstate that certain lattice identities are equivalent to the modular or distributivelaw in congruence varieties. Another kinds of j=c results are given in [4], wherein�nitely many nontrivial f�ig j=c �i are established such that the �i are pairwisenon-equivalent even in congruence varieties.The aim of the present paper is to generalize these results for more generalsituations. Therefore we will consider structures (i.e., nonempty sets equippedwith operations and relations, cf. Weaver [25] for an overview), not only algebras.The operators of forming subdirect squares, direct products and isomorphic copieswill be denoted by Qs, P and I, respectively. The relations on direct productsare de�ned by componentwise, while the relations for substructures (or subdirectproducts) are obtained via restriction to their base set. Another way of general-ization is to consider Qs-closed classes K instead of varieties. Let K be a class ofsimilar structures and A;B 2 K. A map ': A ! B is called a homomorphismif it commutes with the fundamental operations and for any relation symbol �and arbitrary a1; : : : ; an 2 A if �A(a1; : : : ; an) then �B('(a1); : : : ; '(an)). GivenA 2 K, the kernels of homomorphisms from A into other structures in K arecalled K-congruences or relative congruences of A. Let ConK(A) be the set ofK-congruences of A. The proof of Theorem 3 in Weaver [25] shows that ConK(A)is a lattice (with respect to inclusion) provided K is closed under direct prod-ucts. Therefore Conr(K) := IfConK(A): A 2 Kg is a class of lattices when K isP -closed. Considering Conr(K) instead of Con(K) o�ers us the third way of gener-alization. For a structure A an equivalence relation � of A is called a �-congruenceof A if � is a congruence in the algebraic sense and for any k-ary relation symbol� and any ha1; b1i; : : : ; hak; bki 2 � we have�A(a1; : : : ; ak) () �A(b1; : : : ; bk);cf. Weaver [25]. The �-congruences of A form a sublattice of the equivalencelattice of A; this lattice will be denoted by Con�(A). For an algebra A we haveCon�(A) = Con(A).A triple hA;F ;�i is called an ordered algebra if hA;F i is an algebra, hA;�i isa partially ordered set, and every f 2 F is monotone with respect to �. Varietiesof ordered algebras were studied e.g. in Bloom [1]. In case of ordered algebras,the monotone and operation-preserving maps are called homomorphisms, and theirkernels are called order congruences. Given an ordered algebra A, the set Con<(A)of of order congruences of A is an algebraic lattice. (This was proved in [6], wherean inner de�nition of order congruences and a description of their join is alsogiven.) For a class K of ordered algebras let Con<(K) := IfCon<(A): A 2 Kg.For a class K of ordered algebras and B 2 K the lattices Con<(B), Con�(B) andConK(B) are pairwise di�erent in general, even if K is closed under P and Qs.We will investigate three further consequence relations among lattice identities.Let � be a lattice identity and let � be a set of lattice identities. Let � j=c� (r;Qs; P ) resp. � j=c � (�;Qs) resp. � j=c � (�;Qs) denote that forevery class K of structures which is closed under Qs and P resp. every Qs-closedclass K of structures resp. every Qs-closed class K of ordered algebras if � holds in



DIAMOND IDENTITIES 67Conr(K) resp. Con�(K) resp. Con<(K) then so does �. According to the notationsabove, j=c could be denoted by j=c (H;S; P ). The reader will certainly notice bythe end of the paper that the Qs-closedness of K could be replaced by the followingweaker assumption: \if A 2 K and � is a congruence (of the respective type) of Athen �, as a subalgebra of A2, belongs to K.Clearly, � j=c � follows from any of the above-de�ned three consequence re-lations. Our goal is to prove the converse under reasonable restrictions. I.e., wewant to turn a lot of � j=c � results into � j=c � (r;Qs; P ), � j=c � (�;Qs)and � j=c � (�;Qs) statements. The proofs of the classical � j=c � results ofteninvolve particular tools. For example, free algebras are used in Day and Freese [8,p. 1156] or J�onsson [19, p. 379]; Mal'cev conditions are used in Day [7] and Med-erly [21], and even commutator theory is required in [3]. The scope of these tools isoften extended far beyond varieties of algebras. There are free structures and thereare Mal'cev conditions for �-congruences, cf. Weaver [25]. Free ordered algebrasand some Mal'cev conditions are available for ordered algebras (cf. Bloom [1] and[6]). The methods used in [2] and [5] also indicate that certain j=c results can begeneralized. Even commutator theory has been developed for relative congruencesof quasivarieties of algebras and some Mal'cev-like conditions are also available,cf. Kearnes and McKenzie [20], Dziobiak [9] and Nurakunov [23]. However, allthese recent developments are insu�cient for our purposes as they require muchstronger closedness assumption on K.Fortunately, some of the known � j=c � results, namely those in Freese andJ�onsson [12] and Freese, Herrmann and Huhn [11], are in fact � j=c � (Qs) re-sults, and we will not have much di�culty in generalizing them. In presence ofmodularity, the rest of the known � j=c � results can be, at least in principle,deduced from [3]. Since [3] relies on commutator theory, our main achievement isthe generalizing [3] so that commutator theory be avoided.Let dist resp. mod stand for the distributive resp. modular law. Although theusage of \known" hurts mathematical rigorousity below, it is time to indicate thatour aim is to prove the followingProposition 1. Suppose � j=c � is a known result in the theory of congruencevarieties and � j= mod . Then � j=c � (r;Qs; P ), � j=c � (�;Qs) and� j=c � (�;Qs).We do not know if � j= mod can be omitted or \known result" can be replacedby \true statement" in Proposition 1. If the answer were a�rmative in both casesthen the congruence varieties would form a lattice, cf. [5].2. Preliminary lemmas and main resultsFor structures A and B a homomorphism ': A! B is said to be �-homomor-phism if for every relation symbol � and a1; : : : ; ak 2 A we have�A(a1; : : : ; ak) () �B('(a1); : : : ; '(ak)):It is easy to see, cf. Weaver [25], that �-congruences are precisely the kernels of�-homomorphisms. A homomorphism resp. �-homomorphism ': A! A is called
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EDLIa retraction resp. �-retraction if ' � ' = '. The retraction of an ordered algebrais de�ned analogously; then ' must be monotone, of course. If ': A ! A is aretraction then B := '(A) is called a retract of A. (The relations on B are de�nedas the restrictions of the relations on A.) Associated with this ' we have a map'̂ from the set of equivalences of B into the set of equivalences of A de�ned by'̂(�) = fha; bi 2 A2: h'(a); '(b)i 2 �g. In the sequel, the restriction of '̂ toCon�(B), Conr(B) or Con<(B) will also be denoted by '̂.Lemma 1. Suppose ': A! A is a retraction, A 2 K, and B = '(A).(A) If ' is a �-retraction then '̂: Con�(B) ! Con�(A)(B) If B 2 K and K is P -closed then '̂: ConK(B)! ConK(A)(C) If A is an ordered algebra and ' is monotone then '̂: Con<(B)! Con<(A)is a lattice embedding.Proof. Since the meet coincides with the intersection, it is evident that '̂ is ameet-homomorphismin all the three cases. If � is an equivalence onB and a; b 2 Bthen ha; bi 2 '̂(�) () h'(a); '(b)i 2 � () ha; bi = h'(a); '(b)i 2 �, thus'̂ is injective. The treatment for joins is more or less the same for all the threecases, thus we detail (B) only. Assume that for C;D;E 2 K and homomorphisms�: B ! C, �: B ! D and : B ! E we have Ker�_Ker� = Ker in ConK(B).Then '̂(Ker�) = Ker(��'), '̂(Ker�) = Ker(��') and '̂(Ker) = Ker(�'). Since'̂ is monotone, '̂(Ker�) � '̂(Ker) and '̂(Ker�) � '̂(Ker). Now let �: A ! Fbe an arbitray homomorphism such that F 2 K, Ker� � '̂(Ker�) = Ker(��') andKer� � '̂(Ker�) = Ker(� �'); we have to show that Ker� � Ker( � '). Supposeha; bi 2 Ker( �') for some a; b 2 A. Since h'('(a)); '(a)i = h'(a); '(a)i 2 Ker�,we have h'(a); ai 2 Ker(� � ') � Ker�. Similarly, h'(b); bi 2 Ker�. Now considerthe restriction �jB: B ! F , which is a homomorphism. If c; d 2 B and hc; di 2Ker� then hc; di = h'(c); '(d)i 2 Ker(� � ') � Ker�. Thus Ker� � Ker(�jB),and Ker� � Ker(�jB) comes similarly. Therefore Ker � Ker(�jB). From ha; bi 2Ker( � ') we infer h'(a); '(b)i 2 Ker � Ker(�jB) � Ker�, and ha; bi 2 Ker�follows by transitivity. Therefore '̂ is a _-homomorphism, and (B) is proved.The arguments for (A) resp. (C) are quite analogous: we have to use �-homomorphisms resp. monotone homomorphisms, and A;B;C;D;E; F will bearbitrary structures resp. arbitrary ordered algebras, not necessarily in K. �The amalgamation property we are going to consider �rst appeared in Freeseand J�onsson [12], and played a central role in Freese, Herrmann and Huhn [11].De�nition. A class C of lattices is said to satisfy the Freese|J�onsson amalgama-tion property, in short FJAP, if for each L 2 C and a 2 L there exists an M 2 Cand embeddings '1, '2 of L in M such that(a) '1(x) = '2(x) for all x � a in L,(b) '1(x) _ '2(x) = '1(a) for all x � a in L, and(c) 'i(y) _ ('1(x) ^ '2(x)) = 'i(x) for all y � x in L and i = 1; 2.



DIAMOND IDENTITIES 69Lemma 2. Let C be one of the following classes:(A) Con�(K) where K is a Qs-closed class of structures;(B) Conr(K) where K is a class of structures closed under P and Qs;(C) Con<(K) where K is a Qs-closed class of ordered algebras.Then C satis�es FJAP.Proof. The construction needed by the proof of this lemma is the same as thatfor a Qs-closed class of algebras (cf. Freese and J�onsson [12] or Hagemann andHerrmann [13]). We give the details in case (B) only. Suppose C 2 K and� 2 ConK(C). Let A := fhx; yi 2 C2: x�yg. Since A is a subdirect square ofC, it belongs to K. Let � denote the embedding C ! A, x 7! hx; xi, and denote�(C) by B. Then �: C ! B is an isomorphism, which induces an isomorphism,also denoted by �, from Conr(C) to Conr(B). Let  i be the retraction A ! B,hx1; x2i 7! hxi; xii. Then  ̂i: ConK(B) ! ConK(A) is an embedding by Lemma1. Therefore  ̂i � �: ConK(C) ! ConK(A), � 7! �i := f
hx1; x2i; hy1; y2i� 2A2: xi�yig is a lattice embedding for i = 1; 2. For � � �, �1 = �2 is obvious.For � � � it is easy to see that �1 � �2 � �1 = �2, thus we obtain that �1 ��1 � �2 � �1 _K �2 � �1 _K �1 = �1, showing (b) in the de�nition of FJAP.(Here _K stands for the join taken in ConK(A).) Now let i 2 f1; 2g and � �	 2 ConK(C). Then 	i � 0i � (	1 \ 	2) � 0i where 0 denotes the smallest(relative) congruence of C. Indeed, e.g. for i = 1, if hx1; x2i	1hy1; y2i thenhx1; x2i01hx1; x1i	1 \ 	2hy1; y1i01hy1; y2i. Therefore 	i � 0i � (	1 \ 	2) � 0i �0i _K (	1 ^ 	2) � �i _K (	1 ^ 	2) � 	i _K (	i ^ 	i) = 	i, proving (c) in thede�nition of FJAP. This completes the proof of (B). The arguments for (A) resp.(C) are analogous, for  i becomes a �-retraction resp. monotone retraction. �Given a ring R with 1, let HL(R) denote the class of homomorphic images oflattices embeddable in the submodule lattice of (unitary left) R-modules. HL(R)is just the congruence variety HSP (Con(R-Mod)). For integers m � 0 and n � 1let D(m;n) denote the ring sentence (9r)(m � r = n � 1). (Here 1 is the ring unitand k � x = x + x + : : :+ x, k times.) D(m;n) is called a divisibility condition.In [18] an algorithm is given which associates a pair hm"; n"i of integers, m" � 0,n" � 1, with an arbitrary lattice identity " such that for any R we haveTheorem A. " holds in HL(R) i� D(m"; n") holds in R.Let V (0) := HL(Q), i.e., the lattice variety generated by the rational projectivegeometries. For k > 0 let V (k) := HL(Zk) where Zk is the factor ring of integersmodulo k. For a nonnegative integer k and a prime p let expt(k; p) denote thelargest integer i � 0 for which pi j k; by expt(0; p) we mean the smallest in�niteordinal 1. From [18, Prop. 1] we invokeTheorem B. D(m;n) holds in a ring R i� for any prime p with expt(m; p) >exp(n; p) R satis�es D(pexpt(n;p)+1; pexpt(n;p)) and, in addition, m = 0 impliesthat the characteristic of R is not 0. In case the the characteristic of R is k > 0then D(m;n) holds in R i� (m; k) j n.
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EDLIFor technical reasons, in connection with Theorem B, we de�ne G(m;n) :=fpi+1: p prime, i = expt(n; p) < expt(m; p)g [ fi: i = 0 = mg, m � 0, n � 1.Note that fi: i = 0 = mg is f0g or ;, and G(m;n) = ; if m divides n.For n � 2, an n-diamond in a modular lattice L is de�ned to be an (n+1)-tuple~a = ha0; a1; : : : ; ani 2 Ln+1 satisfying W0;ni6=j ai = 1~a and a` ^ W0;ni6=k;` ai = 0~a forall j and all k 6= `, where 1~a = W0;ni ai and 0~a = V0;ni ai. This concept is due toAndr�as Huhn [16], [15] (who calls it an (n� 1)-diamond.) Let �: p(x1; : : : ; xt) =q(x1; : : : ; xt) be a lattice identity. We call � a diamond identity , cf. [3] and[4], if � implies modularity and, in addition, there are (n + 1)-ary lattice termsc1(y0; y1; : : : ; yn); : : : ; ct(y0; y1; : : : ; yn) for some n � 2 such that for an arbitrarymodular lattice L if p(c1(~a); : : : ; ct(~a)) = q(c1(~a); : : : ; ct(~a)) for every n-diamond~a in L then � holds in L. Some examples are listed in [3, p. 291].Our main result is the followingTheorem 1. Let � be a set of lattice identities with � j= modularity and let �be a diamond identity. Then the following �ve conditions are equivalent(i) � j=c �,(ii) � j=c � (�;Qs),(iii) � j=c � (r;Qs; P ),(iv) � j=c � (�;Qs),(v) f0g \ fm�g � fm": " 2 �g, and for any prime p if expt(m�; p) >expt(n�; p) then expt(n�; p) � expt(n"; p) < expt(m"; p) holds for some" 2 �.The equivalence of (i) and (v) was established in [3]. To unify the treatment forseveral kinds of congruences, another consequence relation is worth introducing.Let T be a \set" of lattice varieties. We say that � j=T � if for every U 2 T if� holds in U then so does �. Now, in virtue of Lemma 2, Theorem 1 will clearlyfollow fromTheorem 2. Let � be a set of lattice identities with � j= modularity and let �be a diamond identity. Let T be a set of lattice varieties such that each U in T isgenerated by a class satisfying FJAP and V (k) 2 T for all k � 0. Then � j=T �if and only if (v) of Theorem 1 holds.The key to this theorem is the following generalization of Freese [10] (when �is the distributive law, cf. also Freese, Herrmann and Huhn [11, Cor. 14]) and [3,Thm. 1].Theorem 3. Let T be as in Theorem 2, and let U 2 T . Suppose that a diamondidentity � does not hold in U and U consists of modular lattices. Then there is anh in G(m�; n�) such that V (h) is a subvariety of U .3. Further tools and proving the main resultsFor a prime power pk let R(p; k) denote Zpk , the factor ring of integers modulopk. Let R(p;1) denote the ring of rational numbers whose denominator is not



DIAMOND IDENTITIES 71divisible by p, and let R(0; 1) := Q, the ring of rational numbers. For any of theserings R(u; v), let L(u; v; n) be the lattice of submodules of R(u;v)R(u; v)n. One ofthe main tools we need is taken from Herrmann [14]:Theorem C. Every subdirectly irreducible modular lattice which is generated byan n-diamond is isomorphic or dually isomorphic to one of the following lattices:L(p; k; n) for a prime power pk, L(p;1; n) for a prime p, or L(0; 1; n).Note that an important particular case of this theorem was proved in Herrmannand Huhn [15], which also could be used for our purposes in virtue of Freese,Herrmann and Huhn [11, Prop. 12].Proof of Theorem 3. Suppose the assumptions of the Theorem hold, and let U0be a class of lattices which satis�es FJAP and generates the variety U . For a latticeidentity " let "d denote the dual of ". For a prime p let V (p1) := HL(R(p;1)-Mod). Then V (pk) = HL(R(p; k)-Mod) for every p 2 f0g [ fprimesg and 1 �k � 1. Since � fails in U , there is an integer f > 1, an M = Mf 2 U0, and anf-diamond ~a in M such that � fails in the sublattice L = Lf generated by (theelements a0; a1; : : : ; af of) ~a. By Freese, Herrmann and Huhn [11, Lemma 11],by the equivalence of n-diamonds with dual n-diamonds (cf. Huhn [17]) and bythe equivalence of von Neumann n-frames with n-diamonds (cf. Herrmann andHuhn [15, (1.7)]) we obtain that for any integer g � f there is a lattice Mg 2 U0,a sublattice Lg generated by a g-diamond in Mg and an embedding ': M !Mgsuch that the restriction 'jL of ' is an L ! Lg embedding. Clearly, for everyg � f , � fails in Lg and Lg 2 U . Decomposing Lg as a subdirect product ofsubdirectly irreducible lattices, every factor will be generated by a g-diamond,namely by the image of the original diamond under the natural projection. Thesesubdirect factors belong to U and at least one them fails �. Therefore (up tonotational changes) we may assume that the Lg 2 U are subdirectly irreducible.By Hutchinson's duality result [18, Thm. 7] the congruence varieties HL(R)are selfdual lattice varieties. Therefore, thanks to congruence permutability andstrong Mal'cev conditions associated with an arbitrary lattice identity " and itsdual (cf. Wille [26] or Pixley [24], or for a more explicit form [18, Thm. 1]),(1) there is an integer r(") such that, for any ring R, " holds in HL(R) i� "holds in Con(RRn) for some n � r(") i� "d holds in Con(RRn) for somen � r(").For b 2 f0; 1; 2; : : :g[ fp1: p primeg and a 2 f0; 1; 2; : : :g we de�ne the \general-ized greatest common divisor" as follows:(a; b)0 := 8>>>>><>>>>>: 0; if b = 0 and a = 01; if b = 0 and a > 0(a; b); if b 2 f1; 2; 3; : : :gpexpt(a;p); if b = p1 and a > 0p1; if b = p1 and a = 0.
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EDLINote that (�;�)0 is not a commutative operation, and p1 divides no positiveinteger. Combining (1) and Theorems A and B we obtain for any p 2 f0g[fprimesgand any 1 � k �1:(2) Suppose n � r("). Then " holds in V (pk) i� " holds in L(p; k; n) i� " holdsin the dual of L(p; k; n) i� D(m"; n") holds in R(p; k) i� (m"; pk)0 j n".By Theorem C, each of the Lg 2 U (g � f) is of the form L(pg ; kg; g)ugwhere pg 2 f0g [ fprimesg, 1 � kg � 1, ug 2 f0; 1g, and kg = 1 when pg = 0.Here L(pg; kg; g)1 := L(pg ; kg; g) and L(pg ; kg; g)0 := L(pg; kg; g)d, the dual ofL(pg ; kg; g). Since � fails in Lg , we conclude from (2) that(3) For g � f we have (m�; pkgg )0 does not divide n�.For q 2 f0g [ fprimesg let Jq := fg: g � f and pg = qg. Now the proof rami�esdepending on m�.Assume �rst that m� = 0. Suppose J0 is in�nite, and let " be an identity whichholds in U . Then " holds in L(0; 1; g)ug for in�nitely many g. (2) yields thatm" > 0, whence " holds in V (0) by (2). Thus V (0) � U , and 0 2 G(m�; n�).Suppose Jq is in�nite for some q > 0 and let i := expt(n�; q). Then kg > i forg 2 Jq and qi+1 2 G(m�; n�) by (3). Suppose an identity " holds in U . Takinga su�ciently large g 2 Jq we conclude from (2) that " holds in V (qkg). But(m"; qkg)0 j n" implies (m"; qi+1)0 j n", whence " holds in V (qi+1) by (2). Thisshows that V (qi+1) � U .Suppose now that Jq is �nite for every q 2 f0g [ fprimesg. Then fpg: g � fgis an in�nite set of primes. By (2), no divisibility condition of the form D(0; t)can hold in each of the rings R(pg; kg) (g � f). Consequently, if m" = 0 for alattice identity " then " does not hold in U . Thus m" > 0 for all " that hold in U ,and these " hold in V (0) by (2). We have obtained that V (0) � U and, of course,0 2 G(m�; n�).Now let us assume that m� > 0. First observe by Theorem B that for distinctprimes p, q and any 0 � k � 1 the divisibility condition D(q`+1; q`) holds inR(p; k) for all ` 2 f0; 1; 2; : : :g. Hence, by (3), (2) and Theorem B, we concludethat, for every g � f , expt(m�; pg) > expt(n�; pg) butD(pexpt(n�;pg)+1g ; pexpt(n�;pg)g )fails in R(pg; kg). Hence, by Theorem B, we conclude i := expt(pg; n�) < kg forall g � f . On the other hand, expt(m�; p) > expt(n�; p) can hold for �nitelymany primes p only, whence there is a prime q such that Jq is in�nite. I.e., Ucontains L(q; kg; g)ug for in�nitely many g. Suppose " holds in U and choose ag 2 Jq with g � r("). From (2) we obtain (m"; qkg)0 j n", whence (m"; qi+1)0 j n",implying that " holds in V (qi+1). We have obtained V (qi+1) � U , and evidentlyqi+1 belongs to G(m�; ; n�). �Proof of Theorem 2. Let us assume that � j=T � and the conditions of thetheorem are ful�lled. If m� = 0 but m" > 0 for all " 2 � then, by Theorems Aand B, � would hold but � would fail in V (0) 2 T . This is not the case and weconclude that f0g \ fm�g � fm": " 2 �g. If expt(m�; p) > expt(n�; p) = i then,by Theorems A and B, � and therefore � fails in V (pi+1) 2 T . Therefore, againby Theorems A and B, there exists an " 2 � with expt(n�; p) = i � expt(n"; p) <



DIAMOND IDENTITIES 73expt(m"; p), proving (v).Now assume that (v) holds but � j=T � fails. Therefore there is a U 2 Tsuch that � fails in U but � holds in U . By Theorem 3, V (h) � U for someh 2 G(m�; n�). Clearly, � holds in V (h). If h = 0 = m� then m" = 0 for some" 2 � by (v). Hence, by Theorems A and B, " cannot hold in V (h). Thereforeh = pi+1 where i = expt(n�; p) < expt(m�; p) for some p. By (v) there is an " 2 �with i � expt(n"; p) < expt(m"; p). Consequently, by Theorems A and B, " cannothold in V (h); a contradiction again. �4. The rest of the resultsMost of the � j=c � statements in the scope of Proposition 1 are settled byTheorem 1; there are only two exceptions, up to the author's present knowledge.It is shown in Freese and J�onsson [12] that mod j=c Arguesian law. In Freese,Herrmann and Huhn [11], some identities n;m(wk) (n odd, n > 1, k > 1), evenstronger than the Arguesian law, are constructed and it is shown that mod j=cn;m(wk). Fortunately, the proof of these results is based on FJAP. ThereforeProposition 1 holds for these cases, too.References
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