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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 291 { 297CONDITIONS FOR THE ABSENCE OF POSITIVE SOLUTIONSOF A FIRST ORDER DIFFERENTIAL INEQUALITY WITH ASINGLE DELAYErwin KozakiewiczAbstract. A su�cient integral condition for the absence of eventually pos-itive solutions of a �rst order stable type di�erential inequality with onenondecreasing retarded argument is given. In the special case of equality theresult becomes an oscillation criterion.1. IntroductionLet N denote the set of natural numbers f1; 2; : : : ; g, N0 = f0g [N , R the setof all real numbers, R+ the set of all positive real numbers and C[X;Y ] the set ofall continuous functions with domain X and range contained in Y .It is well-known [1, p.16] that for M; � 2 C[R+; R+], � (t) < t and limt!1 � (t) =+1 the inequality x0(t) � �M (t)x(� (t))(1�)has no eventually positive solution, if limt!1 tZ�(t) M (s) ds > 1e . The development tothis theorem is described in the notes [1, p.68]. This paper is concerned with themore general case limt!1 tZ�(t) M (s) ds � 1e .The �rst result in this direction has me reached in December 1989 in a letterof �A. Elbert [2, p.T813]. All solutions ofx0(t) = �M (t)x(t� 1)(2=)1991 Mathematics Subject Classi�cation : 34K25.Key words and phrases: delay, di�erential inequality, oscillation.Received March 27, 1995.



292 ERWIN KOZAKIEWICZoscillate, if M (t) = 1e + �(t), �(t) > 0 a nonincreasing function with 1R �(t)d t =+1.In [2] this result is extended to the inequality of neutral typex0(t)� cx0(t � � ) � �M (t)x(t � 1):(3�)We mention only a specialization of the result in [2] to the equation (2=).All solutions of (2=) oscillate, if M (t) = 1e + �(t), �(t) � 0, t+1Zt �(�) d� > 0nonincreasing and 1Z �(�)d� = +1.In [3] it is shown that this statement remains true without the assumptiont+1Zt �(�) d� is a nonincreasing function.Elbert and Stavroulakis present in [4] an interesting investigation for the equa-tion (1=) with variable delay. An essential role plays a class A� of coe�cientfunctions. But their results does not contain Theorem 1 in [3], and therefore inthis paper we will extend Theorem 1 of [3] to the case of variable delay. Theorem 1and Theorem 2 of [3] and Theorem 1 of [4] are special cases of the result in thispaper. 2. Some lemmasA solution of the inequality (1�) on an interval I is an absolutely continuousfunction on I satisfying the inequality almost everywhere on I. Clearly on aninitial set must be given an initial function. But the nature of the initial functionis without meaning for our asymptotic investigation.We assume that the function H is always locally summable without furthermentioning.Lemma 1. Let x be a positive solution of ( 1�) in the interval I := [T;1), � :I ! R a nondecreasing continuous function; � (t) < t, t 2 I; limt!1 � (t) = 1,�1(t) := � (t); �n+1(t) := � (�n(t)), n 2 N ; T0 := T ; Tk+1 := minft; � (t) = Tkg,k 2 N0; P � T3; M (t) � H(t) � 0, t 2 I; tZ�(t) H(�) d� �1e if � (t) � T .Then holds G(P ) := ln x(� (P ))x(P ) � 2(1 + ln 2).Proof. From (1�) it follows that x(t) is nonincreasing in T1 � t <1. Denote Qthe greatest point such that PZQ H(�) d� = 12e . Then � (P ) < Q < P and x0(t) ��H(t)x(� (P )), Q � t � P . Using x(P ) � 0 and integrating the latter estimation



CONDITIONS FOR THE ABSENCE OF POSITIVE SOLUTIONS : : : 293for x0(t) from Q to P we obtain �x(Q) � x(P ) � x(Q) � �x(� (P )) PZQ H(�)d� =� 12ex(� (P )) or x(� (P ))x(Q) � 2e. Choose S such that SZP H(�) d� = 12e . We seeSZQ H(�) d� = 1e and from the assumption SZ�(S)H(�)d� � 1e and the de�nition ofQ it follows � (S) � Q and x0(t) � �H(t)x(Q), P � t � S. How before we get�x(P ) � x(S) � x(P ) � � 12ex(Q) or x(Q)x(P ) � 2e.Multiplying the two inequalities containing 2e on the right-hand side we obtainx(� (P ))x(P ) � 4e2 or G(P ) � 2(1 + ln 2). Lemma 1 is proved.De�ne a function g : [T2;1)! R by g(t) := minfG(s); � (t) � s � tg.Lemma 2. Under the assumptions of Lemma 1 g is nondecreasing on [T2;1).Proof. From (1�) we concludex0(t)x(t) � �H(t)x(� (t))x(t) ; T1 � t <1:Integration from � (t) to t yields�G(t) � � tZ�(t) H(�)eG(�)d�; T2 � t <1:Using the de�nition of g we seeG(t) � eg(t) tZ�(t) H(�)d�; T2 � t <1:(4)Assume that there exist two points t and u with T2 � t < u <1 and g(t) > G(u).Choose c 6= 1, g(t) > c > G(u). G is a continuous function. Put S = minfs;G(s) =c; t � s <1g. We have t < S and G(S) = g(S) = c. However, due to (4) we wouldobtain c = G(S) � eg(S) 1e = ec 1e > ec1e = c. This is impossible. Consequentlyg(t) � G(u), T2 � t � u < 1 and therefore g(t) � g(v), T2 � t � v < 1.Lemma 2 is proved.De�ne F : [T2;1)! R by F (t) := minfs;G(s) = g(t); � (t) � s � tg.



294 ERWIN KOZAKIEWICZLemma 3. Under the assumptions of Lemma 1 it holds that F (t) < t, T2 < t <1.Proof. Assume F (t) = t for a point t with T2 < t <1. This implies G(s) > g(t),� (t) � s < t. Since G is continuous, there exists a � > 0 such that t � � > T2 andG(s) > g(t), � (t)� � � s < t. Hence g(t� �) > g(t) in contradiction to Lemma 2.Lemma 3 is proved.Put F0(t) := t, F1(t) := F (t) and Fn+1(t) := F (Fn(t)), if Fn(t) � T2, n 2 N .Lemma 4. Under the assumptions of Lemma 1 and F2n�1(t) > T2 it holds thatF2n(t) < �n(t), n 2 N .Proof. n = 1. We have F (t) > T2. If F (t) = � (t), we conclude using Lemma 3F2(t) = F (F (t)) < F (t) = � (t). If F (t) > � (t), it follows G(s) > g(t), � (t) � s <F (t). From Lemma 2 we have g(F (t)) � g(t) and from Lemm3 F2(t) = F (F (t)) <F (t). Hence G(F2(t)) = G(F (F (t))) = g(F (t)) � g(t) < G(s), � (t) � s < F (t).Therefore F2(t) < � (t). Lemma 4 is proved in case n = 1.Let us now assume that the statement of Lemma 4 is true for the natural numbern = k. F2k+1(t) > T2 is equivalent to F1(F2k(t)) > T2. Using the case n = 1 weconclude F2(F2k(t)) < � (F2k(t)). Clearly with F2k+1(t) > T2 it is also F2k�1(t) >T2. Our assumption for n = k shows F2k(t) < �k(t). � is nondecreasing. Thereforeit follows � (F2k(t)) � � (�k(t)) = �k+1(t). Hence F2(k+1)(t) < �k+1(t). Lemma 4 isproved by induction.Remark. De�ne � := minfs� � (s);T � s � tg. Then follows under the assump-tions of Lemma 4 �n(t) � t� n�, n 2 N .Proof. � � s � � (s), T � s � t or equivalently � (s) � s � �, T � s � t. Thisshows � (t) � t � �, �2(t) � � (t � �) � t � � � � = t � 2� and so on. Since�n(t) > F2n(t) � � (F2n�1(t)) � � (T2) = T1 we may continue up to �n(t) � t� n�.The remark is proved.A consequence of the remark is that for each point t > T2 there exists a naturalnumber n depending on t such that Fn(t) � T2.Lemma 5. Under the assumptions of Lemma 1 it holds that g(t) � 1e , T4 � t <1.Proof. (4) shows G(t) � 0, T2 � t < 1. Hence g(t) � 0, T3 � t < 1. Againfrom (4) we obtain G(t) � tZ�(t)H(�)d� � 1e , T3 � t < 1. Therefore, g(t) � 1e ,T4 � t <1. Lemma 5 is proved.



CONDITIONS FOR THE ABSENCE OF POSITIVE SOLUTIONS : : : 295De�nition. � 2 Piag[t0;1) i� � is a generalized function on [t0;1) and t2Zt1 �(�) d�is de�ned in such a way that for all t1, t2, t3 with t0 � t1 < t2 < t3 < 1t2Zt1 �(�)d� � 0 and t2Zt1 �(�)d� + t3Zt2 �(�)d� = t3Zt1 �(�)d�.The abbreviation Piag comes from positive integral additive generalized func-tion, although we postulate only nonnegative.3. The main resultTheorem 1. Let x be a solution of ( 1�) in the interval J := [t0;1), � : J ! Ra nondecreasing continuous function; � (t) < t, t 2 J , limt!1 � (t) = 1; M (t) �H(t) � 0, t 2 J ; � 2 Piag [t0;1); tZ�(t) H(�)d� � 1e + tZ�(t) �(�)d�, t0 � � (t) < 1;1Zt0 �(�)d� =1. Then x is not eventually positive.Proof. Suppose the contrary. Then there exists a T � t0 with x(t) > 0 for t � T .Choose t such that tZT5 �(�)d� > 2(1 + ln 2) and a natural number n such thatT4 � Fn(t) � T5. By Lemma 4 this is possible. Using Lemma 1, (4), ex � exand the assumption on H, the de�nition of F (t), F (t)Z�(t) �(�)d� � 0, the iteration ofthe inequality G(t) � G(F (t))�1+ e tZF (t) �(�)d��, nY�=1(1 + a�) � nX�=1a� for a� � 0,nX�=1 b��1Zb� �(�)d� = b0Zbn �(�)d�, Lemma 5, the choice of Fn(t), the choice of t weobtain 2(1 + ln2) � G(t) � eg(t) tZ�(t) H(�)d� � eg(t)�1e + tZ�(t) �(�)d�)= G(F (t))�1 + e tZ�(t) �(�)d�� � G(F (t))�1 + e tZF (t) �(�)d��



296 ERWIN KOZAKIEWICZ� G(Fn(t)) nY�=1�1 + e F��1(t)ZF� (t) �(�)d�� � G(Fn(t)) nX�=1 e F��1(t)ZF�(t) �(�)d�= G(Fn(t))e tZFn(t) �(�)d� � tZFn(t) �(�)d� � tZT5 �(�)d� > 2(1 + ln 2).This contradiction completes the proof of Theorem 1.A su�cient condition for � 2 Piag [t0;1) is � = �1 + �2, where �1 : [t0;1)![0;1) denotes a locally summable function and �2(t) = 1X�=1c��(t � s�) with (sn)a increasing sequence, limn!1 sn = 1, cn � 0, n 2 N , � the �-distribution and theintegral bZa �(�)d� de�ned in the following manner.bZa �(�)d� = bZa �1(�)d� + bZa �2(�)d� andbZa �2(�)d� = lim"!0+ b�"Za�" �2(�)d� = X�a�s�<b c� .With �1 := 0 and �2(t) := 1X�=0c��(t � ~T�), where ~T0 := T0 � t0, ~Tk+1 :=maxft; � (t) = ~Tkg, k 2 N0, we obtain from Theorem 1Theorem 2. Let x be a solution of ( 1�) in the interval J := [t0;1), � : J ! Ra nondecreasing continuous function; � (t) < t, t 2 J ; limt!1 � (t) = 1, M (t) �H(t) � 0, t 2 J ; tZ�(t)H(�)d� � 1e + ck, ~Tk < t � ~Tk+1, ck � 0, k 2 N0;1X�=0c� = +1. Then x is not eventually positive.Theorem 2 extends [4, Theorem 1].An immediate consequence of Theorem 1 isTheorem 3. Under the conditions of theorem 1 let x be a solution of (1=) in theinterval J := [t0;1). Then x is oscillatory.
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