Archivum Mathematicum

Josef Daněček; Eugen Viszus
 A note on regular points for solutions of nonlinear elliptic systems

Archivum Mathematicum, Vol. 32 (1996), No. 2, 105--116

Persistent URL: http://dml.cz/dmlcz/107565

Terms of use:

(C) Masaryk University, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A NOTE ON REGULAR POINTS FOR SOLUTIONS OF NONLINEAR ELLIPTIC SYSTEMS

Josef Daněček and Eugen Viszus

Abstract. It is shown in this paper that gradient of vector valued function $u(x)$, solution of a nonlinear elliptic system, cannot be too close to a straight line without $u(x)$ being regular.

0. - Introduction

In this paper we shall deal with points of regularity for weak solutions of nonlinear elliptic systems of the second order

$$
\begin{equation*}
-D_{i} a_{i}^{r}(x, u, D u)+a^{r}(x, u, D u)=-D_{i} f_{i}^{r}(x)+f^{r}(x), \quad r=1, \ldots, N \tag{0.1}
\end{equation*}
$$

in an bounded open set $\Omega \subset \mathcal{R}^{n}, n \geq 3$, with Lipschitz boundary $\partial \Omega$. Here the summation over repeated subscript is understood and $x=\left(x_{1}, \ldots x_{n}\right) \in \Omega, u=$ $\left(u_{1}, \ldots u_{N}\right), N \geq 2, D_{i}=\partial / \partial x_{i}, D u=\left(D u_{1}, \ldots, D u_{N}\right)$. By a weak solution of (0.1) we mean a function $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ (for informations see [4], [5]) such that

$$
\begin{align*}
\int_{\Omega}\left(a_{i}^{r}(x, u, D u) D_{i} \varphi^{r}\right. & \left.+a^{r}(x, u, D u) \varphi^{r}\right) d x \\
& =\int_{\Omega}\left(f_{i}^{r}(x) D_{i} \varphi^{r}+f^{r}(x) \varphi^{r}\right) d x, \varphi \in C_{0}^{\infty}\left(\Omega, \mathcal{R}^{N}\right) \tag{0.2}
\end{align*}
$$

For the sake of simplification we denote by $|\cdot|$ and $\langle.,$.$\rangle the norm and scalar$ product in \mathcal{R}^{n} as well as in \mathcal{R}^{N} and $\mathcal{R}^{n N}$. If $x \in \mathcal{R}^{n}$ and r is a positive real number, we set $B(x, r)=\left\{y \in \mathcal{R}^{n}:|y-x|<r\right\}$, i.e., the open ball in $R^{n}, \Omega(x, r)=$ $B(x, r) \cap \Omega$. The meaning of $\Omega_{0} \Subset \Omega$ is that the closure of Ω_{0} is contained in Ω, i.e. $\bar{\Omega}_{0} \subset \Omega$.

We will use the space $C_{0}^{\infty}\left(\Omega, R^{N}\right)$, Hölder spaces $C^{0, \alpha}\left(\bar{\Omega}, R^{N}\right), C^{0, \alpha}\left(\Omega, R^{N}\right)$ and Sobolev spaces $W^{k, p}\left(\Omega, R^{N}\right), W_{l o c}^{k, p}\left(\Omega, R^{N}\right), W_{0}^{k, p}\left(\Omega, R^{N}\right)$ (for detailed informations see,e.g.[4]).

[^0]Denote by
the mean value over the set $B\left(x_{0}, R\right)$ of the function $f \in L^{1}\left(B\left(x_{0}, R\right), R^{N}\right)$.
About parameters of system (0.1) we suppose:

$$
\begin{equation*}
a_{i}^{r}, a^{r} \in C^{1}\left(\Omega \times \mathcal{R}^{N} \times \mathcal{R}^{n N}\right) \tag{0.3}
\end{equation*}
$$

For $(x, \xi, p) \in \Omega \times \mathcal{R}^{N} \times \mathcal{R}^{n N}$ with $|\xi| \leq L, L>0$ is a constant

$$
\begin{equation*}
\left|a_{i}^{r}(x, \xi, p)\right|,\left|a^{r}(x, \xi, p)\right| \leq C_{1}(L)(1+|p|) \tag{0.4}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\partial a_{i}^{r}(x, \xi, p)}{\partial p_{j}^{s}}\right|,\left|\frac{\partial a^{r}(x, \xi, p)}{\partial p_{j}^{s}}\right| \leq C_{1}(L), \tag{0.5}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\partial a_{i}^{r}(x, \xi, p)}{\partial \xi_{k}}\right|,\left|\frac{\partial a_{i}^{r}(x, \xi, p)}{\partial x_{l}}\right|,\left|\frac{\partial a^{r}(x, \xi, p)}{\partial \xi_{k}}\right| \tag{0.6}
\end{equation*}
$$

$$
\left|\frac{\partial a^{r}(x, \xi, p)}{\partial x_{l}}\right| \leq C_{1}(L)(1+|p|)
$$

(0.7) $\quad \frac{\partial a_{i}^{r}(x, \xi, p)}{\partial p_{j}^{s}} \longrightarrow d_{i j}^{r s}(x, \xi), \quad$ if $|p| \rightarrow \infty$, uniformly in $\Omega \times \mathcal{R}^{N}$

$$
\begin{equation*}
f_{i}^{r}(x) \in W^{1, q}(\Omega), \quad f^{r}(x) \in W^{1, q / 2}(\Omega), q>n \tag{0.8}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{i, r}\left\|f_{i}^{r}(x)\right\|_{1, q}+\sum_{r}\left\|f^{r}(x)\right\|_{1, q} \leq C_{2}, C_{2}>0 \text { is a constant } \tag{0.9}\\
\frac{\partial a_{i}^{r}(x, \xi, p)}{\partial p_{j}^{s}} \eta_{i}^{r} \eta_{j}^{s} \geq \mu(L)|\eta|^{2} \quad \text { for all } \eta \in \mathcal{R}^{n N} \\
(x, \xi, p) \in \Omega \times \mathcal{R}^{N} \times \mathcal{R}^{n N}
\end{gather*}
$$

It is known that if $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ solves (0.1) in weak sense and conditions stated above are fulfiled then $u \in W_{l o c}^{2,2}\left(\Omega, \mathcal{R}^{N}\right)$ (see e.g.[1]). Main result of this paper is the following theorem:

Theorem 0.11. Let $M>0$ be a constant and $u \in W^{1,2} \cap C^{0, \beta}\left(\Omega, \mathcal{R}^{N}\right),(0<\beta<$ 1) be a weak solution of system (0.1) with conditions (0.3) - (0.10). There exist constants $\varepsilon_{1}>0, R_{1}>0$ such that if for some $x^{0} \in \Omega, R<\min \left(R_{1}, \operatorname{dist}\left(x^{0}, \partial \Omega\right)\right), \nu \in$ $\mathcal{S}^{n N-1}, \pi \in \mathcal{R}^{n N},|\pi| \leq M$ we have

$$
\begin{equation*}
f_{B\left(x^{0}, R\right)}\left|D u(x)-(D u)_{x^{0}, R}-\pi\right| d x-\underset{B\left(x^{0}, R\right)}{ }\left|\left\langle D u(x)-(D u)_{x^{0}, R}-\pi, \nu\right\rangle\right| d x<\varepsilon_{1}, \tag{0.13}
\end{equation*}
$$

then u is regular in a neigborhoud of x^{0} (there is $\delta>0$ such that

$$
\left.u \in C^{1, \alpha}\left(\overline{B\left(x^{0}, \delta\right)}, \mathcal{R}^{N}\right), \alpha \in(0,1-n / q)\right)
$$

Remark. The condition that a weak solution $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ of system (0.1) is in addition from the space $C^{0, \beta}\left(\Omega, \mathcal{R}^{N}\right)$ be fulfiled for $n=3$ by means of Sobolev imbedding theorem $\left(W_{l o c}^{2,2}\left(\Omega, \mathcal{R}^{N}\right) \hookrightarrow C^{0,1 / 2}\left(\Omega, \mathcal{R}^{N}\right)\right.$, see [4]). For a motivation to this result we refer to [3]. The proof of theorem 0.11 is based on some considerations of paper [2] and the fact that from (0.2) we obtain an equation in variation which has the following form (for information see e.g. [5])

$$
\begin{align*}
& \int_{\Omega} \delta_{k l}\left[B_{i j}^{r s}(x, U) D_{j} U_{s}^{l} D_{i} \varphi_{k}^{r}+B_{j}^{r s}(x, U) D_{j} U_{s}^{l} \varphi_{k}^{r}\right] d x \tag{0.14}\\
&=\int_{\Omega}\left[G_{i}^{r k} D_{i} \varphi_{k}^{r}+G^{r k} \varphi_{k}^{r}\right] d x, \quad \varphi \in C_{0}^{\infty}\left(\Omega, \mathcal{R}^{n N}\right)
\end{align*}
$$

where $i, j, k, l=1, \ldots, n, r, s=1, \ldots, N, U=\left\{U_{s}^{l}\right\}=\left\{D_{l} u_{s}\right\}_{l=1, \ldots, n}^{s=1, \ldots, N}, \delta_{k l}-$ Kronecker delta,

$$
\begin{gathered}
B_{i j}^{r s}(x, U)=\frac{\partial a_{i}^{r}}{\partial p_{j}^{s}}(x, u(x), U), \quad B_{j}^{r s}(x, U)=\frac{\partial a^{r}}{\partial p_{j}^{s}}(x, u(x), U) \\
G_{i}^{r k}(x)=D_{k} f_{i}^{r}-\frac{\partial a_{i}^{r}}{\partial x_{k}}-\frac{\partial a_{i}^{r}}{\partial \xi_{s}} \frac{\partial u_{s}}{\partial x_{k}}, \quad G^{r k}(x)=D_{k} f^{r}-\frac{\partial a^{r}}{\partial x_{k}}-\frac{\partial a^{r}}{\partial \xi_{s}} \frac{\partial u_{s}}{\partial x_{k}} .
\end{gathered}
$$

Because the system (0.14) is quasilinear elliptic system and $U=D u$, it is sufficient to prove an assertion for quasilinear elliptic system analogous to theorem 0.11 .

1. - The quasilinear case

Let us consider a quasilinear elliptic system

$$
\begin{equation*}
-D_{i}\left(A_{i j}^{r s}(x, u) D_{j} u^{s}\right)+A_{j}^{r s}(x, u) D_{j} u^{s}=-D_{i} g_{i}^{r}+g^{r} \tag{1.1}
\end{equation*}
$$

$x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega, \Omega \subset \mathcal{R}^{n}, n \geq 3$ is a bounded open set with Lipschitz boundary $\partial \Omega, u=\left(u^{1}, \ldots u^{N}\right), N \geq 2, i, j=1, \ldots, n, r, s=1, \ldots, N$.

We suppose

$$
\begin{gather*}
A_{i j}^{r s}, A_{j}^{r s} \in C\left(\bar{\Omega} \times \mathcal{R}^{N}\right) \tag{1.2}\\
\sum_{i, j, r, s}\left|A_{i j}^{r s}\right|+\sum_{j, r, s}\left|A_{j}^{r s}\right| \leq L \text { on } \Omega \times \mathcal{R}^{N}, L>0 \text { is a constant },
\end{gather*}
$$

$$
\text { there is } \lambda>0 \text { such that } A_{i j}^{r s}(x, \xi) \eta_{i}^{r} \eta_{j}^{s} \geq \lambda|\eta|^{2} \text { for all } \eta \in \mathcal{R}^{n N}
$$

$$
(x, \xi) \in \bar{\Omega} \times \mathcal{R}^{N}
$$

$$
\begin{gather*}
A_{i j}^{r s}(x, \xi) \longrightarrow d_{i j}^{r s}(x), \quad \text { as }|\xi| \rightarrow \infty, \text { uniformly in } \Omega, \tag{1.5}\\
g_{i}^{r} \in L^{p}(\Omega), \quad g^{r} \in L^{p / 2}(\Omega), p>n . \tag{1.6}
\end{gather*}
$$

By a weak solution of system (1.1) we mean a function $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ such that

$$
\begin{align*}
\int_{\Omega}\left[A_{i j}^{r s}(x, u) D_{j} u^{s} D_{i} \varphi^{r}\right. & \left.+A_{j}^{r s}(x, u) D_{j} u^{s} \varphi^{r}\right] d x \\
& =\int_{\Omega}\left[g_{i}^{r} D_{i} \varphi^{r}+g^{r} \varphi^{r}\right] d x, \quad \varphi \in C_{0}^{\infty}\left(\Omega, \mathcal{R}^{N}\right) \tag{1.7}
\end{align*}
$$

It is matter of simple calculation to find that the type of system (0.14) is the same as the one of system (1.7) with assumptions (1.2) - (1.6). Now we may state

Theorem 1.8. Let $\Omega^{\prime} \in \Omega$. For every $M>0$ there exist a constants $\varepsilon_{1}>$ $0, R_{1}>0$ such that if $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ is a weak solution of the system (1.1) with conditions (1.2) - (1.6) and if for some $x^{0} \in \Omega^{\prime}, R<\min \left(R_{1}, \operatorname{dist}\left(x^{0}, \partial \Omega\right)\right), \nu \in$ $\mathcal{S}^{N-1}, \pi \in \mathcal{R}^{N},|\pi| \leq M$ we have

$$
\begin{gather*}
f\left|u(x)-(u)_{x^{0}, R}\right|^{2} d x \leq M^{2}, \tag{1.9}\\
\underset{B\left(x^{0}, R\right)}{f}\left|u(x)-(u)_{x^{0}, R}-\pi\right| d x-\underset{B\left(x^{0}, R\right)}{f}\left|\left\langle u(x)-(u)_{x^{0}, R}-\pi, \nu\right\rangle\right| d x<\varepsilon_{1}, \tag{1.10}
\end{gather*}
$$

then u is regular in a neigborhoud of x^{0} (there is $\delta>0$ such that

$$
\left.u \in C^{0, \alpha}\left(\overline{B\left(x^{0}, \delta\right)}, \mathcal{R}^{N}\right), \alpha \in(0,1-n / p)\right)
$$

It is clear that if theorem 1.8 will be proved then theorem 0.11 will be proved as well.

Remark. If we compare Theorem 1.8 with Theorem 3 in [3], we see the following: The assumption in Theorem 3 in [3] that for some $x_{0} \in \Omega$ and R (small) $f_{B\left(x^{0}, R\right)}|u|^{2} d x \leq M$ is replaced by assumptions (1.5) and $f_{B\left(x^{0}, R\right)}\left|u-u_{x^{0}, R}\right|^{2} d x \leq M$ in Theorem 1.8. Taking into account the relation between the spaces $B M O$ and L^{∞}, Theorem 1.8 may be seen as some generalization of Theorem 3 in [3].

One can say that the structural assumption (1.5) probably imply the boundedness of the solution of (1.1) and then our result is a corrolary of the result in [3]. As the following example shows, the above mentioned consideration is not true in general.

Example. [6] Let $\Omega=\left\{x \in \mathcal{R}^{n}:|x|<1\right\}$ and let us consider the system

$$
-D_{i}\left(A_{i j}^{r s}(x, u) D_{j} u^{s}\right)=0
$$

where $A_{i j}^{r s}(x, \xi)=\delta_{i j} \delta_{r s}+\eta(|\xi|) B_{i r}(x, \xi) B_{j s}(x, \xi), \quad \delta_{i j}$-Kronecker delta, $\eta \in$ $C^{\infty}([0, \infty))$, supp $\eta \subset[0,1+\varepsilon], \varepsilon>0,0 \leq \eta \leq 1, \eta \equiv 1$ in $[0,1]$,

$$
\begin{aligned}
B_{i r}(x, \xi) & =c\left(\delta_{i r}+b \frac{\xi_{i} \xi_{r}|x|^{2 a-2}}{1+|\xi|^{2}|x|^{2 a-2}}\right), \\
a \in\left[1, \frac{n}{2}\right), \quad b & =\frac{2 n}{n-2}, \quad c^{2}=\frac{a(n-a)(n-2)^{2}}{(n-2 a)^{2}(n-1)^{2}} .
\end{aligned}
$$

The coefficients of this system satisfy all assumptions (1.2)-(1.5). The function $u(x)=x /|x|^{a}$ is a solution of this system and u is unbounded in origin $(a=$ $2,3, \ldots[n / 2])$. One may see that $u \notin B M O(\Omega)$ too.

2. - The proof of Theorem 1.8

We will use the following results:
Lemma 2.1. (see [5]) Let $g \in W^{1,2}(B(0,1))$ be a solution of the equation

$$
\begin{equation*}
\int_{B(0,1)} a_{i j} D_{j} g D_{i} \varphi d x=0, \quad \varphi \in C_{0}^{\infty}(B(0,1)) \tag{2.2}
\end{equation*}
$$

in the unit ball $B(0,1)$ of \mathcal{R}^{n}, with bounded, measurable coefficients $a_{i j}$ satisfying

$$
\begin{equation*}
\sum_{i, j}\left|a_{i j}\right| \leq L \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2}, \quad \xi \in \mathcal{R}^{n}, x \in B(0,1) \tag{2.4}
\end{equation*}
$$

Then there exist constants α and Q depending only on L, λ such that $g(x)$ is $\alpha-$ Hölder continuous in $B(0,1 / 2)$ and

$$
\begin{align*}
\|g\|_{C^{0, \alpha}(B(0,1 / 2))}= & \sup _{x \in B(0,1 / 2)}|g(x)| \\
& +\sup _{x, y \in B(0,1 / 2), x \neq y} \frac{|g(x)-g(y)|}{|x-y|^{\alpha}} \leq Q\|g\|_{L^{2}(B(0,1))} \tag{2.5}
\end{align*}
$$

Using Lax-Milgram lemma we may prove
Lemma 2.6. Let $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right), x^{0} \in \Omega$ and assumptions (1.2) - (1.4),(1.6) for system (1.1) be satisfied. Then there exists $0<R_{0} \leq \operatorname{dist}\left(x^{0}, \partial \Omega\right)$ such that for $R \in\left(0, R_{0}\right]$ the linear elliptic system

$$
\begin{equation*}
-D_{i}\left(A_{i j}^{r s}(x, u) D_{j} v_{R}^{s}\right)+A_{j}^{r s}(x, u) D_{j} v_{R}^{s}=-D_{i} g_{i}^{r}+g^{r} \tag{2.7}
\end{equation*}
$$

has a unique solution in $W_{0}^{1,2}\left(B\left(x^{0}, R\right), \mathcal{R}^{N}\right)$. Moreover

$$
\begin{equation*}
\underset{B\left(x^{0}, R\right)}{f}\left|v_{R}(x)-\left(v_{R}\right)_{x^{0}, R}\right|^{2} d x \leq c_{3} R^{2(1-n / p)} \tag{2.8}
\end{equation*}
$$

where $c_{3}=c_{3}\left(n, N, L, \lambda, R_{0},\left\|g_{i}^{r}\right\|_{p},\left\|g^{r}\right\|_{p / 2}\right)$.
If we put $\Omega^{\prime} \subset \subset \Omega$ then the above estimate will be uniform in Ω^{\prime}.
The above lemma enables us to decompose the solution u of (1.1) as

$$
\begin{equation*}
u=v_{x^{0}, R}+w_{x^{0}, R} \text { in } B\left(x^{0}, R\right) . \tag{2.9}
\end{equation*}
$$

If there will not be danger of misunderstanding, we will omit the subscripts x^{0}, R.
By classical way we may obtain for $w_{x^{0}, R}$ Cacciopoli's inequality:
For $x^{0} \in \Omega, 0<\rho<R<R_{0} \leq \operatorname{dist}\left(x^{0}, \partial \Omega\right)$

$$
\begin{equation*}
\int_{B\left(x^{0}, \rho\right)}\left|D w_{x^{0}, R}(x)\right|^{2} d x \leq \frac{c_{4}}{(R-\rho)^{2}} \int_{B\left(x^{0}, R\right)}\left|w_{x^{0}, R}(x)-\left(w_{x^{0}, R}\right)_{x^{0}, R}\right|^{2} d x \tag{2.10}
\end{equation*}
$$

where $c_{4}=c_{4}(n, N, L, \lambda)$.
Now we present a fundamental result concerning the partial regularity of weak solutions to the system (1.1) with assumptions (1.2)-(1.6).

Proposition 2.11. (see [5], pp.147-149) Let $\Omega^{\prime} \Subset \Omega$. There exist constants $\varepsilon_{0}>$ $0, R_{0}>0$ such that if $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ is a weak solution of the system (1.1) with conditions (1.2) - (1.6) and if for some $x^{0} \in \Omega^{\prime}$ and $R<\min \left(R_{0}, \operatorname{dist}\left(x^{0}, \partial \Omega\right)\right)$

$$
\begin{equation*}
\underset{B\left(x^{0}, R\right)}{f}\left|w_{R}(x)-\left(w_{R}\right)_{x^{\circ}, R}\right|^{2} d x \leq \varepsilon_{0}^{2} \tag{2.12}
\end{equation*}
$$

then there exist $\delta>0, \mu \in(0,1-n / p)$, such that $u \in C^{0, \mu}\left(\overline{B\left(x^{0}, \delta\right)}, \mathcal{R}^{N}\right)$.
Proof. The proof is easy modification those in [5], Lemma 6.2.12. Our condition (1.5) substitute the condition that $u \in L^{\infty}\left(\Omega, \mathcal{R}^{N}\right)$, that is used in the relations (6.2.16)', (6.2.17) in [5].

We remark that the constants ε_{0}, R_{0} depend on Ω^{\prime} and the parameters of system (1.1). Because using (2.8) it is matter of routine to find that

$$
\begin{align*}
\underset{R \rightarrow 0+}{\lim _{B\left(x^{0}, R\right)}}[& f\left|w_{R}(x)-\left(w_{R}\right)_{x^{0}, R}-\pi\right| d x \\
& \left.-\underset{B\left(x^{0}, R\right)}{f}\left|\left\langle w_{R}(x)-\left(w_{R}\right)_{x^{0}, R}-\pi, \nu\right\rangle\right| d x\right] \\
= & \underset{R \rightarrow 0+}{\lim _{R \rightarrow}}\left[\underset{B\left(x^{0}, R\right)}{f}\left|u(x)-(u)_{x^{0}, R}-\pi\right| d x\right. \tag{2.13}\\
& \left.-\underset{B\left(x^{0}, R\right)}{f}\left|\left\langle u(x)-(u)_{x^{0}, R}-\pi, \nu\right\rangle\right| d x\right]
\end{align*}
$$

theorem 1.8 will be proved if we prove the following
Lemma 2.14. Let $\Omega^{\prime} \Subset \Omega$. For every $M>0$ there exist a constants $\varepsilon_{1}>0, R_{1}>$ 0 such that if $u \in W^{1,2}\left(\Omega, \mathcal{R}^{N}\right)$ is a weak solution of the system (1.1) with conditions (1.2) - (1.6) and if for some $x^{0} \in \Omega^{\prime}, R<\min \left(R_{1}, \operatorname{dist}\left(x^{0}, \partial \Omega\right)\right), \nu \in$ $\mathcal{S}^{N-1}, \pi \in \mathcal{R}^{N},|\pi| \leq M$ we have

$$
\begin{equation*}
\underset{B\left(x^{0}, R\right)}{f}\left|w_{R}(x)-\left(w_{R}\right)_{x^{0}, R}-\pi\right| d x-\underset{B\left(x^{0}, R\right)}{f}\left|\left\langle w_{R}(x)-\left(w_{R}\right)_{x^{0}, R}-\pi, \nu\right\rangle\right| d x \leq \varepsilon_{1} \tag{2.16}
\end{equation*}
$$

then there exist $\delta>0, \mu \in(0,1-n / p))$ such that $u \in C^{0, \mu}\left(\overline{B\left(x^{0}, \delta\right)}, \mathcal{R}^{N}\right)$.
Proof. Let $M>0$ and $\Omega^{\prime} \subset \subset \Omega$. We shall reduce to Proposition 2.11. For that let $\varepsilon_{0}>0, R_{0}>0$ be the constants in Proposition 2.11.

Let $\tau=\min \left\{1 / 2,\left(\varepsilon_{0} / 4 \sqrt{14} Q M \omega_{n}\right)^{1 / \alpha}\right\}$, where α, Q are the constant in Lemma 2.1, $\omega_{n}=$ meas $(B(0,1))$. We shall prove that for $M>0$ there exist constants ε_{1} and $R_{1}<R_{0}$ such that if u is a solution of (1.1) satisfying all conditions in Lemma 2.14, then

$$
\begin{equation*}
\underset{B\left(x^{0}, \tau R\right)}{f}\left|w_{\tau R}(x)-\left(w_{\tau R}\right)_{x^{0}, \tau R}\right|^{2} d x \leq \varepsilon_{0}^{2} \tag{2.17}
\end{equation*}
$$

from which the conclusion follows using Proposition 2.11. Let us suppose that our assertion is false. Then it would exist
(i) sequences $\left\{x^{k}\right\}_{1}^{\infty} \subset \Omega^{\prime},\left\{\pi_{k}\right\}_{1}^{\infty} \subset \mathcal{R}^{N},\left|\pi_{k}\right| \leq M,\left\{\nu_{k}\right\}_{1}^{\infty} \subset \mathcal{S}^{N-1}$,
(ii) two infinitesimal sequences $\left\{\varepsilon_{k}\right\}_{1}^{\infty},\left\{R_{k}\right\}_{1}^{\infty}$,
(iii) a sequence $\left\{u^{k}\right\}_{1}^{\infty}\left(u^{k}=w_{R_{k}}^{k}+v_{R_{k}}^{k}\right.$ in $\left.B\left(x^{k}, R_{k}\right)\right)$ of solutions of the system (1.1) such that

$$
\begin{equation*}
\int_{B\left(x^{k}, R_{k}\right)}\left|u^{k}(x)-\left(u^{k}\right)_{x^{k}, R_{k}}\right|^{2} d x \leq M^{2} \tag{2.17}
\end{equation*}
$$

$$
\begin{gather*}
f\left|w_{R_{k}}^{k}(x)-\left(w_{R_{k}}^{k}\right)_{x^{k}, R_{k}}-\pi_{k}\right| d x \tag{2.18}\\
-\underset{B\left(x^{k}, R_{k}\right)}{f}\left|\left\langle w_{R_{k}}^{k}(x)-\left(w_{R_{k}}^{k}\right)_{x^{k}, R_{k}}-\pi_{k}, \nu_{k}\right\rangle\right| d x \leq \varepsilon_{k}
\end{gather*}
$$

but

$$
\begin{equation*}
\int_{B\left(x^{k}, \tau R_{k}\right)}\left|w_{\tau R_{k}}^{k}(x)-\left(w_{\tau R_{k}}^{k}\right)_{x^{k}, \tau R_{k}}\right|^{2} d x>\varepsilon_{0}^{2} \tag{2.19}
\end{equation*}
$$

Put $x=x^{k}+R_{k} y, y \in B(0,1)$ and $h_{k}(y):=u^{k}\left(x^{k}+R_{k} y\right), t_{k}(y):=w_{R_{k}}^{k}\left(x^{k}+\right.$ $\left.R_{k} y\right), m_{k}(y):=v_{R_{k}}^{k}\left(x^{k}+R_{k} y\right)$. Clearly $h_{k}(y)=t_{k}(y)+m_{k}(y)$. Using Lemma 2.6 we obtain from (1.1)

$$
\begin{gather*}
\int_{B(0,1)} A_{i j, k}^{r s}\left(y, h_{k}(y)\right) D_{j} t_{k}^{s}(y) D_{i} \varphi^{r}(y) d y \\
+R_{k} \int_{B(0,1)} A_{j, k}^{r s}\left(y, h_{k}(y)\right) D_{j} t_{k}^{s}(y) \varphi^{r}(y) d y=0, \tag{2.20}\\
\varphi \in C_{0}^{\infty}\left(B(0,1), \mathcal{R}^{N}\right),
\end{gather*}
$$

where $k=1,2, \ldots, A_{i j, k}^{r s}\left(y, h_{k}(y)\right)=A_{i j}^{r s}\left(x^{k}+R_{k} y, h_{k}(y)\right), A_{j, k}^{r s}\left(y, h_{k}(y)\right)=$ $A_{j}^{r s}\left(x^{k}+R_{k} y, h_{k}(y)\right)$. Using the transformation from above the inequalities (2.18) and (2.19) will obtain the following forms

$$
\begin{equation*}
\underset{B(0,1)}{f}\left|t_{k}(y)-\left(t_{k}\right)_{0,1}-\pi_{k}\right| d y-\underset{B(0,1)}{f}\left|\left\langle t_{k}(y)-\left(t_{k}\right)_{0,1}-\pi_{k}, \nu_{k}\right\rangle\right| d y \leq \varepsilon_{k} \tag{2.21}
\end{equation*}
$$

where $\left(t_{k}\right)_{0,1}=\underset{B(0,1)}{f t_{k}}(y) d y$ and

$$
\begin{equation*}
\underset{B(0, \tau)}{\int}\left|t_{k \tau}(y)-\left(t_{k \tau}\right)_{0, \tau}\right|^{2} d y>\varepsilon_{0}^{2} \tag{2.22}
\end{equation*}
$$

where

$$
t_{k \tau}(y)=w_{\tau R_{k}}^{k}\left(x^{k}+R_{k} y\right), \quad\left(t_{k \tau}\right)_{0, \tau}=\int_{B(0, \tau)} t_{k \tau}(y) d y
$$

Let now $k \rightarrow \infty$. Passing possibly to a subsequence we may suppose that $x^{k} \rightarrow$ $x^{0} \in \bar{\Omega}^{\prime}, \nu_{k} \rightarrow \nu \in \mathcal{S}^{N-1}, \pi_{k} \rightarrow \pi,|\pi| \leq M$. Because we have (2.17), using Lemma 2.6 we obtain

$$
\begin{gathered}
\int_{B(0,1)}\left|t_{k}(y)-\left(t_{k}\right)_{0,1}\right|^{2} d y=R_{k}^{-n} \int_{B\left(x^{k}, R_{k}\right)}\left|w_{R_{k}}^{k}(x)-\left(w_{R_{k}}^{k}\right)_{x^{k}, R_{k}}\right|^{2} d x \\
\leq 2 R_{k}^{-n}\left[\int_{B\left(x^{k}, R_{k}\right)}\left|u^{k}(x)-\left(u^{k}\right)_{x^{k}, R_{k}}\right|^{2} d x+\int_{B\left(x^{k}, R_{k}\right)}\left|v_{R_{k}}^{k}(y)-\left(v_{R_{k}}^{k}\right)_{x^{k}, R_{k}}\right|^{2} d x\right] \\
\leq \omega_{n}\left(2 M^{2}+c_{5} R_{k}^{2(1-n / p)}\right),(p>n) .
\end{gathered}
$$

From above estimate it follows that

$$
\begin{equation*}
\int_{B(0,1)}\left|t_{k}(y)-\left(t_{k}\right)_{0,1}\right|^{2} d y \leq M_{1} \tag{2.23}
\end{equation*}
$$

and we may suppose that $M_{1} \leq 3 \omega_{n} M^{2}$. The estimate (2.23) implies that (passing possibly to a subsequence) $\left(t_{k}-\left(t_{k}\right)_{0,1}\right)-t$ weakly in $L^{2}\left(B(0,1), \mathcal{R}^{N}\right)$. From Cacciopoli's inequality (2.10) we see that

$$
\begin{equation*}
\int_{B(0, \rho)}\left|D t_{k}(y)\right|^{2} d y \leq \frac{c_{6}}{(1-\rho)^{2}} \int_{B(0,1)}\left|t_{k}(y)-\left(t_{k}\right)_{0,1}\right|^{2} d y, 0<\rho<1 \tag{2.24}
\end{equation*}
$$

From the last inequality it follows that

$$
\left(t_{k}-\left(t_{k}\right)_{0,1}\right) \rightharpoonup t \text { weakly in } W_{l o c}^{1,2}\left(B(0,1), \mathcal{R}^{N}\right)
$$

$$
\left(t_{k}-\left(t_{k}\right)_{0,1}\right) \rightarrow t \text { strongly in } L_{l o c}^{2}\left(B(0,1), \mathcal{R}^{N}\right)
$$

Passing possibly to a subsequence we may suppose that

$$
\left(t_{k}(y)-\left(t_{k}\right)_{0,1}\right) \rightarrow t(y) \text { a.e. in } B(0, \rho),(0<\rho<1)
$$

From estimate (2.8) it follows that $\left\|m_{k}\right\|_{L^{2}\left(B(0,1), \mathcal{R}^{N}\right)} \rightarrow 0$ as $k \rightarrow \infty$ and we may suppose (as above) $m_{k}(y) \rightarrow 0$ a.e. in $B(0,1)$.

In our consideration we must take into account two cases
(a) the sequence $\left\{\left(t_{k}\right)_{0,1}\right\}_{1}^{\infty}$ is bounded in \mathcal{R}^{N}, or
(b) $\left|\left(t_{k}\right)_{0,1}\right| \rightarrow \infty$ as $k \rightarrow \infty$.
(a) In this case passing possibly to a subsequence we may suppose that $\left(t_{k}\right)_{0,1} \rightarrow$ $b \in \mathcal{R}^{N}$. Then (1.2) and the above properties imply

$$
\begin{aligned}
A_{i j, k}^{r s}\left(y, h_{k}(y)\right)=A_{i j}^{r s}\left(x^{k}+R_{k} y,\right. & \left.t_{k}(y)-\left(t_{k}\right)_{0,1}+\left(t_{k}\right)_{0,1}+m_{k}(y)\right) \\
& \rightarrow A_{i j}^{r s}\left(x^{0}, t(y)+b\right) \text { a.e. in } B(0, \rho) \text { as } k \rightarrow \infty .
\end{aligned}
$$

Arguing as in [5] (chapt.6) we conclude that t satisfies

$$
\begin{equation*}
\int_{B(0,1)} A_{i j}^{r s}\left(x^{0}, b+t(y)\right) D_{j} t^{s}(y) D_{i} \varphi^{r}(y) d y=0, \quad \varphi \in C_{0}^{\infty}\left(B(0,1), \mathcal{R}^{N}\right) \tag{2.25}
\end{equation*}
$$

(b) In this case because (1.5) we have

$$
A_{i j, k}^{r s}\left(y, h_{k}(y)\right) \rightarrow d_{i j}^{r s}\left(x^{0}\right) \text { as } k \rightarrow \infty
$$

By the same argumentation as in the case (a) we find that t satisfies

$$
\begin{equation*}
\int_{B(0,1)} d_{i j}^{r s}\left(x^{0}\right) D_{j} t^{s}(y) D_{i} \varphi^{r}(y) d y=0, \quad \varphi \in C_{0}^{\infty}\left(B(0,1), \mathcal{R}^{N}\right) \tag{2.26}
\end{equation*}
$$

By trivial calculation we have

$$
\begin{aligned}
& \underset{B(0, \tau)}{f}\left|t_{k \tau}(y)-\left(t_{k \tau}\right)_{0, \tau}\right|^{2} d y \\
& \quad=\underset{B(0, \tau)}{f}\left|t_{k}(y)+m_{k}(y)-m_{k \tau}(y)-\left(t_{k}\right)_{0, \tau}-\left(m_{k}\right)_{0, \tau}+\left(m_{k \tau}\right)_{0, \tau}\right|^{2} d y \\
& \quad=\underset{B(0, \tau)}{f}\left|t_{k}(y)-\left(t_{k}\right)_{0, \tau}\right|^{2} d y+2 \underset{B(0, \tau)}{f}\left\langle t_{k}(y)-\left(t_{k}\right)_{0, \tau}, m_{k}(y)-\left(m_{k}\right)_{0, \tau}\right\rangle d y \\
& \quad-2 \underset{B(0, \tau)}{f}\left\langle t_{k}(y)-\left(t_{k}\right)_{0, \tau}, m_{k \tau}(y)-\left(m_{k \tau}\right)_{0, \tau}\right\rangle d y \\
& \quad-\underset{B(0, \tau)}{f}\left\langle m_{k}(y)-\left(m_{k}\right)_{0, \tau}, m_{k \tau}(y)-\left(m_{k \tau}\right)_{0, \tau}\right\rangle d y \\
& \quad+\underset{B(0, \tau)}{f}\left|m_{k}(y)-\left(m_{k}\right)_{0, \tau}\right|^{2} d y+\underset{B(0, \tau)}{f}\left|m_{k \tau}(y)-\left(m_{k \tau}\right)_{0, \tau}\right|^{2} d y
\end{aligned}
$$

and

$$
\begin{aligned}
f_{B(0, \tau)}\left|t_{k}(y)-\left(t_{k}\right)_{0, \tau}\right|^{2} d y & =\underset{B(0, \tau)}{f}\left|\left(t_{k}(y)-\left(t_{k}\right)_{0,1}\right)-\left(t_{k}(y)-\left(t_{k}\right)_{0,1}\right)_{0, \tau}\right|^{2} d y \\
& \rightarrow \underset{B(0, \tau)}{f}\left|t(y)-(t)_{0, \tau}\right|^{2} d y \text { as } k \rightarrow \infty
\end{aligned}
$$

This fact and estimations analogous to (2.8) imply

$$
\int_{B(0, \tau)}^{f}\left|t_{k \tau}(y)-\left(t_{k \tau}\right)_{0, \tau}\right|^{2} d y \rightarrow \underset{B(0, \tau)}{f}\left|t(y)-(t)_{0, \tau}\right|^{2} d y, \text { as } k \rightarrow \infty .
$$

From the last information and (2.22) we have

$$
\begin{equation*}
\underset{B(0, \tau)}{f}\left|t(y)-(t)_{0, \tau}\right|^{2} d y \geq \varepsilon_{0}^{2} \tag{2.27}
\end{equation*}
$$

On the other hand we have for every $0<\rho<1$ (using (2.21))

$$
\begin{aligned}
0 & \leq \underset{B(0, \rho)}{f}\left[\left|t_{k}(y)-\left(t_{k}\right)_{0,1}-\pi_{k}\right|-\left|\left\langle t_{k}(y)-\left(t_{k}\right)_{0,1}-\pi_{k}, \nu_{k}\right\rangle\right|\right] d y \\
& \leq \rho^{-n} \underset{B(0,1)}{f}\left[\left|t_{k}(y)-\left(t_{k}\right)_{0,1}-\pi_{k}\right|-\left|\left\langle t_{k}(y)-\left(t_{k}\right)_{0,1}-\pi_{k}, \nu_{k}\right\rangle\right|\right] d y
\end{aligned}
$$

$$
\leq \rho^{-n} \varepsilon_{k} \rightarrow 0, \text { as } k \rightarrow \infty
$$

and therefore

$$
\begin{equation*}
\underset{B(0, \rho)}{f}[|t(y)-\pi|-|\langle t(y)-\pi, \nu\rangle|] d y=0, \quad 0<\rho<1 \tag{2.28}
\end{equation*}
$$

so that $t(y)$ lies on a straight line

$$
\begin{equation*}
t(y)=\pi_{1}+g(y) \nu \tag{2.29}
\end{equation*}
$$

where $\pi_{1}=\pi-\langle\pi, \nu\rangle \nu,\left|\pi_{1}\right|^{2} \leq 4 M^{2}$ and $g(y)=\langle t(y), \nu\rangle$. Introducing (2.29) in (2.25), we conclude that g is a solution of the elliptic equation

$$
\int_{B(0,1)} a_{i j}(y) D_{j} g D_{i} \varphi d y=0, \quad \varphi \in C_{0}^{\infty}(B(0,1)),
$$

where $a_{i j}(y)=A_{i j}^{r s}\left(x^{0}, b+\pi_{1}+g(y) \nu\right) \nu^{r} \nu^{s}$ are bounded measurable coefficient satisfying (2.3) and (2.4). Introducing (2.29) in (2.26), we conclude that g is a solution of the elliptic equation

$$
\int_{B(0,1)} a_{i j} D_{j} g D_{i} \varphi d y=0, \quad \varphi \in C_{0}^{\infty}(B(0,1)),
$$

where $a_{i j}=d_{i j}^{r s}\left(x^{0}\right) \nu^{r} \nu^{s}$ are bounded constant coefficients with the same qualities as in previous situation.

In both cases (a) and (b) it follows from Lemma 2.1 that g is Hölder continuous in $B(0,1 / 2)$ and we have inequality (2.5). In particular

$$
\begin{aligned}
\underset{B(0, \tau)}{f}\left|t(y)-(t)_{0, \tau}\right|^{2} d y & =\underset{B(0, \tau)}{f}\left|\pi_{1}+\nu g(y)-\pi_{1}-\nu(g)_{0, \tau}\right|^{2} d y \\
& =\underset{B(0, \tau)}{f}\left|g(y)-(g)_{0, \tau}\right|^{2} d y \leq 14 Q^{2} M^{2}(2 \tau)^{2 \alpha} \omega_{n}^{2} \leq \frac{\varepsilon_{0}^{2}}{2}
\end{aligned}
$$

which contradicts (2.27).

References

[1] Campanato, S., Sistemi ellittici in forma divergenza. Regolarita all'interno, Quaderni, Pisa, 1980.
[2] Daněček, J., On the regularity of weak solutions to nonlinear elliptic systems of second order, Zeitschrift für Analysis und ihre Anwendungen Bd. 9(6) (1990), 535-544.
[3] Giusti, E., Modica, G., A note one regular points for solutions of elliptic systems, Manuscripta mathematica 29 (1979), 417-426.
[4] Kufner, A., John, O., Fučik, S., Function spaces, Academia, Prague, 1977.
[5] Nečas, J., Introduction to the theory of nonlinear elliptic equations, Teubner-Texte zur Math., Leipzig, 1983.
[6] Nečas, J., Stará, J., Principio di massimo per i sistemi ellitici quasilineari non diagonali, Bol.U.M.I. (4)6 (1972), 1-10.
J. Daněček

Ustav matematiky Fast VUT
ŽIžKOVA 17
60200 Brno, CZECH REPUBLIC
E-mail: mddan@fce.vutbr.cz
E. Viszus

Katedra matematickej analýzy MFF UK Bratislava
Mlynská dolina
84215 Bratislava, SLovak REPUBLIC
E-mail: Eugen.Viszus@fmph.uniba.sk

[^0]: 1991 Mathematics Subject Classification: 35B65.
 Key words and phrases: nonlinear elliptic systems, regularity.
 Received September 21, 1995.

