
Archivum Mathematicum

Vojtech Bálint; Philippe Lauron
Improvement of inequalities for the (r, q)-structures and some geometrical
connections

Archivum Mathematicum, Vol. 31 (1995), No. 4, 283--289

Persistent URL: http://dml.cz/dmlcz/107549

Terms of use:
© Masaryk University, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107549
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 283 { 289IMPROVEMENT OF INEQUALITIESFOR THE (r;q){STRUCTURES ANDSOME GEOMETRICAL CONNECTIONSVOJTECH B�ALINT AND PHILIPPE LAURONAbstract. The main results are the inequalities (1) and (6) for the minimal num-ber of (r; q)-structure classes,which improve the ones from [3], and also some geo-metrical connections, especially the inequality (13).1. Inequalities1.1. De�nition. Let m;n; r; q be natural numbers such that n � 3 and r � n.LetM be a set which contains at least n+q�1 elements. Let A = fa1; :::; ang � M .Let P (M ) be the set of all the subsets ofM . Let the set B = fB1; :::; Bmg � P (M )ful�l the following three conditions :(i) Each element Bk 2 B for k = 1; :::;m contains at least r distinct elementsai1 ; ai2; :::; air 2 A ;(ii) If ai1 ; ai2 ; :::; air are r distinct elements of the set A, then there exist exactlyq distinct elements Bj1 ; Bj2 ; :::; Bjq 2 B such that for p = 1; 2; :::; q we have:ais 2 Bjp for each s 2 f1; 2; :::; rg;(iii) For every r+1 distinct elements ai1 ; ai2; :::; air+1 2 A there are at most oneelement Bk 2 B such that ais 2 Bk for each s 2 f1; 2; :::; r+ 1g.Then the ordered triplet (M;A;B) is called (r; q)-structure.The elements of B are called classes and the elements of A are called points.An element Bj 2 B is called class of order k when Bj contains exactly k distinctpoints of A. A point ai 2 A is called point of degree k, i� there exist exactly kdistinct classes of B, which contain this point. The (r; q) -structure (M;A;B) iscalled ordinary i� all the classes of B are ordinary, i.e. contain exactly r points.We'll say that the class Bi 2 B is bigger than the class Bj i� jBij > jBjj, and thatthe class Bi 2 B is the biggest i� jBij � jBjj for every j 2 f1; 2; :::;mg.1991 Mathematics Subject Classi�cation : 05B30, 51E30.Key words and phrases: structure, line, circle, horocycle.Received January 24, 1995.



284 VOJTECH B�ALINT AND PHILIPPE LAURON1.2. Example. Put M = E2, where E2 is the Euclidean plane.Let A be a set ofn points in E2. Let B be the set of all the straight lines determined by the pointsof A. Then (M;A;B) is a (2; 1) -structure.Consider the Poincaré model of the hyperbolic plane H2. The points of thehyperbolic plane are interpreted as inner points of the Euclidean upper half-planedetermined by the x-axis.Horocycles (i.e. curves of identically one curvature) are either circles of theupper half-plane touching the x-axis or straight lines parallel to the x-axis. Soevery couple of points determines two horocycles.1.3. Example. . Put M = H2. Let A be a set of n points in H2. Let B bethe set of all the horocycles determined by the points of A. Then (M;A;B) is a(2; 2) -structure.1.4. Example. Take M = E2. Let A be a set of n points in E2 such thatdiamA < 2 . Let B be the set of all the unit circles containing at least two pointsof A. Then (M;A;B) is a (2; 2) -structure.1.5. Example. Take M = E2. Let A be a set of n points in E2, no threecollinear. Let B be the set of all the circles determined by the points of A. Then(M;A;B) is a (3; 1)-structure.1.6. Example. Let M = E3 and A = fa1; :::; ang � M such that no four pointsfrom A are coplanar. Every triplet of points ai; aj; an 2 A uniquely determinea circle with a centre Si;j;k . The number of such circles is �nite, consequentlythere is a number g=the greatest of the radii. Take G > g arbitrary. Now everytriplet of points ai; aj; ak 2 A determines exactly two spheres with a radius G, thecentres of which are lying on the normal to that plane which is determined by thepoints ai; aj; ak and passing through Si;j;k: If we take just such spheres instead ofB, then (M;A;B) is a (3; 2)-structure.1.7. Remark. Obviously, for q = 1 the axiom (iii) is redundant, but for q � 2 isimportant and the examples 1.3 and 1.4 show its geometrical sense.1.8. Theorem. For any (r; 2)-structure, r � 2, it holds(1) m � n:Proof. For a given (r; q)-structure we denote pk the number of points from A ofdegree k and tk the number of classes from B of order k. Then(2) nXk=r ktk = mXk=q kpkand



IMPROVEMENT OF INEQUALITIES : : : 285(3) nXk=r�kr�tk = q�nr�:(For the proof see [3]). Hence for r = 2 we getm(m � 1)� n(n � 1) = (m � 1) nXk=2 tk � nXk=2�k2�tk = nXk=2fm � 1� �k2�gtk:Choose k 2 f2; 3; :::; ng arbitrarily. If B contains some classes of order k, thenm � �k2�+ 1, and so(4) fm� 1� �k2�gtk � 0:If B contains no class of order k, then tk = 0 and (4) holds, too. From this weget m � n for r = 2. Let now r � 3 and choose a class B� 2 B arbitrarily. IfjB�j = n then m � 1 + �nr� � n and we have �nished. Therefore, let jB�j � n� 1.Take a point a 2 A such that a =2 B� and denote Ba = fBi 2 B; a 2 Big: NowA � a,Ba give (r � 1; 2)-structure and the number m(a) of its classes satis�esm(a) � m. This induction argument (together with m � n for r = 2) implies(1). �1.9. Remark. The proof of inequality (1) for a (2,1)-structure one can �nd in[6].1.10. Corollary. The total number of horocycles determined by n points is atleast n.1.11. Lemma. Let (M;A;B) be a (r; q)-structure , r � 2, q � r: Let a 2 A andd is its degree. Then(5) d � �D � 1r � 1�(q � 1) + 1where D is the order of the biggest class which contains a.Proof. Let a 2 A be an arbitrary point; without loss of generality a = an.Denote by B the biggest class from B which contains a; w.l.o.g. we can �x B =fa1; a2; :::; aD�1; ang. From (ii) we know that every r-tuple of points belongsexactly to q classes. So every (r� 1)-tuple from the points a1; a2; :::; aD�1 belongs- together with the point an - to exactly (q � 1) classes di�erent from B. So wehave �D�1r�1�(q � 1) such classes and it is easy to see that they are distinct. �



286 VOJTECH B�ALINT AND PHILIPPE LAURON1.12. Theorem. For any (r; q)-structure , r � 2, q � r it holds(6) m �srq(q � 1)n �nr�:Proof. Let's consider all the possible orders of classes of investigated (r; q)-struc-ture (M;A;B) and let's write them in an increasing sequence of natural numbersfkigi=0;1;:::;s, precisely(7) r � k0 < k1 < k2 < � � � < ks � n:Let us consider now all the r-tuples of n points. They are �nr�. Every r-tuplemust belong to q classes. So we have to "put" in our classes �nr�q r-tuples. Aclass of order ki for i 2 f0; 1; :::; sg contains �kir � r-tuples. From that we have(8) C = �nr�q = sXi=0mi�kir� � m�ksr �;where mi is the number of classes of order ki for i 2 f0; 1; :::; sg: Further we'lldenote k = ks. From (8) we have(9) �kr� � Cm:Let B� 2 B be a class of maximal order ks = k. Let a 2 B� an arbitrary pointof this class and d the degree of this point. The order of the biggest class whichcontains a is of course k. Now from lemma 1.11 and inequality (9) we haved � �k � 1r � 1�(q � 1) + 1 > rk�kr�(q � 1) � rC(q � 1)km :So d � �nr�rq(q � 1)km � �nr�rq(q � 1)nmbecause k � n.Trivially,m � d and so m � �nr�rq(q � 1)nm ;which yields the inequality (6). �1.13. Remark. In [3] the authors proved(10) m � q � 1r � 1n:For r = q = 2 the estimate (10) is better than (6), but already for r � 3 it is notso and (6) is better than (1) for r � 4 , too.1.14. Remark. In [3] the authors presented the examples of (2; 2)-structures forn = 4; 7; 11 and 16, which are showing that the estimates (1) and (10) are the bestpossible at least for the above-mentioned values of n.



IMPROVEMENT OF INEQUALITIES : : : 2872. Some geometrical connectionsThe de�nition of the abstract (r; q)-structure comprehends a large family ofgeometrical models according to certain common combinatorical features. Butsome concrete geometrical models are already a long time subject of interestfor research. Naturally, the most investigated is the (2,1)-structure of pointsand straight lines in E2 (example 1); selfevidently, in geometrical terms (seee.g.[18],[6],[10],[16],[12],[11],[5],[7]). But already the paper [6] gives the proof ofinequality m � n by means of combinatorical methods. Very natural is also theexample 1.5 , i.e. the (3,1)-structure of points and circles in E2;see [9],[2], [17].About the (2,2)-structure from the example 4, i.e. points and unit circles it ispossible to �nd pretty results for instance in [8], [13], [14].Concerning the (2,2)-structure of points and horocycles Jucovi�c [15] asked thequestion, what is the minimal number h(n) of horocycles determined by n points.Beck [4] proved(11) h(n) > c5n2;but his constant c5 is extremely small. In this direction our conjecture is thefollowing:(12) h(n) � �n� 12 �+ 3:Of course, it's surprising that - as we know - it has not been proved yet that everysystem of n � 2 points determines at least one ordinary horocycle. The reason ofthe troubles may be concealed in the following2.1. Proposition. Let A be the set of n � 2 points in a hyperbolic plane H2.Then through every point ai 2 A pass at least(13) 1 +p8n� 72horocycles.Proof. Consider the Poincaré model of the hyperbolic planeH2. Choose the pointai 2 A arbitrarily. Let K be any circle with centre ai. We take the inversion withrespect to K. Now the x-axis mapps into the (Euclidean) circle x' passing throughai and every horocycle passing through ai mapps into a straight line touching thecircle x0. Let's denote the number of these touching lines by m. The intersection-points of those m lines must contain all the points of A0 (perhaps with exceptionof ai), therefore �m2 � � n� 1. From this we obtain the asked inequality (13). �If we take n = j2+j+22 , where j = 1; 2; 3; ::: then 1+p8n�72 is integer. In this casefrom the proof of the previous proposition it's obvious to construct the point-set



288 VOJTECH B�ALINT AND PHILIPPE LAURONA of n points and to choose the point ai 2 A such that through ai are passing1+p8n�72 � p2n horocycles. So the estimate (13) is the best possible.Compare this result with the (3,1)-structure of points and circles in E2. There itholds (see [2]) that at least 33(n�1)247 (i.e. linearly many) ordinary circles are passingthrough every point.That is an essential di�erence in comparison with (13). Andthis is perhaps a main reason why it's so di�cult to obtain a good lower estimatefor the number of ordinary horocycles determined by n points.References[1] Bálint, V., On a certain class of incidence structures, Práce a �stúdie Vysokej �Skoly Do-pravnej v �Ziline 2 (1979), 97-106 (In Slovak; summary in English, German and Russian).[2] Bálint, V., Bálintová, A., On the number of circles determined by n points in Euclideanplane, Acta Mathematica Hungarica 63 (3-4) (1994), 283-289.[3] Bálint, V., Lauron, Ph., Some inequalities for the (r; q)-structures, STUDIES OF UNI-VERSITY OF TRANSPORT AND COMMUNICATIONS IN �ZILINA, Mathematical -Physical Series, Volume 10 (1995), 3-10.[4] Beck, J., On the lattice property of the plane and some problems of Dirac, Motzkin andErd}os in combinatorical geometry, Combinatorica 3 (3-4) (1983), 281-297.[5] Borwein, P., Moser, W. O. J., A survey of Sylvester's problem and its generalizations,Aequa. Math. 40 (1990), 111-135.[6] de Bruijn, N. G., Erd}os, P., On a combinatorical problem, Nederl. Acad. Wetensch. 51(1948), 1277-1279.[7] Csima, J., Sawyer, E. T., A short proof that there exist 6n=13 ordinary points, Discreteand Computational Geometry 9 (1993), no. 2, 187-202.[8] Elekes, G., n points in the plane can determine n 32 unit circles, Combinatorica 4 (1984),131.[9] Elliott, P. D. T. A., On the number of circles determined by n points, Acta Math. Acad.Sci. Hung. 18 (3-4) (1967), 181-188.[10] Erd}os, P., N�eh�any geometriai probl�em�ar�ol, Mat. Lapok 8 (1957), 86-92.[11] Erd}os, P., On some metric and combinatorical geometric problems, Discrete Math. 60(1986), 147-153.[12] Hansen, S., Contributions to the Sylvester-Gallai-Theory, Doctoral dissertation, Universityof Copenhagen, 1981.[13] Harborth, H., Mengersen, I., Point sets with many unit circles, Discrete Math. 60 (1985),193-197.[14] Harborth, H., Einheitskreise in ebenen Punktmengen, 3.Kolloquium �uber Diskrete Geome-trie, Institut f�ur Mathematik der Universit�at Salzburg (1985), 163-168.[15] Jucovi�c, E., Problem 24, Combinatorical Structures and their Applications,New York-London-Paris, Gordon and Breach, 1970.[16] Kelly, L. M., Moser, W. O. J., On the number of ordinary lines determined by n points,Canad. J. Math. 10 (1958), 210-219.
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