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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 167 { 180PIVOTING ALGORITHM IN CLASS OF ABS METHODSGabriela K�alnov�aSummary: The paper deals with a pivoting modi�cation of the algorithm in theclass of ABS methods. Numerical experiments compare this pivoting modi�cationwith the fundamental version. A hybrid algorithm for the solution of the linearsystem with the Hankel matrix is introduced.1. IntroductionIn a recent monograph Aba�y and Spedicato [2] have introduced a class ofdirect methods for solution of the linear algebraic systems in the form:(1) Ax = bwhere the matrix A = (a1; : : : ; am)T , the vectors a1; : : : ; am 2 Rn; x 2 Rn; b 2Rm and m � n. The idea of the ABS methods consists in formation of the�nite sequence of vectors fxigm+1i=1 with the property that the approximation xi+1obtained at the i-th cycle is a solution of the �rst i equations of system (1). Thenxm+1 solves the whole system (1). If aTk 2 Rn is the k-th row of the matrix A andbk is the k-th component of the vector b, the system (1) is indicated component-wise(2) aTk x = bk; k = 1; : : : ;m:On the assumption that the vector xi 2 Rn (the solution of the �rst i�1 equationsof (2)) is known, it is possible to �nd the vector xi+1 2 Rn so that it is the solutionof the �rst i equations of (2).Omitting the particular description of the theory about the ABS methods weintroduce the general version of the ABS algorithm. While the ABS methods areable to solve underdetermined systems (m < n) we assume that m = n and A isnonsingular. For more details see [1] and [2].1991 Mathematics Subject Classi�cation : 65F30.Key words and phrases: ABS methods, pivoting algorithm, Hankel matrix, linear equations.Received September 26, 1995 .



168 GABRIELA K�ALNOV�AABS algorithm1) Let x1 2 Rn be an arbitrary vector. Let H1 2 Rn;n be an arbitrarynonsingular matrix.2) Cycle for i = 1; : : : ; na) Let zi 2 Rn be a vector arbitrary save for the condition:(3) zTi Hiai 6= 0:Compute search vector pi :(4) pi = HTi zi:b) Compute step size �i :(5) �i = aTi xi � bipTi ai ;which is well de�ned with regard to (3) and (4).c) Compute the new approximation of the solution using(6) xi+1 = xi � �ipi:If i = n stop; xn+1 solves the system (1).d) Let wi 2 Rn be a vector arbitrary save for the condition:(7) wTi Hiai = 1;and to update the matrix Hi:(8) Hi+1 = Hi �HiaiwTi Hi:There are three eligible parameters in the general version of the ABS algorithm:matrix H1 and two systems of vectors zi and wi. The new algorithms or a newformulation of the classic algorithms can be created by a suitable choice of theseparameters.Aba�y et al. have studied the above system for a variety of choices of zi andwi, calculating the storage and arithmetic operations which are required to solvethe systems with various kinds of matrices.Many papers have dealt with the ABS modi�cation of the LU decomposition.Numerical experiments with the ABS { LU algorithm have been made on specialsystems of linear equations by Bodon in [3], [4], [5]. Other experiments are avail-able in a paper by Deng and Vespucci [7]. Bodon and Spedicato [6] have dealtwith the LU, LQ and QU algorithms, and Phuan [9] has demonstrated that thismethod exploits sparsity in a natural way.



PIVOTING ALGORITHM IN CLASS OF ABS METHODS 169The purpose of this paper is to present one choice of the vectors zi and wiwhich corresponds to the choice of these vectors for the ABS { LU algorithm butdoes not require the strong nonsingularity of the matrix A. This choice of vectorsleads to the method of behaviour similar to the known pivoting process in Gausselimination. We will show one algorithm for solving the system (1) with Hankel orToeplitz matrices which can be also used in a combination with the ABS algorithm.In the section 2 we briey describe some fundamental properties of the ABSmethods and one simple choice of vectors zi and wi. Section 3 deals with the algo-rithm that Rissanen [10] has introduced for solving the linear systems of equationswith Hankel (or Toeplitz) matrices, and the section 4 describes the relation of theRissanen algorithm to the ABS algorithms. The substance of the paper resides inthe section 5, where we deal with one modi�ed parameter option in the ABS class.In the section 6 we evaluate the numerical pretension of the algorithms.2. Fundamental properties of ABS methods.The vectors pi; xi and the matrix Hi generated by the ABS algorithm disposeof the interesting properties.Theorem 1. For i = 2; : : : ; n+1, Null(Hi) is generated by the vectors a1; : : : ; ai�1(the �rst i � 1 rows of the matrix A),e.q.(9) Hiaj = 0; j = 1; : : : ; i� 1:If m = n, Range(Hi) is generated by the vectors Hiai; : : : ;Hian, e.q.(10) Hiaj 6= 0; j = i; : : : ; n:Proof: [2], p.23, Theorem 3.1Theorem 1 implies the validity of the following theorem which plays a funda-mental role in the analysis of the ABS class.Theorem 2. Let p1; : : : ; pn be the search vectors generated by (4) and let P =(p1; : : : ; pn). Then the matrix L, de�ned as(11) L = AP;is nonsingular and lower triangular.Proof: [2], p.30, Theorem 3.12Further we use the simplest and most obvious choice of zi and wi about whichAba�y, Broyden and Spedicato [1] had shown that it corresponds to an implicitLU factorization of A. It is known that such factorization of the square matrix Aexists if and only if A is strongly nonsingular. If A is nonsingular but not stronglynonsingular, there exists a suitable permutation of the rows or columns of A afterwhich the factorization A = LU exists.From (11) in Theorem 2 it follows that here is only one question: how to chooseH1; zi and wi to achieve that matrix P�1 (and also matrix P ) is upper triangular.



170 GABRIELA K�ALNOV�ATheorem 3. The su�cient condition for matrix P to be upper triangular is thefollowing choice of the parameters:a) vectors w1; : : : ; wn arbitrary save for the condition (7),b) matrix HT1 W , where W = (w1; : : : ; wn) is upper triangular,c) zi ' wi.Proof: [2], p.71, Theorem 6.1De�nition 1. The implicit LU factorization is de�ned by the following choice ofthe parameters:(12) H1 = I; zi = ei; wi = eieTi Hiai :Remark. This choice leads to the following formulas for the computation of thesearch vector, the new approximation of the solution and update of the matrix:(13) pi = HTi ei;(14) xi+1 = xi � aTi xi � bipTi ai pi;(15) Hi+1 = Hi � HiaipTipTi ai :The parameter option (12) induces the structure of Hi, described by the fol-lowing theorem.Theorem 4. Let A 2 Rn;n be a strongly nonsingular matrix and wi be similarto (12). Let HTi and W be nonsingular upper triangular matrices. Consider thesequence of matrices Hi generated by (8). Then the following properties are true:a) the �rst i rows of Hi+1 are identically zero,b) the last n� i columns of Hi+1 are equal to the last n � i columns of H1,i.e.,(16) Hi+1 = � 0 0Si (H1)i� :Proof: [2] , p.73, Theorem 6.3The following theorem shows that a row pivoting strategy always exists so thatthe assumptions a), b) and c) of Theorem 3 are satis�ed by some choices of H1and vectors wi.Theorem 5. Let A be square nonsingular and let HT1 and W = (w1; : : : ; wn),where wi = HTi wi, be nonsingular upper triangular matrices. Then it is possibleto choose for i = 1; : : : ; n an index j with i � j � n and a scalar �i 6= 0 such that(�iwi)THiaj = 1 where aj is the j-th row of the matrix A obtained after somepermutation of the rows of A.Proof: [2], p.72, Theorem 6.2



PIVOTING ALGORITHM IN CLASS OF ABS METHODS 1713. Algorithm for systems with Hankel matrices.The method for solving systems of linear equations described by Rissanen (1974)is based on the transformation A as follows:(17) SA = Qwhere S is a lower triangular matrix with ones on the diagonal, and Q isa) upper triangular when A is strongly nonsingular orb) a matrix that can be made triangular by the row permutation.Solving of the system (1) is equivalent after such a transformation to solving ofthe system:(18) Sb = Qx:The author has described how such a transformation can be calculated in the casewhen A is a Hankel matrix:(19) A = 0BB@ a1 a2 � � � ana2 a3 � � � an+1... ... ...an an+1 � � � a2n�11CCA :As in [2] let A(k); k = 1; : : : ; n denote the submatrices of the nonsingular Hankelmatrix consisting of the �rst k rows of the matrixA. The rank of A(k) is k. De�nethe set of natural numbersEk = fi1; : : : ; ikg; k = 1; : : : ; n as follows: i1 is the indexof the �rst non{zero element of row A(1) and for t = 2; : : : ; k; it is the least naturalnumber so that it 6= i1; : : : ; it�1 and the it-th column of A(t) is not in the linearspan of the preceding columns. A simple example is the matrix:A = 0@ 1 1 11 1 21 2 31Awith E1 = f1g; E2 = f1; 3g; E3 = f1; 3; 2g.The proof of the main theorem in [10] includes a constructive basis for creationof the algorithm for solution of the transformation (16) of the Hankel matrix.Theorem 6. Let A 2 Rn;n be a nonsingular Hankel matrix with the set of indicesEn = fi1; : : : ; ing. Then lower triangular matrix S 2 Rn;n exists with ones on thediagonal that: SA = Qwhere Q 2 Rn;n is a matrix with elements qi;j satisfying the conditions:qk;j = 0 j < ikqk;j 6= 0 j = ikThe algorithm described by Rissanen (1974) has two distinct stages which followfrom the properties of the elements ik of index set En:a) if ik � 1 2 Ek or ik = 1 then Ek is a permutation of the integers 1; : : : ; k,b) if ik > 1 and ik � 1 =2 Ek then ik+1 = ik � 1.



172 GABRIELA K�ALNOV�AThe Rissanen algorithm1) Initializations1 = (1; 0; : : : ; 0) (n components)q1 = (a1; : : : ; an)E1 = fi1g, where i1 is the least number t, 1 � t � n such that at 6= 0U1 = fu1g, where u1 = at2) For k = 1; : : : ; n� 1a) sk+1 = (0; sk;1; : : : ; sk;k�1; 1; 0; : : : ; 0) (n components)qk+1 = (qk;2; : : : ; qk;n; qk+1;n)where qk+1;n = sk;1an+1 + � � �+ sk;k�1an+k�1 + an+kb) �nd the least number m, 1 � m � n such that qk+1;m 6= 0c) if m = il; il 2 Ek thend = qk+1;mu�1lsk+1 = sk+1 � dslqk+1 = qk+1 � dqlreturn to b)d) if m =2 Ek thenik+1 = m uk+1 = qk+1;mEk+1 = Ek [ fik+1g Uk+1 = Uk [ fuk+1gThe output of this algorithm includes rows of S and Q, index set En and theset Un = (q1;i1; : : : ; qn;in) containing leading non{zero elements of the rows of Q.4. Relation between ABS{LU and Rissanen's algorithms.In the case when A is a strongly nonsingular symmetric matrix, the equiva-lence of transformations (11) and (17) is obvious because the following well-knowntheorem is valid:Theorem 7. Matrix A 2 Rn;n has a LU factorization if det(Ak;k) 6= 0 for k =1; : : : ; n � 1. If the LU factorization exists and A is nonsingular then the LUfactorization is unique.Proof: [8], p.96, Theorem 3.2.1Corollary 1. Let A 2 Rn;n be a strongly nonsingular Hankel matrix. Then forsearch vectors pi generated by the ABS modi�cation of the LU decomposition andvectors si containing the rows of matrix S generated by Rissanen's algorithm thefollowing relation is true:(20) pipTi ai = sisTi ai :Proof: Because A is strongly nonsingular it follows that P = (p1; : : : ; pn) is uppertriangular in the decomposition (11). Lower triangular matrix L has the elements



PIVOTING ALGORITHM IN CLASS OF ABS METHODS 173aTi pi; i = 1; : : : ; n in the diagonal. Considering the following vector formulation of(11): 0BBBB@ aT1aT2...aTn 1CCCCA ( p1 p2 : : : pn ) = 0BBBB@ aT1 p1 0 : : : 0aT2 p1 aT2 p2 : : : 0... ... . . . ...aTnp1 aTnp2 : : : aTnpn1CCCCAone can obtain:(21) 0BBBB@ aT1aT2...aTn 1CCCCA� p1aT1 p1 p2aT2 p2 : : : pnaTnpn � = 0BBBBBBBB@ 1 0 : : : 0aT2 p1aT1 p1 1 : : : 0... ... . . . ...aTnp1aT1 p1 aTnp2aT2 p2 : : : 11CCCCCCCCA :Because A is symmetric (A = AT ) we can transpose (17) into the form(22) AST = QTwhere ST = (s1; : : : ; sn) is upper triangular and QT lower triangular. One canconsider the vector formulation of (22) as(23) 0BBBB@ aT1aT2...aTn 1CCCCA� s1aT1 s1 s2aT2 s2 : : : snaTnsn � = 0BBBBBBBB@ 1 0 : : : 0aT2 s1aT1 s1 1 : : : 0... ... . . . ...aTns1aT1 s1 aTns2aT2 s2 : : : 11CCCCCCCCA :which is analogical to the vector formulation (21).It follows from the theorem 7 that the decompositions (21) and (23) are equiv-alent and relation (20) is true. �Corollary 2. The sequence fxign+1i=1 generated from (14) in the ABS { LU algo-rithm is equivalent to the sequence of vectors which can be generated using thevectors si as the search vectors in the ABS algorithm.Proof: We can proceed by induction, using (14) and (20). �It has been a trivial matter to show the equivalence of (11) and (17) in thecase when A is a strongly nonsingular matrix. The application of the Rissanenalgorithm in the case when A is not strongly nonsingular appears more interesting.



174 GABRIELA K�ALNOV�AWe explain our intention on the example of a matrix with n = 3 and index setE3 = (1; 3; 2). In the following vector formulation:0@ aT1aT2aT3 1A ( s1 s2 s3 ) = 0@ aT1 s1 0 0aT2 s1 0 aT2 s3aT3 s1 aT3 s2 aT3 s31Amatrix ST = (s1; s2; s3) is upper triangular. After the column permutation of STgiven by E3 we get:0@ aT1aT2aT3 1A ( s1 s3 s2 ) = 0@ aT1 s1 0 0aT2 s1 aT2 s3 0aT3 s1 aT3 s3 aT3 s21Aor: 0@ aT1aT2aT3 1A� s1aT1 s1 s3aT2 s3 s2aT3 s2 � = 0BBBB@ 1 0 0aT2 s1aT1 s1 1 0aT3 s1aT1 s1 aT3 s3aT2 s3 11CCCCAThese formulations have the structure described in Theorem 2. Therefore, wecan expect that it is possible to use vectors si; i = 1; : : : ; n in the order given byEn as search vectors pi in the ABS algorithm, and to form a hybrid algorithm.The values aTi ski ,which are in the denominator of (14), are contained in Ungenerated using the Rissanen algorithm.5. One parameter option in ABS algorithm.We will discuss a simple modi�cation of the parameter choise (12) in the ABSclass. Rissanen's algorithm and Phuan (1988) inspire us to consider the nextoption of parameters.De�nition 2. The pivoting LU factorization is de�ned using the following choiceof parameters:(24) H1 = I; zi = ej ; ej = max1�k�n jeTkHiaij; wi = ejeTj Hiai :Remark. The choice changes (13) into pi = HTi ej . The relations (14) and (15)are not changed.We show that parameter zi in (24) is well de�ned and it is determined by apermutation of columns of A. We also show how this permutation a�ects thestructure of Hk.



PIVOTING ALGORITHM IN CLASS OF ABS METHODS 175Theorem 8. Let A 2 Rn;n be a square nonsingular matrix. Then it is possibleto choose for i = 1; : : : ; n an index ji with 1 � ji � n that:eTjiHiai 6= 0:Index set ISn = fj1; : : : ; jng is a permutation of elements 1; : : : ; n.Proof: We can proceed by induction. For i = 1; v1 = H1a1 = a1 6= (0; : : : ; 0)because of nonsingularity of A. Let j1 be the index for which:eTj1H1a1 = max1�l�n jeTl Hiaij;and IS1 = fj1g. Then p1 � HT1 ej1 = ej1 , and:H2 � H1 � v1pT1pT1 a1 = I � a1eTj1eTj1a1where a1eTj1 is matrix with the elements (a11; : : : ; a1n) in column j1. Then thej1-th row of new matrix H2 is zero because hj1;j1 � 1� a1;j1=a1;j1 = 0. The otherelements of the j1-th column are hi;j1 = �ai;j1 and H2 has the form:(25) H2 = 0BBBBBBB@ 1 0 : : : h1;j1 : : : 00 1 : : : h2;j1 : : : 0... ... ... ...0 0 : : : 0 : : : 0... ... ... ...0 0 : : : hn;j1 : : : 01CCCCCCCA :Then v2 = H2a2 is a vector with v2;j1 = 0. It follows that index j2 for which:eTj2H2a2 = max1�k�n jeTkH2a2j;ful�lls the condition j2 6= j1. Because of nonsingularity of A, element v2;j2 6= 0exists in the vector v2. The index set IS2 = fj1; j2g is created.If it is assumed that the argument is true for i = k, index set ISk = fj1; : : : ; jkgcan also be created. Index jk+1, for which:(26) eTjk+1Hk+1ak+1 = max1�l�n jeTl Hiaij;may be found. Matrix Hk+1 is given by:(27) Hk+1 = Hk � vkpTkpTk ak ;



176 GABRIELA K�ALNOV�Awhere Hk is a matrix with j1; : : : ; jk�1 zero rows and vk = Hkak is a vector withzero elements in the same positions. Search vector pk = HTk ejk is the jk-th row ofHk and: pk;jk = 1;pki = 0 i 6= j1; : : : ; jk:It follows that update (27) does not change the elements of Hk+1 which lie in rowsj1; : : : ; jk�1 or in columns ISn � fj1; : : : ; jkg.We take an interest in the change of the jk-th row of Hk+1. Using (27) weobtain: (Hk+1)jk = pTk � pTk akpTkpTk ak :One can see that the jk-th row of Hk+1 was zeroed. Vector vk+1 = Hk+1ak+1 haszero elements in positions j1; : : : ; jk, and index jk+1 holds the condition:jk+1 6= ji i = 1; : : : ; k:From the nonsingularity of A it follows that there exists an element vk+1;jk+1 6= 0in vector vk+1. Then vector ejk+1 satisfying the condition (26) can be chosen.Now we have ISk+1 = fj1; : : : ; jk+1g. After n steps of the process set of indicesISn = fj1; : : : ; jng is obtained. It is a permutation of the elements 1; : : : ; n. �Corollary 3. The structure of the matrices Hk+1; k = 1; : : : ; n generated usingthe pivoting algorithm is, after interchanges of its rows and columns by the indexset ISk, the same as the structure described in the Theorem 4.Proof: We can proceed by induction again. For i = 1, as we can see from (25),the statement is true . If the validity of the statement is assumed up to the indexk � 1 then the jk-th row is zeroed and new elements arise in the jk-th columnexcept for the row positions j1; : : : ; jk in Hk+1. If jk � th row and jk � th columnmove to the k-th position in Hk+1, respectively, the known structure is obtained.�Remark. The numerical pretension of the pivoting algorithm is the same as inthe ABS { LU algorithm. Authors in [1] and [2] and more exactly in [9] provedthat n3=3+O(n2) multiplications and the same number of additions are needed tosolve the system (1) by the ABS { LU algorithm, and that it is the same pretensionas in the classic LU algorithm.Remark. It is not very di�cult to verify that the last n�i+1 rows ofAHTi containthe same elements as the rows of A after (i � 1) steps of the Gauss eliminationwith the column pivotization.6. Numerical pretension of algorithms.The Rissanen algorithm for the solution of transformation (17) in the case whenA is the Hankel matrix in the section 3 has been introduced. Rissanen in [10] has



PIVOTING ALGORITHM IN CLASS OF ABS METHODS 177proved that matrices S and Q can be determined by the order of n2 arithmeticoperations. His estimate of the operations is:Xk2K1(2k � 1) + 2n Xk2K2(ik+1 � ik + 2);where K1 is a set of the row-indices k for which ik+1 < ik, and K2 is a set of theremaining ones. There are no more than 3n(n � 1) multiplications and the sameamount of additions.The calculation of Sb in (18) takes n(n + 1)=2 multiplications and n(n � 1)=2additions. The same amount of operations is needed for the solution of (18). Usingthe vectors si; i = 1; : : : ; n as search vectors in the ABS algorithm (as it has beendescribed in the section 4) and the formula (14) solution of system (1) with theHankel matrix takes n2 multiplications, n(n+ 1)=2 additions and n divisions.Table 1 compares the number of operations of the single algorithms with thehybrid algorithm described above. The numerical tests have been performed usingthe Hankel system with a strongly nonsingular matrix. It is the most di�cult casefor the Rissanen algorithm from the numerical point of view.Table 1ABS { LU Rissanen Hybridadditions n3=3 4n2 7=2n2multiplications-divisions n3=3 4n2 4n2In section 5 the modi�ed choice of parameters has been introduced. This optionhas some pivoting quality and does not require the principal minors of A to benon-zero except detA.Series of systems (1) with strongly nonsingular matrices have been solved viathe ABS { LU algorithm [with the parameter option (12)] and via the pivotingalgorithm [with the parameter option (24)] in order to obtain comparable results.The elements of A are randomly de�ned integers in the interval [�100; 100] andthe elements of the exact solution x+ are randomly de�ned integers in the interval[�50; 50]. The right-hand side b is de�ned by computing Ax+. Results in thenext table are obtained testing 1000 systems of dimension between n = 10 andn = 1000. Minimum values of the relative error:� = k xn+1 � x+ kk x+ kcontain the table:



178 GABRIELA K�ALNOV�ATable 2dimension ABS { LU pivoting dimension ABS { LU pivoting10 .1003E-14 .5310E-15 100 .4966E-13 .3457E-1320 .4748E-14 .4442E-14 200 .9379E-13 .8862E-1330 .1085E-13 .5886E-14 300 .1578E-12 .1295E-1240 .1110E-13 .1175E-13 400 .1639E-12 .1919E-1250 .1644E-13 .1626E-13 500 .2366E-12 .2217E-1260 .2198E-13 .1866E-13 600 .2079E-12 .2550E-1270 .2440E-13 .1790E-13 700 .3713E-12 .2800E-1280 .2496E-13 .2958E-13 800 .4095E-12 .3341E-1290 .3889E-13 .2138E-13 900 .4078E-12 .4339E-121000 .4601E-12 .4404E-12We solve series of the systems (1) with ill-conditioned randomly de�ned A(warning from DLSARG in fortran library IMSL, condition numbers 1.E+15 {1.E+20). Minimum values of the relative error of test process are displayed inTable 3: Table 3dimension ABS { LU pivoting ABS { LU10 .478E-11 .264E-1120 .366E-09 .206E-1130 .129E-09 .256E-1140 .541E-09 .564E-1150 .260E-09 .436E-1160 .103E-08 .847E-1170 .648E-08 .201E-1080 .791E-09 .906E-1190 .873E-09 .149E-10100 .304E-08 .116E-10120 .426E-08 .441E-10140 .587E-08 .242E-10Finally linear systems with matrices An 2 Rn;n of the formA4 = 0B@ 1 0 0 1�1 1 0 1�1 �1 1 1�1 �1 �1 11CAhave been solved. The growth factor is value which considerable a�ects on precisionof the result of (1) with such matrix.



PIVOTING ALGORITHM IN CLASS OF ABS METHODS 179Table 4dimension ABS { LU pivoting ABS { LU50 0 055 .1348E+00 .4334E-1560 .2480E+00 .2237E-1570 .4396E+00 .3278E-1580 .5477E+00 .3696E-1590 .6021E+00 .4412E-15100 .6472E+00 .4537E-15200 .8388E+00 .9909E-157. Conclusion.The hybrid algorithm does not a�ord more accurate results than the ABS {LU or the Rissanen algorithms. However, this algorithm has two advantages incomparison with these two algorithms: i) it uses smaller amount of numericaloperations and ii) it does not require the strong nonsingularity of A.From the results in Table 3 and Table 4 we can conclude that the pivotingalgorithm demonstrates an improvement of the accuracy of the solution. There isthe next possibility to modify this algorithm. Its combination with a row pivotingprocess can lead to the complete pivotization which is well-known in the Gausselimination. References[1] Aba�y, J., Broyden, C.G., Spedicato, E., A class of direct methods for linear equations,Numer.Math. 45 (1984), 361{376.[2] Aba�y, J., Spedicato, E., ABS projection algorithms mathematical techniques for linear andnonlinear equations, Ellis Horwood, Chichester, 1989.[3] Bodon, E., Numerical experiments with ABS algorithms on upper banded systems of linearequations, Quaderno DMSIA 17/92, University of Bergamo.[4] Bodon, E., Numerical experiments with ABS algorithms on banded systems of linear equa-tions, Quaderno DMSIA 18/92, University of Bergamo.[5] Bodon, E., Numerical experiments with Gauss-ABS algorithms on tridiagonal systems oflinear equations, Quaderno DMSIA 31/92, University of Bergamo.[6] Bodon, E., Spedicato, E., Numerical evaluation of the implicit LU, LQ and QU algorithmsin the ABS class, Quaderno DMSIA 28/90, University of Bergamo.[7] Deng, N., Vespucci, M.T., Experiments with the ABS implici t Gauss-Cholesky algorithm onnested dissection matrices, Technical Report 1/69, Roma.



180 GABRIELA K�ALNOV�A[8] Golub, G.H., Van Loan, Ch.F., Matrix computation, The Johns Hopkins University Press,Baltimore and London, 1989.[9] Phua, K. H., Solving sparse linear systems by an ABS-metho d that corresponds to LU-decom-position, BIT 28 (1988), 709{718.[10] Rissanen, J., Solution of linear equations with Hankel an d Toeplitz matrices, Numer.Math.22 (1974), 361{366.Gabriela K�alnov�aDepartment of MathematicsFaculty of Civil EngineeringSlovak Technical UniversityRadlinsk�eho 11813 68 Bratislava, SLOVAK REPUBLICE-mail: kalnova@vox.svf.stuba.sk
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