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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 155 { 161AN INTEGRAL CONDITION OF OSCILLATIONFOR EQUATION y000 + p(t)y0 + q(t)y = 0WITH NONNEGATIVE COEFFICIENTSAnton �Skerl��kAbstract. Our aim in this paper is to obtain a new oscillation criterion for equa-tion(*) y000 + p(t)y0 + q(t)y = 0with a nonnegative coe�cients which extends and improves some oscillation criteriafor this equation. In the special case of equation (*), namely, for equation y000 +q(t)y = 0, our results solve the open question of Chanturiya.1. IntroductionConsider the di�erential equation(1) y000 + p(t)y0 + q(t)y = 0;where p; q; p 0 : I �! R; I = [a;1) � (0;1), R= (�1;1) are continuous. Inthe sequel we suppose that p(t) � 0, q(t) � 0, and supfq(s); s � tg > 0, t � a.We consider only nontrivial solutions of equation (1). Such solution of (1)is called oscillatory on I if it has arbitrarily large zeros, otherwise it is callednonoscillatory on I. Concerning nonoscillatory solutions of (1) without loss ofgenerality we can restrict our attention only to positive ones. Equation (1) iscalled oscillatory if it has at least one oscillatory solution.In the particular case of (1) when p(t) � 0, t 2 I equation (1) becomes to(2) y000 + q(t)y = 0:Following Kiguradze [10], also [2, De�nition 1.1], equation (2) is said to haveproperty A if every solution y of (2) is either oscillatory orlimt!1 y(i)(t) = 0; (i = 0; 1; 2);1991 Mathematics Subject Classi�cation : Primary 34C10.Key words and phrases: nonoscillatoryand oscillatory solution, second orderRiccati equation.Received August 1, 1994.



156 ANTON �SKERL�IKmonotonically. It is well-known that equation (2) is oscillatory i� it has property A,see e.g. [2, Lemma 2.8']. From the other hand equation (2) has property A if(3) Z 1 t2�" q(t) dt =1; for any " 2 (0; 2];see e.g. [2], [5], [16].Recently Chanturiya improved condition (3) of oscillation of (2).Theorem A. ([2, Theorem 2.12]). Iflim inft!1 t Z 1t sq(s) ds > 2p39 ;then equation (2) has property A.For analogous result for third-order functional di�erential equation the readeris referred to [3].In the same book ( see [2, Problem 1.14, p. 48, n = 3] ), Chanturiya introducedthe following question:Question. Is the conditionZ 11 t2 q(t) � 2p39 t�3! dt =1su�cient for equation (2) to have property A?From our results the answer to this question follows immediately.For p(t) 6� 0, t 2 I, there is a large literature on the oscillation of equation (1).About oscillation criteria of Kneser-type the reader is re�ered to [6], [8] and [12],see also the books [2], [5], [16], and papers [1] and [4]. From others results wepresentTheorem B. ([6, Theorem 5.12]) Let p(t) > 0, q(t) > 0, and q(t) > p0(t) in(�;1), � > 0. If equation(5) u00 + p(t)u = 0;is nonoscillatory, and if(6) Z 1� t[q(t)� p0(t)] dt =1then equation (1) is oscillatory.For nontrivial solution y of (1) we denote(7) F [y(t)] = 2y(t)y00(t)� y02(t) + p(t)y2(t):



AN INTEGRAL CONDITION OF OSCILLATION 157Theorem C. ([11, Theorem 3.1]) If 2q(t) � p0(t) � 0 and not identically zeroin any subinterval of I and there exists a number m < 12 such that second-orderdi�erential equation(8) u00 + (p(t) +mtq(t)) u = 0;is oscillatory, then equation (1) is also oscillatory. In fact, if y is any nonzerosolution of (1) with F [y(c)] � 0 (c � a) then y is oscillatory.The aim of this paper is to establish some integral criterion for oscillation of (1)for the case when TheoremB and Therem C fail. The next theorem gives su�cientconditions under which nonoscillatory solutions of (1) tend to zero as t tends toin�nity. These our result for p(t) � 0, that is equation (2), are the a�rmativeanswer to the question of Chanturiya.2. PreliminariesIn this section we present some lemmas requsite to proofs of main results.The following lemma is proved in [11, Lemma 3.2], for nonlinear equation seealso [14] and [15].Lemma 1. If 2q(t) � p0(t) � 0 and not identically zero in any subinterval ofI and y is a nonoscilatory solution of (1) which is eventually nonnegative withF [y(c)] � 0 (see (7), c 2 I arbitrary) then there exists a number d � c such thaty(t) > 0, y0(t) > 0, y00(t) > 0, and y000(t) � 0, for t � d.Remark 1. Any solution y with a zero, that is y(t�) = 0, satis�es F [y(t�)] � 0.Remark 2. Let hypothesis of Lemma1 hold. Considering additional assumptionswe eliminate positive increasing solutions and so we obtain oscillation criterion.Since for t2p(t) > 14 , t > 0 equation (8) is oscillatory by Sturm comparison theorem(see Theorem 1.1 in [16]) and Kneser criterion (see [16, p. 45]), so Theorem C isaplicable. Therefore we will interested with the case t2p(t) � 14 , t > 0.It is easy to verify that the following inequality is full�led for all t > 0,(9) tp(t) � 23p3t�1� t2p(t)� 32 � 0 for t2p(t) � 14 ;since 4t6p3(t) + 15t4p2(t) + 12t2p(t) � 4 = (4t2p(t)� 1)(t2p(t) + 2)2.Using this inequality we obtain the assertion needed to proof of main results.Proof of this assertion is elementary.Lemma 2. Let 0 � t2p(t) � 14 for all t > 0. Let P be the polynomial in thevariable z, P (z) = z3 � 3z2 + �2 + t2p(t))z + t3q(t); t > 0:



158 ANTON �SKERL�IKThen(10) P (z) � t3q(t) + t2p(t)� 23p3�1� t2p(t)� 32 ; t > 0for all z � 1� 2q1�t2p(t)3 .Remark 3. The right-hand side of (10) is the local minimum of P in the pointz0 = 1 +q1�t2p(t)3 . 3. Main resultsFor the proof of our oscillation result we use the similar method like in thepaper [13], see also [11, Theorem 3.1].Theorem 1. Let hypotheses of Lemma 1 hold, and in addition t2p(t) � 14 for allall t > 0. If(11) Z 1�t2q(t) + tp(t)� 23p3t�1� t2p(t)� 32� dt =1;then equation (1) is oscillatory. In fact, any solution y which satis�es F [y(t�)] � 0for some t� > a, is oscillatory.Proof. Let y be a solution of (1) which satis�es F [y(t0)] � 0 for some t0 > a.Then by Lemma 1, y is oscillatory or y(t)y0(t) > 0 for all su�ciently large t.Suppose without loss of generality that y(t) > 0, y0(t) > 0 for all t � b � t0. Now,we denote z(t) = ty0(t)y(t) ; t � b:So z(t) > 0 and it is easy to verify that z satis�es the second-order Riccati equation(12) �(tz)0 + 32z2 � 4z�0 + 1t �z3 � 3z2 + (2 + t2p(t))z + t3q(t)� = 0:Substituting the estimate (10) to (12) we have�(tz)0 + 32z2 � 4z�0 � �1t �t3q(t) + t2p(t)� 23p3(1� t2p(t)) 32 � = �Q(t);for all t � b. Integrating the above inequality from b to t � b we get(tz(t))0 + 32z2(t)� 4z(t) � K0 � Z tb Q(s) ds;where K0 is a constant. Since 32z2(t) � 4z(t) � �83 , an integration of the aboveinequality from b to t � b yields(13) tz(t) � K2 +K1t � Z tb Z sb Q(u) duds;



AN INTEGRAL CONDITION OF OSCILLATION 159where K1 = K0+ 83 , and K2 = b(z(b)�K1). So it follows from (11) and (13) thatz(t) < 0 for su�ciently large t, which contradicts positivity of z. So equation (1)cannot have any solution with property y(t)y0(t) > 0 for all large t and by Lemma 1equation (1) is oscillatory.The next theorem describes asymptotic behavior of nonoscillatory solutionsof (1).Theorem 2. Let 0 � t2p(t) � 14 , and q(t) > 0, t 2 I. If (11) is satis�ed, then anynonoscilatory solution of (1) has property limt!1 y(t) = 0:Proof. Since t2p(t) � 14 , t 2 I from Kneser comparison theorem it follows thatequation (5) is nonoscillatory. So by Theorem 3.6 in [7] it follows that there existsd � a such that either y(t)y0(t) � 0 or y(t)y0(t) < 0 for all t � d. Let y be anonoscillatory solution, and suppose that y(t) > 0; y0(t) � 0 for all t � d. Weagain denote z(t) = ty0(t)y(t) ; t � d. So z(t) � 0. Let hypothesis (11) hold. Thesame process as in the proof of Theorem 1 shows (by (13)) that z becomes negativefor su�ciently large t, a contradiction. Let y(t) > 0, y0(t) < 0 for t � d. Hencelimt!1 y(t) = L � 0 exists. Let L > 0. Multiplying equation (1) by t2 andintegration from d to t � d yieldst2y00(t) � 2ty0(t) + 94y(t) � K � L Z td s2q(s) ds;where K is some constant. By (9) and condition (11) we have R1d t2q(t)dt = 1.From this and from the last inequality, for all su�ciently large t, we have y00(t) < 0,which contradicts y(t) > 0, y0(t) < 0. The proof is complete.Now we consider equation (2). Let y be a nonoscillatory solution of (2). Withoutloss of generality we may suppose that y is a positive one. Then according a lemmaof Kiguradze [9, Lemma 3], see also [2, Lemma 1.1], there is a number t1 � a suchthat y(t) > 0; y0(t) < 0; y00(t) > 0; y000(t) � 0;or y(t) > 0; y0(t) > 0; y00(t) > 0; y000(t) � 0;for all t � t1. So, from Theorem 1 and Theorem 2 we haveCorollary 1. Let Z 11 t2�q(t) � 23p3 t�3� dt =1:Then equation (2) has property A.Remark 4. Corollary 1 is the a�rmative answer to the question of Chanturiya.



160 ANTON �SKERL�IK4. Comparisons and examplesTo show that Theorem 1 can be applied even in the case when Theorem B andTheorem C are not applicable, let us consider the following equation(14) u000 + p0t�u0 + q0t�3u = 0; t > 0;where � � �2; p0 > 0; q0 > 23p3 , and p0 < 14 if � = �2; �, p0 and q0 are someconstants.Directly we see that Theorem B is not applicable to equation (14). For � =�2 equation (14) becomes to the Euler equation. The neccesary and su�cientcondition for oscillation of Euler equation (14) is(15) q0 + p0 � 23p3(1� p0) 32 > 0:It is easy to check that condition (15) is equivalent to condition (11) of Theorem 1.To compare our result to Theorem C we note that equation (8) in this case, thatis � = �2, and p0 < 14 becomes to the Euler equation,(8') v00 + (p0 +mq0)t�2v = 0:Equation (8') is oscillatory i� p0+mq0 > 14 for somem < 12 , that is 2p0+q0 > 2p0+2mq0 > 12 . So it is easy to check that inequality q0 + p0 > 12 � p0 > 23p3(1� p0) 32holds for some q0 > 0 and every 0 < p0 < 14 . From this it follows that Theorem 1is better than Theorem C in this case, e.g. for p0 = 0:06, q0 = 0:3 condition (15)is full�led, while (8') is nonoscillatory.Let � < �2. So there is a number � > 0 such that � = �2 � � and hencet2p(t) = p0t�� � 14 for t � a0 = (4p0) 1� . If we denote x = p0t�� for t � a0 thenthe function f(x) = x � 23p3(1 � x) 32 is increasing and so for 0 � x � 14 we havef(x) � f(0) = � 23p3 . ThereforeZ 1a0 1t �q0 + p0t�� � 23p3(1� p0t��) 32 � dt � (q0 � 23p3) Z 1a0 dtt :So we see by Theorem 1 that for p0 > 0, q0 > 23p3 and � < �2, equation (14) isoscillatory. On the other hand, by Theorem C equation (14) is oscillatory only ifq0 > 0:5.Remark 5. About comparison Theorem A to Corollary 1 the reader is referredto [13].
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