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PROLONGATION OF TANGENT
VALUED FORMS TO WEIL BUNDLES

ANTONELLA CABRAS, IvaNn KoLAR

ABSTRACT. We prove that the so-called complete lifting of tangent valued forms
from a manifold M to an arbitrary Weil bundle over M preserves the Frolicher-
Nijenhuis bracket. We also deduce that the complete lifts of connections are torsion-
free in the sense of M. Modugno and the second author.

It has been pointed out recently that the Weil functors represent a unified
technique for studying a large class of geometric spaces. Moreover, the general
results from [4] enable us to clarify that certain procedures can be applied precisely
to Weil bundles. In [7], A. Morimoto introduced the so-called complete lifting of
tensor fields of type (1, 1) from a manifold M to any Weil bundle T4 M by using
the canonical exchange isomorphism between TATM and T7T4M. A special case
of such a construction is the lifting of arbitrary connections from a fibered manifold
E — BtoTAE — TAB by J. Slovak, [8]. The problem of lifting tensor fields of
type (1, k) was studied by J. Gancarzewicz, [1] and by himself, W. Mikulski and
Z. Pogoda, [2]. We present their construction of the complete lift of such a tensor
field in Section 2 below, but we add a justification of the fact that such a procedure
works for Weil bundles only, provided we accept the standard assumption of the
so-called point property. A special case of tensor fields of type (1,%) on M are the
tangent valued k-forms on M. Using some results from [2] and the expression of
the Frolicher-Nijenhuis bracket of tangent valued forms in terms of the bracket
of vector fields by P. W. Michor, [4], and M. Modugno, [6], we prove that the
complete lifting preserves the Frolicher-Nijenhuis bracket. In our setting this is a
consequence of a more general formula deduced in Section 4. This general formula
enables us to study the torsions of connections on Weil bundles introduced by M.
Modugno and the second author, [5]. In particular we deduce that all torsions of
the complete lift of every connection vanish.
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Al manifolds and mappings are assumed to be infinitely differentiable and all
manifolds are paracompact.

1. WEIL BUNDLES

We recall the definition of a Weil bundle over a manifold M in a form gener-
alizing the classical concept of the jet functor 7} of k-dimensional velocities of
order v, Tr M = J5(R* M). Let {x1,...,2;) C R[zy,..., 2] be the ideal of all
polynomials without absolute term in the algebra of all polynomials in & variables
and {x1,...,25)" be its r-th power. By a Weil ideal in R[zy,...,2;] we mean
an ideal A satisfying (z1,...,2)"" C A C (x1,...,2%)? The factor algebra
A =Rzy,...x5]/Ais called a Weil algebra; the number k is said to be the width
of A and the minimum of the ’s is called the depth of A. If we consider the algebra
E(k) of all germs of smooth functions on R* at zero, then A generates an ideal

AcC E(k). Clearly, we have A = E(k)/.,z as well.

Definition 1. Two maps g, h : R¥ — M, g(0) = h(0) = z are said to be A-
equivalent, if pog—poh € A for every germ ¢ of a smooth function on M at z.
Such an equivalence class will be denoted by j4¢ and called an A-velocity on M.
The point g(0) is said to be the target of j4g.

Denote by T4 M the set of all A-velocities on M. It is easy to see that T2R = A.
The target map is a bundle projection T4 M — M. Further, for every f: M — N
we define TAf : TAM — TAN by TAf(j%g) = j4(f o g). Then T4 is a functor
on the category M f of all manifolds with values in the category FM of smooth
fibered manifolds, which is called the Weil functor corresponding to A. Clearly,
TAM x N) = TAM x TAN, so that T preserves products. In particular, for A4 =
(x1,...,2x)" 1 we obtain the functor 77 and the tangent functor 7' corresponds
to the algebra ID = R[z]/(x)? of the so-called dual (or Study) numbers.

Let B = R[zy,...2;]/B be another Weil algebra and H : A — B be an al-
gebra homomorphism. Then H is the factor map of an algebra homomorphism
¥ Rlwy, . ..xp] — Rlxy, ... aq] satisfying ¢(A) C B and ¢ is generated by a poly-
nomial map h : R™ — RF z; = ¥(x;), i = 1,..., k. In [3] it is proved that the
maps Tﬁ TAM — TBM,

(i) =i%(goh), g:RF =M

define a natural transformation 79 : T4 — T8,

The important role of Weil functors in differential geometry has been clarified by
a recent result, which reads that every product preserving bundle functor on M f is
a Weil functor and every natural transformation of two product preserving bundle
functors is determined by a homomorphism of the corresponding Weil algebras,
see [4] for a survey. In particular, the iteration 74 o TP of two Weil bundles
corresponds to the tensor product A @ B of Weil algebras, TA(TP M) = TA®B M.
The exchange algebra homomorphism A® B — B® A defines a natural equivalence
ﬁﬁB :TA(TBM) — TB(TAM) which generalizes the canonical involution of the
second tangent bundle 7T'M . Furthermore, ifa : RxR — R or m : RxR — Ris the



PROLONGATION OF TANGENT VALUED FORMS TO WEIL BUNDLES 141

addition or the multiplication of reals, then T%a : Ax A — Aor T%m : AxA — A
is the vector addition or the algebra multiplication in A = TR, respectively.

2. COMPLETE LIFTS

A tensor field D of type (1,k) on M can be interpreted as a map
D:TMxp--XpygTM —TM.
Applying the functor 74, we obtain
TAD : TATM Xpay - Xpayy TATM — TATM .
If we add the above mentioned exchange map & : 74T M — TTAM , we construct
TAD :=koTADo (k7 x--x w7l
(1) TTAM Xpag - Xpapy TTAM — TTAM
This is a tensor field of type (1, %) on TAM, which is called the complete lift of D

to T4 M, [2]. In the special case k = 0, we have a vector field D = X : M — T M.
Then 74X coincides with the flow prolongation of X i.e

(2) rix =2 T4 (exptX)

Ot lo
where exp X is the flow of vector field X, [4]. If Xy,... X € C®TM are vector
fields on M, then D(Xy,...X}) is a vector field on M as well. From (1) we deduce

directly
(3) TAD(TAXy, .. . T*Xy) = THD(X1,... X1))

We remark that such a construction of an induced tensor field of type (1, k) can
be applied to Weil bundles only. We recall that a bundle functor ¥ : Mf — FM
is said to have the point property, if Fi(pt) = pt for each one point set pt. From
Proposition 38.8 in [4] it follows easily: If F' has the point property and there
exists a natural equivalence F'T'— TF, then F preserves products, i.e. F'is a Weil
functor.

By [7], every a € A determines a tensor L(a) of type (1,1) on T4 M as follows.
The multiplication of the tangent vectors of M by reals is a map g : R x TM —
TM. Applying the functor 7, we obtain 74y : A x TATM — TATM. Then

(4) TAp =roT o (idg xk™ ) AXTTAM — TTAM
and we define L(a) = 74pu(a,—). Since the multiplication in A is induced from
the multiplication of reals, it holds
L(al) o L(az) = L(alaz) ap,as € M.

Clearly, L(1) = id. If we need to underline the manifold M, we shall also write
LM(CL)

The following lemma is due to Gancarzewicz, Mikulski and Pogoda, [2], but we
sketch 1ts proof for the sake of completeness.
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Lemma 1. Let C and C be two tensor fields of type (1,k) on TAM. If it holds
C(L(a)TAXy, ..., L(ap)T*Xy) = C(L(a)TAXy, ..., L(ag) TAXy,)

forall X1,...X; € C®°TM and all ay,...a; € A, then C' = C.

Proof. It suffices to consider M = R™ and the constant vector fields on R™.
Let 1,e1,...,¢e, be a basis of the vector space A with nilpotent eq,..., e, and
' yi, ...y, be the induced coordinates on TAR™ = A™. Since the flow of a
constant vector field X = ¢19/0x" is formed by translations, we have 74X =
£9/02" 4+0.9/0y; + -+ 0.0/9y’,. Then L(e,)TAX = 5@/8%, p=1,...,n. But

& are arbitrary and this implies the coordinate form of our assertion. a

3. SOME LEMMAS

Every function f : M — R induces a vector valued function 74 f : T4 M — A.
Every vector field Y on T4 M determines the Lie derivative YTAf : TAM — A
of such a vector valued function. Given a € A, we define aT4f : TAM — A by
multiplying in A.

Lemma 2. If two vector fields Y and Y on TAM satisfy Y(aTAf) = ?(aTAf)
forall f: M — R and alla € A, then Y =Y.

Proof. The proof is quite similar to the proof of Lemma 1. If suffices to take in
account the linear functions f : R™ — IR. a

Lemma 3. It holds TA(Xf) = TAX(TAf) for every vector field X on M and
every f: M — R,

Proof. The derivative X f is the second projection of Tf o X : M — TR. Then
TAXF) =TA(pra) o TAf o TAX. We have TAX = ks o TAX by definition and
TATf o K?JT; = Kﬂgl o TTAf by naturality of x. But T4(prs) o kg is the second
projection A x A — A. a

Lemma 4. For every X € C®TM, every f : M — R and every a € A it holds
TAX(aTAf) = aTA(Xf) and (L(a)TAX)TAf = aTA(X ).

Proof. We have X(tf) = #(Xf) for all ¢ € R. By Lemma 3 we obtain
TAX(aTAf) = aTA(X f). Further, we have (tX)f = t(Xf) for all t € R. Using
Lemma 3 and the definition of L(a), we obtain (L(a)TAX)TAf = aT4(Xf). O

The following lemma can be found in [2], but we present another proof, which
replaces real-valued functions by A-valued ones.

Lemma 5. It holds [L(a)T4 Xy, L(as)TAX3] = L(ayaz)T4([X1, X3)]) for all X,
Xo € C®TM and all ay, as € A.

Proof. We know that the flow prolongation 74 preserves the bracket of vector
fields, [4]. For every vector fields Y7, Yo on T4 M and every F : T4 M — A we have
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[V1,Ya]F = Y1(Yaf) — Yo(Y1 F') by definition. Using Lemmas 3 and 4, we obtain
[L(a1)TA X1, L(a2)T* Xs)(aT* f) = L(a1)TA X1 (azaT? (X2 f))—
L(as)TA X5 (a1aT* (X1 f)) = arasa(TH( X1 Xo f) — TH X2 X, f)) =
arasaT ([X1, Xo))T4 f = L(a1a2)TA([X1, Xo])(aTf) .

Then our assertion follows from Lemma 2. d
Even the following lemma is due to Gancarzewicz, Mikulski and Pogoda, [2].

Lemma 6. For every tensor fields D of type (1,k) on M, every X1,..., X} €
C*®TM and every ay,...,ar € A, it holds

(6)  TAD(L(a))T*Xy, ..., L(ap)T4Xy) = L(ay . ..ap)TH(D(X1, ..., Xp)).

Proof. We have D(t1 Xy, ... t;:Xg) =11 .. . 4 D(X1,..., Xp) for all ty,.. .t € R.

Applying the functor 7% to this relation and using the definition of L(a), we obtain

(6). O
4. THE FROLICHER-NIJENHUIS BRACKET

A tangent valued k-form P on M is an antisymmetric tensor field of type (1, k)
on M.If @ is a tangent valued [-form on M| the Frolicher-Nijenhuis bracket [P, Q]
is a tangent valued (k +{)-form on M, [4], [6]. Given a tangent valued k-form S on
TAM and an element a € A, L(a)S is a tangent valued k-form on T4 M as well.
The main result of the present paper 1s

Proposition 1. For every tangent valued k-form P and tangent valued [-form @)
on M and every a,b € A, it holds

(7) [L(a)TAP, L(5)T*Q] = L(ab)T*([P, Q])
In particular, for a = b = 1 we obtain [TAP, TAQ] = TA([P,Q)).

Proof. M. Modugno, [6] and P.W. Michor, [4], found the following expression of
[P, Q] in terms of the bracket of vector fields

(8)  [P,QIXy,..., Xpp1) =

1 .
= o > signo[P(Xo1, -, Xok), Q(Xo(e1) - Xo(esn)]

+ m ZU:SIgnUQ([P(Xo'la .. 'aXO'k‘)aXo'(k‘-I—l)]aXo'(k‘-I—Z)a .. )

-1 kl )
+ o s e PO, X)X ] Xorsey )
(_1)k—1 ]
+ ST Zs1gn oQ(P([Xo1, Xoo], Xo3, ...}, Xo(rg2), - - -)
(_1)(k—1)l )
+ m SlgHUP(Q([XabXaz],XUS,~~~],Xa(l+2),~~~)
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with X1,... Xpy; € C°TM. Let us express the value of [L(a)T4P, L(H)TPQ] on
L(a)TAXy,. .., L(ak4)T A X4 in this way. Using Lemmas 5 and 6 and (3), we
deduce that each term of such a modification of (8) is equal to the value of 74
on the corresponding term of (8) multiplied by L(aba; ...ax41). Hence we obtain

L(ab)TA([P,Q))(L(a))TAXy, ..., L(ag T4 Xg41)). Then Lemma 1 yields (7). O

Given an arbitrary fibered manifold p : £ — B, a connection on E can be
studied either as a lifting map v : £ xg T'B — T'E or as the horizontal projection
I' : TE — TF, which is a special tangent valued 1-form on E. Clearly, it holds
I' = v o T'p. Using the first approach, Slovék defined the induced connection 74+
on TAE — TAB by T4y = kg-T%y o nél, [8]. Under the second approach, we
have 74T = kp o TAT o k' according to (1). But T4Tpo ky' = k' o TTp by
naturality, so that 74T = (kg o T4y o I{Bl) o TT#p. Hence the results of both
approaches coincide.

Consider two connections I' and A on E in the second form of tangent valued
1-forms. The Frolicher-Nijenhuis bracket [T'; A] is called the mixed curvature of T
and A, [4], p. 232. Then Proposition 1 yields the following formula for the mixed
curvature of 74T and T4A.

Proposition 2. It holds [TAT, T4A] = T4([T, A)).

In the special case I' = A we obtain the curvature [I', T'] of T'. We remark that
this case has been studied in [2].

5. TORSIONS

In [5], M. Modugno and the second authors deduced that all natural tensors
(in the sense of [4]) of type (1,1) on TAM are of the form Lys(a), a € A. For
example, in the special case A = ID of the tangent bundle, the class {z} € R[z]/(x)?
determines the well known vertical operator on T7T'M. Given a connection I' on
TAM — M, the Frolicher-Nijenhuis bracket [I', L(a)] is called the L(a)-torsion of
T, [5]. This idea can be modified to the case of connections on T4p : T4E — TARB
as well.

Definition 2. Let T be a connection on T4p : T4E — T4B and a € A. Then
the Frolicher-Nijenhuis bracket [I', Lr(a)] will be called the a-torsion of T.

A natural question is to study the torsions of the connection 74T induced from
a connection I' on £ — B. The answer is a corollary of the following more general
assertion.

Proposition 3. For every tangent valued k-form P on a manifold M and every
a € A, it holds [TAP, Ly(a)] = 0.

Proof. We have Ly(a) = L(a)lpay, where Ipay, is the identity of TT4M.
Then Proposition 1 yields [TAP, L(a)Ipay] = L(a)TA([P, In]). But [P, Iy] = 0
is a well known formula. d

Corollary. For every connection I' on ¥ — B, all a-torsions of the induced
connection TAT vanish.
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