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NATURAL TRANSFORMATIONS

OF SEMI–HOLONOMIC 3–JETS

Gabriela Vosmanská

Let J̄3 be the functor of semi-holonomic 3-jets and J̄3,2 be the functor
of those semi-holonomic 3-jets, which are holonomic in the second order. We deduce
that the only natural transformations J̄3 → J̄3 are the identity and the contraction.
Then we determine explicitely all natural transformations J̄3,2 → J̄3,2 , which form
two 5-parameter families.

Applying the point of view of the category theory, we can interpret some differ-
ential geometric operations as natural transformations of the geometric functors
in question, [3]. We are going to discuss the semi-holonomic 3-jets, [1], from such
a point of view. Let Mfm be the category of m-dimensional manifolds and local
diffeomorphisms and Mf be the category of all manifolds and all smooth maps,
[3]. The construction of the space J̄3(M,N ) of semi-holonomic 3-jets from an m-
dimensional manifold M into a manifold N is a functor on the product category
Mfm ×Mf . For every local diffeomorphism f : M → M̄ and every smooth map
g : N → N̄ we define J̄3(f, g) : J̄3(M,N )→ J̄3(M̄ , N̄) by

(1) J̄3(f, g) (X) = (j3yg) ◦X ◦ (j3xf)−1

where x = αX or y = βX is the source or the target ofX ∈J̄3(M,N ), respectively.

In [4] it is deduces for the functor J̄2 of the semi-holonomic 2-jets that all
natural transformations J̄2 → J̄2 form two one-parameter families, which can be
constructed by means of the canonical involution J̄2 → J̄2 by J. Pradines, [6], or
by means of the difference tensor by I. KoláŠ, [2]. But in the third order we have
a different situation. We recall that the contraction of J̄3(M,N ) means the map

X 7→ j3
αX β̂X

where β̂X denotes the constant map of M into βX ∈ N .
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Proposition 1. The only transformations J̄3 → J̄3 are the identity and the
contraction.

Proof. Consider first the subcategoryMfm×Mfn ⊂Mfm×Mf . The standard
fiber S = J̄3

◦ (Rm,Rn)◦ is a G3
m × G3

n-space, [4]. By (1), the action of (A,B) ∈
G3
m × G3

n on X ∈ S is given by the jet composition

(2) X = B ◦X ◦A−1

By [3], the natural transformations J̄3 → J̄3 are in bijection with G3
m × G3

n-
equivariant maps F : S → S.

Write

A−1 = (aij , a
i
jk, a

i
jkl) i, j, k, l, . . . = 1, . . . ,m

B = (bpq , b
p
qr, b

p
qrs) p, q, r, s, · · ·= 1, . . . , n

where the second and third order terms are symmetric in all subscripts, and

X = (xpi , x
p
ij, x

p
ijk) ,

X = (x̄pi , x̄
p
ij, x̄

p
ijk) .

Evaluating (2), we find

x̄pi = bpq x
q
j a

j
i(3)

x̄pij = bpqr x
q
k x

r
l a

k
i a

l
j + bpq (xqkl a

k
i a

l
j + xqk a

k
ij)(4)

x̄pijk = bpqrs x
q
l x

r
m x

s
n a

l
i a
m
j a

n
k + bpqr[(x

q
l x

r
mn + xqln x

r
m(5)

+ xqlm x
r
n) ali a

m
j a

n
k + xql x

r
m(ali a

m
jk + alik a

m
j + alij a

m
k )]

+ bpq [x
q
lmn a

l
i a
m
j a

n
k + xqlm (ali a

m
jk + alik a

m
j + alij a

m
k )

+ xql a
l
ijk] .

The map F is of the following form

x̄pi = F pi (xpi , x
p
ij, x

p
ijk) = F pi (x1, x2, x3) ,

x̄pij = F pij(x
p
i , x

p
ij, x

p
ijk) = F pij (x1, x2, x3) ,

x̄pijk = F pijk(xpi , x
p
ij, x

p
ijk) = F pijk(x1, x2, x3) .

The equivariance condition for Fpi reads

bpq F
q
j (x1, x2, x3) aij = F pi

(
bpq x

q
j a

j
i , b

p
qr x

q
k x

r
l a

k
i a

l
j(6)

+ bpq(x
q
kl a

k
i a

l
j + xqk a

k
ij), b

p
qrs x

q
l x

r
m x

s
n a

l
i a
m
j a

n
k

+ bpqr[(x
q
l x

r
mk + xqln x

r
m + xqlm x

r
n) ali a

m
j a

n
k + xql x

r
m

(ali a
m
jk + alik a

m
j + alij a

m
k )] + bpq [x

q
lmn a

l
i a
m
j a

n
k

+ xqlm(ali a
m
jk + alik a

m
j + alij a

m
k ) + xql a

l
ijk]) .
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Similar conditions hold for F p
ij and F pijk as well.

We shall heavily use the homogeneous function theorem, [3], p.213. Taking into
account the canonical injection G1

n ⊂ G3
n, the equivariance of F pi with respect to

the homotheties in G1
n yields

kF pi (x1, x2, x3) = F pi (kx1, k
2x2, k

3x3) .

By the homogeneous function theorem, Fpi is linear in x1 and independent of x2,
x3. Using the homotheties in G1

m and G1
n, we deduce for Fpij

k2 F pij(x1, x2, x3) = F pij(kx1, k
2x2, k

3x3)

k F pij(x1, x2, x3) = F pij(kx1, kx2, kx3) .

Hence Fpij is linear in x2 and independent of x1, x3.
If we apply both homotheties to F pijk, we obtain

k3F pijk(x1, x2, x3) = F pijk(kx1, k
2x2, k

3x3) ,

k F pijk(x1, x2, x3) = F pijk(kx1, kx2, kx3) .

Hence Fpijk is linear in x3 and independent of x1, x2.

Taking into account the generalized invariant tensor theorem, [3], p. 230, the
equivariancy with respect to canonical injection of G1

m×G1
n into G3

m×G3
n yields

x̄pi = kxpi k ∈ R(7)

x̄pij = a xpij + b xpji a, b ∈ R(8)

x̄pijk = c xpijk + d xpjik + e xpjki + f xpkji + g xpikj + hxpkij(9)

c, d, e, f, g, h ∈ R .

Next we shall discuss the kernel of the jet projection π31 : G3
m×G3

n → G1
m×G1

n.
In the second order we obtain the following two possibilities from [4]

I. k = 0 , a+ b = 0

II. k = 1 , a+ b = 1

This leads to the two cases, [4],

I. x̄pi = 0 , x̄pij = k(xpij − x
p
ji) k ∈ R

II. x̄pi = xpi , x̄pij = txpij + (1− t)xpji t ∈ R

In the third order, we have

F pijk + bpqrs F
q
i F

r
j F

s
k + bpqr (F qi F

r
jk + F qik F

r
j + F qij F

r
k )

(10)

+ bpqr F
q
l F

r
m (δli a

m
jk + alik δ

m
j + alij δ

m
k ) + F plm (δli a

m
jk + alik δ

m
j

+ alij δ
m
k ) + F pl a

l
ijk = c x̄pijk + d x̄pjik + e x̄pjki + f x̄pkji + g x̄pikj + h x̄pkij
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and

x̄pijk = bpqrs x
q
i x

r
j x

s
k + bpqr(x

q
i x

r
jk + xqik x

r
j + xqij x

r
k)(11)

+ xpijk + xplm(δli a
m
jk + alik δ

m
j + alij δ

m
k ) + xpl a

l
ijk .

If we put bpqr = 0, alijk = 0, bpqrs = 0, we deduce from (8), (10), (11)

(12) b = 0, a = c+ g, d+ c = 0, f + h = 0 .

In the second order, we have deduced, [4],

(13) k = a+ b .

Consider first the case k = 0. By (13) we find a = 0, so that we have Fpi =
F pij = 0. From (8), (10), (11) we further deduce

(14) c + d+ e = 0 f + g + h = 0

c + d+ g = 0 e+ f + h = 0

c + g + h = 0 d+ e + f = 0

The only solution of (12) - (14) is a = b = c = d = e = f = g = h = 0. Hence
F pijk = 0 as well. This is the contraction.

In the case k = 1 we have a = 1, so that Fpi = xpi , F
p
ij = xpij. Analogously as

above we deduce

(15) c + d+ e = 1 f + g + h = 0

c + d+ g = 1 e+ f + h = 0

c + g + h = 1 d+ e + f = 0

The only solution is c = 1, d = e = f = g = h = 0. Hence Fpijk = xpijk, which is
the identity.

Finally, the case of the whole categoryMfm×Mf is reduced toMfm×Mfn
in the same way as in the proof of Proposition 1 in [4]. �

There is a more rich structure of natural transformations in the case of the sub-
space J̄3,2(M,N ) ⊂ J̄3(M,N ) characterized by the property that the underlying
2-jet is holonomic. Even J̄3,2 is a bundle functor on the categoryMfm×Mf . By
[5], in the second order we have

(16) F pi = k xpi , F pij = k xpij
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with two possibilities k = 0 and k = 1. In the first case, we deduce similarly as
above

F pi = 0, F pij = 0 ,(17)

F pijk = d(xpjik − x
p
ijk) + e(xpjki − x

p
ijk) + f(xpkji − x

p
ijk)

+ g(xpikj − x
p
ijk) + h(xpkij − x

p
ijk)

with arbitrary real parameters d, e, f, g, h. In the second case, we obtain in the
same way

F pi = xpi , F pij = xpij(18)

F pijk = xpijk + d(xpjik − x
p
ijk) + e(xpjki − x

p
ijk) + f(xpkji − x

p
ijk)

+ g(xpikj − x
p
ijk) + h(xpkij − x

p
ijk)

Thus, we can summarize by

Proposition 2. All natural transformations J̄3,2 → J̄3,2 form the two 5-parameter
families (17) and (18).

We are going to characterize this result geometrically. We recall that for ev-
ery X ∈ J̄3,2(M,N ) there exists a unique sX ∈ J3(M,N ) such that X and
sX are equivalent with respect to curves, [2]. The coordinate form of sX is
(xpi , x

p
ij, x

p
(ijk)), where the round bracket denotes symmetrization. Since J̄3,2(M,N )

is an affine bundle over J2(M,N ) with the associated vector bundle TN⊗ ⊗3T ∗M ,
we have

(19) ∆X = X − sX ∈ TN ⊗ ⊗3T ∗M .

On the other hand we know that all natural transformations ν of TN⊗⊗3T ∗M into
itself form a 6-parameter family, which is linearly generated by all permutations
of the subscripts, [3]. Then are verifies directly that in the case k = 1 all natural
transformations (18) are of the form

(20) X 7→ s(X) + ν(∆X) .

Only 5 parameters are essential in (20).

In the case k = 0, we shall use the canonical injection i : TN ⊗ ⊗3T ∗M →
J̄3,2(M,N ), the coordinate form of which is i(xpijk) = (0, 0, xpijk). Clearly, all
natural transformations (17) can be interpreted as

(21) X 7→ i(ν(∆X)) .

Even in (21) only 5 parameters are essential.

Remark. The results that the only natural transformations of J̄3 into itself as
well as of Jr into itself, r > 2, [5], are the identity and the contraction suggest
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the conjecture that the same is true for every J̄r, r > 3. However, this is not
correct. According to an oral communication by I. KoláŠ, all natural transfor-
mation of J̄4 into itself form two 3-parameter families. This result was deduced
analytically by the methods of the present paper and both families were character-
ized geometrically in terms of the geometry of the fourth iterated tangent bundle
TTTTM .

Acknowledgement. The author would like to thank Prof. I. KoláŠ for his help
in preparing the final version of this paper.
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