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IMPROVEMENT OF INEQUALITIES
FOR THE (r,q)-STRUCTURES AND
SOME GEOMETRICAL CONNECTIONS

VOJTECH BALINT AND PHILIPPE LAURON

ABSTRACT. The main results are the inequalities (1) and (6) for the minimal num-
ber of (r,q)-structure classes,which improve the ones from [3], and also some geo-
metrical connections, especially the inequality (13).

1. INEQUALITIES

1.1. Definition. Let m,n,r,¢ be natural numbers such that n > 3 and r < n.
Let M be a set which contains at least n+¢—1 elements. Let A = {ay,...,a,} C M .
Let P(M) be the set of all the subsets of M. Let the set B = {By,..., Bp} C P(M)
fulfil the following three conditions :

(i) Each element By, € B for k = 1,...,m contains at least r distinct elements
@iyy Gigy ooy @i, €A
(ii) If a;,, a4y, ..., a;, are r distinct elements of the set A, then there exist exactly

q distinct elements B;,, Bj,,...,B;, € B such that for p = 1,2,...,4 we have:
a;, € B;, for each s € {1,2,...,r};

(iii) For every r+41 distinct elements a;,, a;,, ..., @;,,, € A there are at most one
element By € B such that a;, € By for each s € {1,2,...,r+ 1}.

Then the ordered triplet (M, A, B) is called (r, ¢)-structure.

The elements of B are called classes and the elements of A are called points.
An element B; € B is called class of order k when B; contains exactly & distinct
points of A. A point a; € A is called point of degree k, iff there exist exactly k
distinct classes of B, which contain this point. The (r, q) -structure (M, A, B) is
called ordinary iff all the classes of B are ordinary, i.e. contain exactly r points.
We'll say that the class B; € B is bigger than the class B; iff |B;| > |B;|, and that
the class B; € B is the biggest iff | B;| > |B;| for every j € {1,2,...,m}.
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1.2. Example. Put M = E5, where F5 is the Euclidean plane.Let A be a set of
n points in Ey. Let B be the set of all the straight lines determined by the points
of A. Then (M, A, B) is a (2, 1) -structure.

Consider the Poincaré model of the hyperbolic plane Hy. The points of the
hyperbolic plane are interpreted as inner points of the Euclidean upper half-plane
determined by the z-axis.

Horocyeles (i.e. curves of identically one curvature) are either circles of the
upper half-plane touching the z-axis or straight lines parallel to the z-axis. So
every couple of points determines two horocycles.

1.3. Example. . Put M = Hy. Let A be a set of n points in Hs.  Let B be
the set of all the horocycles determined by the points of A. Then (M, A, B) is a
(2,2) -structure.

1.4. Example. Take M = FE5. Let A be a set of n points in F5 such that
diamA < 2 . Let B be the set of all the unit circles containing at least two points
of A. Then (M, A, B) is a (2, 2) -structure.

1.5. Example. Take M = F,;. Let A be a set of n points in E5, no three
collinear. Let B be the set of all the circles determined by the points of A. Then
(M, A, B) is a (3, 1)-structure.

1.6. Example. Let M = F3 and A = {a4,...,a,} C M such that no four points
from A are coplanar. Every triplet of points a;,a;,a, € A uniquely determine
a circle with a centre S;;; . The number of such circles is finite, consequently
there is a number g=the greatest of the radii. Take G > ¢ arbitrary. Now every
triplet of points a;, aj, a; € A determines exactly two spheres with a radius G, the
centres of which are lying on the normal to that plane which is determined by the
points a;, a;, ar and passing through 5; ; . If we take just such spheres instead of
B, then (M, A, B) is a (3, 2)-structure.

1.7. Remark. Obviously, for ¢ = 1 the axiom (iii) is redundant, but for ¢ > 2 is
important and the examples 1.3 and 1.4 show its geometrical sense.

1.8. Theorem. For any (r,2)-structure, r > 2, it holds

(1) m > n.

Proof. For a given (r, q)-structure we denote p; the number of points from A of
degree k and tj the number of classes from B of order k. Then

(2) Zktk = Zk‘pk
k=r k=g

and
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£ (e()

(For the proof see [3]). Hence for r = 2 we get

m(m—1) —n(n —1) = (m — 1)2@-?3@)@ :kzn::z{m_1_ (g)}tk.

=2

Choose k € {2,3,...,n} arbitrarily. If B contains some classes of order k, then
m > (g) + 1, and so

(4) (m—1- (g) i > 0.

If B contains no class of order £, then ¢; = 0 and (4) holds, too. From this we
get m > n for r = 2. Let now r > 3 and choose a class B* € B arbitrarily. If
|B*| = n then m > 1+ (") > n and we have finished. Therefore, let |B*| < n— 1.
Take a point a € A such that a ¢ B* and denote B, = {B; € B;a € B;}. Now
A — a,B, give (r — 1,2)-structure and the number m(a) of its classes satisfies
m(a) < m. This induction argument (together with m > n for » = 2) implies

(1). O

1.9. Remark. The proof of inequality (1) for a (2,1)-structure one can find in
[6].

1.10. Corollary. The total number of horocycles determined by n points is at
least n.

1.11. Lemma. Let (M, A, B) be a (r, q)-structure , r > 2, ¢ < r. Let a € A and
d is its degree. Then

6 i (V7 Da-n+

where D is the order of the biggest class which contains a.

Proof. Let ¢ € A be an arbitrary point; without loss of generality a = a,.
Denote by B the biggest class from B which contains a; w.l.o.g. we can fix B =
{ai,a9,...,ap_1,a,}. From (ii) we know that every r-tuple of points belongs
exactly to ¢ classes. So every (r — 1)-tuple from the points a1, as, ...,ap_1 belongs
- together with the point a, - to exactly (¢ — 1) classes different from B. So we
have (D_l) (¢ — 1) such classes and it is easy to see that they are distinct. a

r—1
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1.12. Theorem. For any (r,q)-structure , r > 2, ¢ < r it holds

(© e ]

n r

Proof. Let’s consider all the possible orders of classes of investigated (7, ¢)-struc-
ture (M, A, B) and let’s write them in an increasing sequence of natural numbers
{ki}i=0,1,...s, precisely

(7) r< ko <k <ky<- - <ks<n.

Let us consider now all the r-tuples of n points. They are (:f) Every r-tuple
must belong to ¢ classes. So we have to ”put” in our classes (:f)q r-tuples. A

class of order k; for i € {0,1, ..., s} contains (ljj) r-tuples. From that we have
n & ks ks
— — 7 < ;
® o= (=) < (7)
where m; is the number of classes of order k; for 7 € {0,1,...;s}. Further we’ll

denote k = k;. From (8) we have

(9) (’“) > <

Let B* € B be a class of maximal order ks = k. Let a € B* an arbitrary point
of this class and d the degree of this point. The order of the biggest class which
contains a is of course k. Now from lemma 1.11 and inequality (9) we have

Y Wy (TR IR T () [T =

(rae—=1 _ (rale—1)

km nm

So

d>

because k < n.
Trivially, m > d and so

S (Mralg—1)

- bl

nm
which yields the inequality (6). O
1.13. Remark. In [3] the authors proved
-1
(10) m > a n.
r—

For » = ¢ = 2 the estimate (10) is better than (6), but already for » > 3 it is not
so and (6) is better than (1) for » >4 | too.

1.14. Remark. In [3] the authors presented the examples of (2, 2)-structures for
n=4,7, 11 and 16, which are showing that the estimates (1) and (10) are the best
possible at least for the above-mentioned values of n.
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2. SOME GEOMETRICAL CONNECTIONS

The definition of the abstract (r,q)-structure comprehends a large family of
geometrical models according to certain common combinatorical features. But
some concrete geometrical models are already a long time subject of interest
for research. Naturally, the most investigated is the (2,1)-structure of points
and straight lines in E3 (example 1); selfevidently, in geometrical terms (see
e.g.[18],[6],[10],[16],[12],[11],[5],[7]). But already the paper [6] gives the proof of
inequality m > n by means of combinatorical methods. Very natural is also the
example 1.5, i.e. the (3,1)-structure of points and circles in Fa;see [9],[2], [17].
About the (2,2)-structure from the example 4, i.e. points and unit circles it is
possible to find pretty results for instance in [8], [13], [14].

Concerning the (2,2)-structure of points and horocycles Jucovié¢ [15] asked the
question, what is the minimal number h(n) of horocycles determined by n points.
Beck [4] proved

(11) h(n) > csn’,

but his constant ¢z is extremely small. In this direction our conjecture is the
following:

(12) h(n) > (“ N 1) +3.

Of course, 1t’s surprising that - as we know - it has not been proved yet that every
system of n > 2 points determines at least one ordinary horocycle. The reason of
the troubles may be concealed in the following

2.1. Proposition. Let A be the set of n > 2 points in a hyperbolic plane H-.
Then through every point a; € A pass at least

(13) 1—1—\/2871—7

horocycles.

Proof. Consider the Poincaré model of the hyperbolic plane H,. Choose the point
a; € A arbitrarily. Let K be any circle with centre a;. We take the inversion with
respect to K. Now the z-axis mapps into the (Euclidean) circle #” passing through
a; and every horocycle passing through a; mapps into a straight line touching the
circle ’. Let’s denote the number of these touching lines by m. The intersection-
points of those m lines must contain all the points of A’ (perhaps with exception

of a;), therefore (”21) > n — 1. From this we obtain the asked inequality (13). O

If we take n = ﬂ%, where j = 1,2, 3, ... then v2n=7 V§"_7 is integer. In this case
from the proof of the previous proposition it’s obvious to construct the point-set
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A of n points and to choose the point a¢; € A such that through a; are passing
1ev8n=7 V§"_7 ~ +/2n horocycles. So the estimate (13) is the best possible.
Compare this result with the (3,1)-structure of points and circles in 5. There it

holds (see [2]) that at least % (i.e. linearly many) ordinary circles are passing

through every point.That is an essential difference in comparison with (13). And
this is perhaps a main reason why it’s so difficult to obtain a good lower estimate
for the number of ordinary horocycles determined by n points.
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