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AR CHIVUM MA THEMA TICUM (BRNO)

T om us 32 (1996), 123 { 136STANDARD HOMOGENEOUS EINSTEIN MANIFOLDS ANDDIOPHANTINE EQUATIONSYurii G. Nikonorov and Eugene D. RodionovAbstract. Some new examples of standard homogeneou s Einstein manifolds

with semisimple transitiv e groups of motions and semisimple isotrop y sub-

groups are constructed. F or the construction of these examples the solutions

of some systems of Diophan tine equations are used.Let g and h be the Lie algebras of the compact connected Lie groups G and H,and let g be semisimple, g = g1 � :::� gr, where g1; :::; gr are simple Lie algebras.We put B(X;Y ) = �tr(adXadY ) for all X;Y 2 g, and we de�ne the standardRiemannian metric �B on G=H as the metric obtained from B(X;Y ) under theprojection � : G! G=H.We note that in [1]-[6] a classi�cation was given of the simply connected com-pact standard homogeneous Einstein manifolds (G=H; �B) either with a simpletransitive group of motions G, or with a simple isotropy subgroup H.Moreover, in the case of semisimple Lie groups G and H we have constructednew examples of standard homogeneous Einstein manifolds in the following way[5]We consider the embeddingH = K � L � (K � :::�K) � L � K � :::�K � G0 = G ;where the �rst embedding is of the form diag � id (K is taken t times) and thesecond is of the form id� :::�id��, where � : K�L � G0 is some embedding; G0,K, L are compact connected simple Lie groups. Let g0, k, l be the Lie algebras ofthe Lie groups G0, K, L correspondingly.Theorem A ([5],[6]). Let (g0; k� l) be a compact irreducible symmetric or com-pact nonsymmetric strictly isotropically-irreducible pair. Then the space (G=H; �B)
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124 YURI I G. NIK ONOR O V AND EUGENE D. R ODIONO Vwill be an Einstein manifold if and only if the Lie algebras g0, k and l appear inthe list presented in Table 1, and also in the �rst two cases the embeddings� : so(n) � so(m) � so(n +m) ;� : sp(n) � sp(m) � sp(n +m)must be the standard embeddings whereas in the last two they must be given by� : sp(1) � sp(n) � so(4n) : 1� 
 1� �:::� � = � (1 < n);� : su(3)� g2 � e6 : (1� � � 
 1�� �)� (�� 2� 
� � �):We note that in the orthogonal and symplectic cases we have the followingnontrivial solutions of Einstein equations correspondingly [6]:(so) (n;m; t) = (t2 � 4t+ 6; t� 2; t) (t 2 N )(sp) (n;m; t) = (2s2 � 1; s; 2s) (s 2 N )Table 1g0 k l Einstein equationsso(n +m) so(n) so(m) n2 + (t� 5)n+ 6� 2t ==m[m + (n � 2)(t� 1)]sp(n +m) sp(n) sp(m) 2n2 + (5� t)n+ 3� t == 2m[(t� 1)(n+ 1) +m]so(4n) sp(n) sp(1) The metric is Einsteini� t = 11 and n = 8e6 g2 su(3) The metric is Einsteini� t = 2In this paper we �nd all solutions of the above Diophantine equations. Ourmain result is the following oneTheorem B. Let (g0; k� l) be ether the pair (so(n +m); so(n) � so(m)), or thepair (sp(n + m); sp(n) � sp(m)). Then the space (G=H; �B) will be an Einsteinmanifold if and only if the triple (n;m; t) is contained in the list of Table 2.



ST AND ARD HOMOGENEOUS EINSTEIN MANIF OLDS : : : 125Table 2(g0; k � l) Einstein equations (n;m; t)(so(n +m); n2 + (t� 5)n+ 6� 2t = �4sa2c + 2; 2sa(b�as)c ; s+ 1�,so(n) � so(m)) = m[m + (n � 2)(t� 1)] where c is a divisorof 4s (s 2 N ),and a; b satisfy theDiophantine equation:b2 � (s2 + 4)a2 = c(sp(n+m); 2n2 + (5� t)n+ 3� t = �2sa2c � 1; sa(b�as)c ; s + 1�,sp(n) � sp(m)) = 2m[m+ (n+ 1)(t� 1)] where c is a divisorof 2s (s 2 N ),and a; b satisfy theDiophantine equation:b2 � (s2 + 4)a2 = �cIt is easy to see that every natural solution of equation b2 � (s2 + 4)a2 = �cgenerates the triple (n;m; t) which consists of natural numbers. We also note thatthe equation b2� (s2+4)a2 = �c have in�nitely many solutions. So, for example,if we put c = 1 in the orthogonal case, we get the Pell equation b2� (s2+4)a2 = 1,which has in�nitely many solutions for every s 2 N [7].In this paper we also present other examples of standard homogeneous Einsteinmanifolds with semisimple Lie groups G and H.LetH = SO(k) � SO(n) � SO(m) � SO(k) � [SO(n)� :::� SO(n)] � SO(m) �� SO(k + n) � [SO(n) � :::� SO(n)]� SO(n +m) = G ;where the �rst embedding is of the form id � diag � id (SO(n) is taken t times)and the second is of the form �1� id� :::� id��2 (SO(n) is taken (t� 2) times);�1 : SO(k)�SO(n) � SO(k+n), �2 : SO(n)�SO(m) � SO(n+m) are standardembeddings.We also consider the analogous constructions for the unitary and symplecticcases:H = SU (k)�SU (n)�SU (m) � SU (k+n)�[SU (n)�:::�SU (n)]�SU (n+m) = G ;H = Sp(k)�Sp(n)�Sp(m) � Sp(k+n)� [Sp(n)� :::�Sp(n)]�Sp(n+m) = G :Theorem C. Let (g; h) be either the pair(so(k + n)� (t � 2) � so(n) � so(n+m); so(k) � so(n) � so(m)), or the pair(su(k + n)� (t� 2) � su(n)� su(n+m); su(k)� su(n) � su(m)), or the pair



126 YURI I G. NIK ONOR O V AND EUGENE D. R ODIONO V(sp(k + n)� (t� 2) � sp(n)� sp(n+m); sp(k) � sp(n) � sp(m)). Then the space(G=H; �B)will be an Einstein manifold if and only if the triple (n;m; t) is containedin the list of Table 3. Table 3cases Einstein equations (n;m; t)orthogonal (n � 2m � 1)(m + n � 2) = �y�3ss2+8 + 2; z+14 � s(y�3s)4(s2+8) ; s + 1�,= (m � 1)(n � 2)(t� 2) ; where (y; z) is naturalk = m solution of the Diophantineequation:y2 � (s2 + 8)z2 = 8(s2 � 1) (s 2 N )unitary m(n2 + 1)(m+ n) = There are no solutions= (m2 � 1)n(2m+ nt) ; for every n;m; t 2 Nk=msymplectic (2n� 4m+ 1)(m+ n+ 1) = � y+3s2(s2+8) � 1; z�18 � s(y+3s)8(s2+8) ; s+ 1�,= (2m+ 1)(n+ 1)(t � 2) ; where (y; z) is naturalk=m solution of the Diophantineequation:y2 � (s2 + 8)z2 = 8(s2 � 1) (s 2 N )We note that every solution of the equation y2 � (s2 + 8)z2 = 8(s2 � 1) doesnot generate natural solution of Einstein equations. So, for example, for s = 1 inorthogonal case we have solutions n = 2m+ 1, but in symplectic case we have nosolutions for s = 1. Below we show that Einstein equation in orthogonal case hasin�nitely many solutions for every s > 1 and we �nd su�cient conditions whichimply the existence of in�nite family of solutions for the symplectic case.1. PreliminariesThe proof of Theorems is based on a series of lemmas which will be formulatedunder the assumptions of the theorems.Let g and h be the Lie algebras of the compact connected Lie groups G and H,and let g be semisimple, g = g1 � :::� gr, where g1; :::; gr are simple Lie algebras.We put B(X;Y ) = �tr(adXadY ) for all X;Y 2 g, where adX(Z) = [X;Z], andwe consider the standard Riemannian metric �B on G=H. It is easy to see thatBg = Bg1 + ::: + Bgr and g = h � p = h ?B p, where p is ad(h)-invariant (i.e.[h; p] � p).



ST AND ARD HOMOGENEOUS EINSTEIN MANIF OLDS : : : 127We introduce some more notation: � is the isotropy representation of the groupH on T�e(G=H) = p; then p = p0 � p1 � :::� ps, where � acts trivially on p0 andirreducibly on p1; :::; ps.Lemma 1 [4]. The space (G=H; �B) with H 6= e is an Einstein manifold if andonly if p0 = 0 and Bg j�h(�i; �i + 2�) = Bg j�h(�j ; �j + 2�), where �i is the highestweight of the representation � on pi, 2� is the sum of positive roots of the algebrah, and Bg j�h is the scalar product on h� induced by Bg jh.Given a simple Lie algebra k, we consider the scalar product B0k de�ned byBk = �kB0k, where �k is the Casimir constant of the adjoint representation of thealgebra k [4].If l, k are both simple Lie algebras and k � l, then the index of k in l is theconstant [l : k] so that B0l = [l : k] �B0k. In [8] Dynkin showed that this constant isan integer number.Lemma 2 (corresponds to Theorem C).(i) LetH = SO(k)�SO(n)�SO(m) � SO(k+n)�[SO(n)�:::�SO(n)]�SO(n+m) = G;with embeddings as in Theorem C. Then the standard metric on G=H is Einsteinif and only if (n� 2m� 1)(m+ n� 2) = (m � 1)(n� 2)(t� 2) and m = k.(ii) LetH = SU (k)�SU (n)�SU (m) � SU (k+n)�[SU (n)�:::�SU (n)]�SU (n+m) = G;with embeddings as in Theorem C. Then the standard metric on G=H is Einsteinif and only if m(n2 + 1)(m+ n) = (m2 � 1)n(2m + nt) and m = k.(iii) LetH = Sp(k)�Sp(n)�Sp(m) � Sp(k+n)� [Sp(n)� :::�Sp(n)]�Sp(n+m) = G;with embeddings as in Theorem C. Then the standard metric on G=H is Einsteinif and only if (2n� 4m + 1)(m + n+ 1) = (2m+ 1)(n+ 1)(t � 2) and m = k.Proof. For (i), if we pass to the Lie algebras, we have � = �1 � �2 � �3, where�1 = id
̂(�t�2i=1adso(n))
̂id, �2 = (�k
̂�n), �3 = (�n
̂�m); �n | a standardrepresentation, �so(n) = 2(n � 2),Bg jh = 2(k+n�2) �B0so(k)+[2(k+n�2)+2(t�2)(n�2)+2(n+m�2)] �B0so(n)++2(n+m � 2)B0so(m) :Then if we use the criteria that the standard homogeneous Riemannianmanifoldis Einstein, we get a system of Einstein equations2(n� 2)2[2n+ k +m � 4 + (n� 2)(t� 2)] = k � 12(k + n� 2)++ n� 12[2n+ k +m� 4 + (n � 2)(t� 2)] =



128 YURI I G. NIK ONOR O V AND EUGENE D. R ODIONO V= n� 12[2n+ k +m � 4 + (n� 2)(t� 2)] + m � 12(n+m � 2) ;or equivalently k = m and n�32n+2m�4+(n�2)(t�2) = m�1m+n�2 .From this we deduce (n�2m�1)(m+n�2) = (m�1)(n�2)(t�2) and k = m.For (ii) we have � = �1 � �2 � �3, where �1 = id
̂(�t�2i=1adsu(n))
̂id, �2 =(�k
̂�n), �3 = (�n
̂�m); �n | a standard representation, �su(n) = 2n,Bg jh = 2(k + n) �B0su(k) + 2[2n+m+ k + n(t � 2)] �B0su(n) + 2(n+m)B0su(m) ;and a system of Einstein equations2n2[2n+ k +m + n(t� 2)] = k2 � 1k � 12(k + n)+n2 � 1n � 12[2n+ k +m + n(t � 2)] == n2 � 1n � 12[2n+ k +m+ n(t� 2)] + m2 � 1m � 12(n+m) ;or equivalently k = m and n2+1n[2n+2m+n(t�2)] = m2�1m(m+n) , or m(n2 + 1)(m + n) =(m2 � 1)n(2m+ nt) and k = m.For (iii) we have similarly, � = �1 � �2 � �3, �1 = id
̂(�t�2i=1adsp(n))
̂id, �2 =(�2k
̂�2n), �3 = (�2n
̂�2m); �2n | a standard representation, �sp(n) = 2(n+ 1),Bg jh = 2(k+n+1)�B0sp(k)+2[2n+k+m+(n+1)(t�2)]�B0sp(n)+2(n+m+1)B0sp(m) ;and a system of Einstein equations2(n+ 1)2[2n+ k +m + 2 + (n+ 1)(t� 2)] = k + 1=22(k + n+ 1)++ n + 1=22[2n+ k +m+ 2 + (n + 1)(t� 2)] == n+ 1=22[2n+ k +m + 2 + (n+ 1)(t� 2)] + m + 1=22(n+m + 1) ;or k = m and (2n� 4m+ 1)(m+ n+ 1) = (2m+ 1)(n+ 1)(t� 2).We shall use also some well known facts about solutions of Diophantine equa-tions such a Pell equation and its generalizations. The equation(1) x2 � ay2 = 1 ;where a is natural number di�erent from perfect squared is called Pell equation. Ithas in�nitely many solutions into the class of natural numbers. If the pair (x0; y0)is minimal solution of equation (1) (i.e. x0 + pay0 has minimal value among allnumbers of type x+pay, where (x; y) | arbitrary natural solution of (1) di�erentfrom trivial (1; 0)) then general solution of Pell equation consists of pairs (xn; yn),where xn = 12�(x0 +pay0)n + (x0 �pay0)n� ;yn = 12pa�(x0 +pay0)n � (x0 �pay0)n� :



ST AND ARD HOMOGENEOUS EINSTEIN MANIF OLDS : : : 129More general equation(2) x2 � ay2 = c ;where c | any integer number, has natural solution not for all value of c. Never-theless, in the case when there is even one solution (~x; ~y) of (2) this equation hasin�nitely many solutions of type x = ~xxn + a~yyn, y = ~xyn + ~yxn, where (xn; yn)| a solution of Pell equation with the same value of a.More precisely, it is known that all natural solutions of (2) are generated by thisway from some �nite set of solutions. All this results one can �nd, for example, in[7]. 2. Proof of Theorem BAt �rst we consider orthogonal groups. In this case we have Diophantine equa-tion which after change of variables l = n + 2, s = t � 1 can be reduced to thefollowing one(3) l2 �m2 = sl(m � 1) :Consider any natural solution of (3) when s is �xed natural number. Obviouslyl2 � 1 is divided by m � 1, then l2 � 1 = k(m� 1), where k | a natural number.By substituting this expression into (3) we obtain equationk(m � 1) � (m � 1)(m + 1) = sl(m � 1) ;which is equivalent (when m 6= 1) to the next onek �m � 1 = sl :Note that numbers k and 1�m are precisely roots of quadratic equationx2 � (sl + 2)x+ (1� l2) = 0 :Really, k + (1�m) = sl + 2 and k(1�m) = 1� l2. Since this quadratic equationhas integer roots, its discriminant D is perfect square of natural number, i.e.D = l((s2 + 4)l + 4s) = z2 :Let u be greatest common divisor of numbers l and 4s, then 4s = cu, l = du forsome natural c and d. It is necessary that z = z1u (z1 2 N ) andd((s2 + 4)d+ c) = z21 :Using that c and d are relatively prime we get d = a2 and (s2+4)d+c = b2, wherea and b | some natural numbers satisfying to the condition ab = z1. From lasttwo expressions we �nally obtainb2 � (s2 + 4)a2 = c ;where c is some divisor of 4s. If numbers a and b satisfy this equation, then mand l can be easily computed in reverse order by formulas: m = 2sa(b � as)=c



130 YURI I G. NIK ONOR O V AND EUGENE D. R ODIONO Vand l = 4sa2=c. It is easy to show by direct calculation that deriving numbers aresolution of (3).Proof of second part of theorem B we develope by the same scheme. Afterchange of variables l = n + 1, s = t � 1 we obtain the following Diophantineequation(4) 2l2 � 2m2 = sl(2m + 1) :Consider any natural solution of (4) when s is �xed natural number. It is easy tosee that 4l2 � 1 is divided by 2m+ 1, then 4l2 � 1 = k(2m+ 1) for any natural k.We substitute this expression into (4) and we obtain equationk(2m + 1)� (2m � 1)(2m + 1) = 2sl(2m + 1) ;which is equivalent to the next onek � 2m+ 1 = 2sl :Obviously, numbers k and �(2m + 1) are precisely roots of quadratic equationx2 � (2sl � 2)x+ (1� 4l2) = 0 :In fact, k � (2m + 1) = 2sl � 2 and �k(2m + 1) = 1 � 4l2. Since this quadraticequation has integer roots, its discriminant D is perfect square of natural number,i.e. D = l((4s2 + 16)l � 8s) = z2 :It is necessary that z is even number, i.e. z = 2z1. Let u be greatest commondivisor of numbers l and 2s, then 2s = cu, l = du for some natural c and d,z1 = z2u (z2 2 N ) and d((s2 + 4)d� c) = z22 :Using that c and d are relatively prime we get d = a2 and (s2+4)d�c = b2, wherea and b | some natural numbers satisfying to the condition ab = z1. From lasttwo expressions we �nally obtainb2 � (s2 + 4)a2 = �c ;where c is some divisor of 2s. If numbers a and b satisfy this equation then mand l can be easily computed in reverse order by formulas: m = as(b� as)=c andl = 2a2s=c. It is easy to show by direct calculation that deriving numbers aresolution of (4). The theorem is proved.Remark 1. Note that equation (3) has in�nitely many solutions for all naturals. Really, we can choose c = 1 and equationb2 � (s2 + 4)a2 = 1 ;being Pell equation, has in�nitely many solutions.Equation (4) has in�nitely many solutions for all even s. In this case we canchoose c = 4 and equation b2 � (s2 + 4)a2 = �4



ST AND ARD HOMOGENEOUS EINSTEIN MANIF OLDS : : : 131has one natural solution b = s, a = 1 and as follows from the theory of suchequations it has in�nitely many solutions.The case when s is odd natural number require of special consideration. Let,for example, be s = 1. Then c is equal to 1 or to 2. The equation b2 � 5a2 = �2has no integer solutions, but the equation b2 � 5a2 = �1 has the partial solutionb = 2 and a = 1 and, as follows from the theory of such equations, it has in�nitelymany natural solutions.Remark 2. It is easy to see that solutions of equation b2 � (s2 + 4)a2 = �c fordi�erent value of c can generate one and the same solution m, l of (3) or of (4).Really, all solutions which are obtained for c = q consist in the set of solutionswhich are obtained for c = p2q. 3. ExamplesConsider some examples of Theorem B when t = 2 (s = 1). We note that theseexamples appeared at �rst in paper of Mc Kenzie Y. Wang and Wolfgang Ziller[4]. In that paper they obtained only Einstein equations of the pairs of TheoremB without solutions of corresponding Diophantine equations.(i) Let t = 2 and (g0; k� l) = (so(n +m); so(n) � so(m)). Then we have s = 1and the Diophantine equation b2 � 5a2 = c ;where c is a divisor of 4. Using remark 2 from previous item, we can assume thatc = 4 or c = 2. It is easy to see, that the equationb2 � 5a2 = 2has not natural solutions, but the equationb2 � 5a2 = 4has partial solution b = 3, a = 1, and it generates in�nite family of solutions ofabove Diophantine equation.(ii) Let t = 2 and (g0; k� l) = (sp(n+m); sp(n)� sp(m)). Then we have s = 1and the Diophantine equation b2 � 5a2 = c ;where c is equal to either 1 or 2. Obviously, the equationb2 � 5a2 = �2has not natural solutions, but the equationb2 � 5a2 = �1has partial solution b = 2, a = 1, and it generates in�nite family of solutions ofabove Diophantine equation.Hence, in both these cases we obtain two in�nite families of Einstein manifolds.



132 YURI I G. NIK ONOR O V AND EUGENE D. R ODIONO V4. Proof of Theorem CFor the proof of theorem C we use Lemma 2.As above, at �rst we consider orthogonal groups. In this case we have Diophan-tine equation, which after change of variables l = n� 2, k = m � 1, s = t� 1 canbe reduced to the following one(5) 2k2 + skl + 3k + 1� l2 = 0 :Fix natural number s and consider any natural solution of (5). It is easy to see,that l2 � 1 is divided by k, then l2 � 1 = kp, where p | a natural number.By substituting this expression into (5) we obtain equation2k + sl + 3� p = 0 :Note, that numbers p and �2k are precisely roots of quadratic equationx2 � (sl + 3)x+ (2� 2l2) = 0 :Since this quadratic equation has integer roots, its discriminantD is perfect squareof natural number, i.e. D = s2l2 + 6sl + 1 + 8l2 = z2 :Natural number l is the root of quadratic equation(s2 + 8)l2 + 6sl + 1� z2 = 0 :Obviously, discriminantD1 of last equation must be perfect square of even naturalnumber D1 = 36s2 � 4(s2 + 8)(1� z2) = (2y)2 :Finally we obtain the equation(6) y2 � (s2 + 8)z2 = 8(s2 � 1) :Numbers k and l can be easily computed in reverse order by formulas:l = (y � 3s)=(s2 + 8) , k = (z � 3 � ls)=4, where (y; z) is natural solution of thelast Diophantine equation.Note, that arbitrary solution of (6) does not generate natural l and m, we mustchoose only solution which satisfy to the following conditionsy � 3s(mod(s2 + 8)), z � 3 + sl(mod4). A little below we discuss this problem.Now we consider second part of the theorem. After change of variables l = n+1,s = t� 1 we obtain the following Diophantine equation(7) 2l2 � s(2m + 1)l � 4m2 �m = 0 :Fix natural number s and consider any natural solution of (7). Obviously, 4l2� 1is divided by 2m + 1, i.e. 4l2 � 1 = (2m+ 1)p, where p | a natural number. Wesubstitute this expression into (7) and we get the equationp� 2(2m � 1)� 1 = 2sl :



ST AND ARD HOMOGENEOUS EINSTEIN MANIF OLDS : : : 133Note, that numbers p and �2(2m+ 1) are precisely roots of quadratic equationx2 � (2sl � 3)x+ (2� 8l2) = 0 :Since this quadratic equation has integer roots, its discriminantD is perfect squareof natural number, i.e. D = 4s2l2 � 12sl � 1 + 32l2 = z2 :Natural numbers l are the roots of quadratic equation(4s2 + 32)l2 � 12sl + 1� z2 = 0 :Obviously, discriminantD1 of last equation is perfect square of some natural num-ber, which is divided by 4, i.e.D1 = 144s2 � 4(4s2 + 32)(1� z2) = (4y)2 :Finally we get the equation, which is the same with (6)y2 � (s2 + 8)z2 = 8(s2 � 1) :Numbers k and l we compute in reverse order by formulasl = (y + 3s)=(2(s2 + 8)) , m = (z � 1� 2ls)=8, where y, z are natural solutions ofthe last Diophantine equation.Note, that we must choose solutions of (6), which satisfy to the following con-ditions y � �3s(mod2(s2 + 8)), z � 1 + 2sl(mod8).It is interesting, that the equation (7) has no solutions for some value of s (forexample, for s=1, it follows from obvious fact that 4m+2n+1 6= 0 for all naturalm and n) and has in�nitely many solutions for some other value of s (below weconsider the case s = 4).At last we consider the equation(8) m(n2 + 1)(m+ n) = (m2 � 1)n(2m + tn) :Let d be greatest common divisor of numbers m and n, then m = da, n = db, aand b are relatively prime natural numbers. Equation (8) can be reduced to thefollowing one a(d2b2 + 1)(a+ b) = (d2a2 � 1)b(2a+ tb) :Obviously, a2 is divided by b, but a and b are relatively prime, then necessarilyb = 1. We obtain the equationa(d2 + 1)(a + 1) = (d2a2 � 1)(2a+ t) ;where a and d are natural numbers.If a � 3, then d2a2� 1 > d2a+ a (a2� a > a+1 and d2(a2� a) > a+1). Since2a+ t > a+ 1, in this case there is no solutions.If a = 1, then 4 is divided by d2 � 1, but it is impossible for natural d.If s = 2, then 10 = 10d2 + (4d2 � 1)t, but it is impossible for natural d and t.Theorem is proved.



134 YURI I G. NIK ONOR O V AND EUGENE D. R ODIONO VNow we �nd some su�cient conditions for the existence of in�nite family ofsolutions for Einstein equations (5) and (7).Proposition 1. For all natural s > 1 the Pell equation(9) ~y2 � (s2 + 8)~z2 = 1has in�nitely many natural solutions, which satisfy to the following conditions~y � 1(mod8(s2 + 8)), ~z � 0(mod 8).Proof. Let (y1; z1) be arbitrary natural nontrivial solution of (9). Consider an-other solution (y2; z2), which is obtained as followsy2 +ps2 + 8z2 = (y1 +ps2 + 8z1)8 :Obviously, z2 � 0(mod8), y2 and 8(s2 + 8) are relatively prime.Let ' be Euler function ('(q) is the cardinality of natural numbers, which areless than q and relatively prime with them) and '(8(s2 + 8)) = �, then by Eulertheorem y�2 � 1(mod8(s2 + 8)). We consider one more solution (y3; z3) of (9):y3 +ps2 + 8z3 = (y2 +ps2 + 8z2)� :Simple calculation shows, that y3 � 1(mod8(s2 + 8)), z3 � 0(mod8). Now wede�ne a family of solutions of (9):~y +ps2 + 8~z = (y3 +ps2 + 8z3)m ;where m is any natural number. All this solutions satisfy to the conditions~y � 1(mod8(s2 + 8)), ~z � 0(mod8).Proposition 2. For every s � 1 the Einstein equation, in orthogonal case, hasin�nitely many natural solutions.Proof. For s = 1 we have solutions n = 2m + 1. Consider other cases. For allvalue of s we have partial solution of (6) y0 = 3s, z0 = �1. Using Proposition 1 weconstruct the family (y; z) of solutions of (6): y = ~yy0+(s2+8)~zz0 = 3s~y�(s2+8)~z,z = ~yz0 + ~zy0 = �~y + 3s~z. Obviously, such solution of (6) generate an integersolution of (5).Really, y = 3s~y � (s2 + 8)~z � 3s(mod4(s2 + 8)), l = (y � 3s)=(s2 + 8) is integerand l � 0(mod4), z = �~y + 3s~z � 3(mod4), m is integer too.Now we show that obtained solutions (y; z) of (6) are natural. Since for s > 1,3s > ps2 + 8 and ~y �ps2 + 8~z = 1=(~y +ps2 + 8~z) > 0 then3s~y � (s2 + 8)~z > 0, we proved that y > 0.Obviously, that for s > 1, ~y 6= 3s~z and 9s2 > s2+8. Then (3s~z� ~y)(3s~z+ ~y) =9s2~z2 � ~y2 > (s2 + 8)~z2 � ~y2 = �1 and 3s~z � ~y > 0, i.e. z > 0.It is su�cient to show that triples (n;m; t) which obtained from the solutionsof (6) as above (see Table 3) consists of natural numbers. Since (y� 3s)(y+3s) =y2 � 9s2 = (s2 + 8)(z2 � 1) > 0, then y � 3s > 0 and n > 2. Now suppose that



ST AND ARD HOMOGENEOUS EINSTEIN MANIF OLDS : : : 135z + 1 � s(y � 3s)=(s2 + 8) then z � 1 < s(y + 3s)=(s2 + 8) and multiplying lasttwo inequalities we havez2 � 1 < s2(y2 � 9s2)(s2 + 8)2 < y2 � 9s2s2 + 8 ;and we obtain the contradiction with the equation (6). Therefore,z + 1 > s(y � 3s)=(s2 + 8) and m > 0Since t = s + 1 > 2, then we really found in�nitely many solutions of Einsteinequation in orthogonal case.Proposition3. If the equation (6) has the natural solution (y0; z0), which satis�esto the condition y0 � �3s(mod8(s2 + 8)), z0 � 1(mod8), then the equation (7)has in�nitely many natural solutions.Proof. Using Proposition 1 we construct the family (y; z) of solutions of (6):y = ~yy0+(s2+8)~zz0, z = ~yz0+ ~zy0. Obviously, such solution of (6) generates thesolution of (7). Really, y = ~yy0 + (s2 + 8)~zz0 � �3s(mod8(s2 + 8)),z = ~yz0 + ~zy0 � 1(mod8). It is easy to see that every such solution generates thesolution of (7) and corresponding triple (n;m; t) from Table 3 consists of naturalnumbers.When s is even or moreover s � 0(mod4) obvious changes into the proof showthat su�ciently to �nd one partial solution of (6) with propertyy0 � �3s(mod4(s2 + 8)), z0 � 1(mod8) or y0 � 3s(mod2(s2 + 8)), z0 � 1(mod8)correspondingly, and then (7) has in�nitely many solutions.For example, consider the case s = 4, then s2 + 8 = 24 and (6) has the formy2 � 24z2 = 120 :This equation has partial solution (y0; z0) = (84; 17), y0 � �12(mod48), z0 �1(mod8). Then the equation (7) has in�nitely many natural solutions for s = 4.Note that for s � 0(mod4) from Proposition 3 it follows that the existence ofone natural solution of (7) implies the existence of family of natural solutions forthe corresponding equation. References
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