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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 343 { 354HIGHER ORDER CARTAN CONNECTIONSGeorge VirsikTo Ivan Kol�a�r, on the occasion of his 60th birthday.Abstract. A Cartan connection associated with a pair P (M;G0) � P (M;G) isde�ned in the usual manner except that only the injectivity of ! : T (P 0)! T (G)e isrequired.For an r-th order connectionassociatedwith a bundlemorphism� : P 0 ! Pthe concept of Cartan order q � r is de�ned, which for q = r = 1;� : P 0 � P ,and dimM = dimG=G0 coincides with the classical de�nition. Results are obtainedconcerning the Cartan order of r-th order connections that are the product of r �rstorder (Cartan) connections. 1. PreliminariesAll manifolds are assumed smooth and �nite dimensional. Following [7], thecategory of principal bundles P (M;G) for a �xed manifold M will be denoted byPB(M ). Thus a typical morphism (�;�G) : P 0(M;G0) ! P (M;G) of PB(M ), isgiven by a �bre preserving map � : P 0 ! P and a homomorphism �G : G0 ! Gsuch that �(h0g0) = �(h0)�G(g0), for any h0 2 P 0; g0 2 G0. We shall write sometimessimply � : P 0 ! P instead of the explicit (�;�G) : P 0(M;G0) ! P (M;G). Also,FM(M ) will denote the category of �bred manifolds over M and �bre preservingmaps.If p : E ! M is a �bred manifold denote by JrE the space of holonomic r-jetsof its local sections which is again a �bred manifold � : JrE !M . By iteration ofJ1 one obtains the �bred manifold eJrE of non-holonomic jets of sections and itssubmanifold �JrE of semi-holonomic ones (c.f.[1]).If p = prM : M � N ! M , where N is another manifold, we write Jr(M;N )instead of Jr(M � N ), and Jrx(M;N )y � Jr(M;N ) for the submanifold of jetswith source x 2 M and target y 2 N . Similarly eJr(M;N ) and �Jr(M;N ). Weshall use the symbol � to denote composition of jets, ie. if Z = jrxf 2 Jr(M;N )and Y = jryg 2 Jr(N;Q); y = f(x), then Y � Z = jrx(g � f) 2 Jr(M;Q) with anappropriate extension to non-holonomic and semi-holonomic jets (c.f. (1.5) below).Also, jrx(t 7! f(t)) will sometimes stand for jrxf , and we shall use the abbreviatednotation jrx = jrx(t 7! t) and jrx[c] = jrx(t 7! c) for the jets of the identity andconstant maps respectively.1991 Mathematics Subject Classi�cation : 53 C 05, 58 A 20.Key words and phrases: non-holonomic jets and connections, semi-holonomic jets and connec-tions, higher order relative, straight and Cartan connections.



344 GEORGE VIRSIKThere is a functor J : FM(M ) ! FM(M ) which assignes J1E to E andj1xs 7! j1x(f � s) to f : E ! F . By iteration one obtains the functor Jr : FM(M )!FM(M ) which assigns eJrE to E. Also, there are natural transformations �rs : Jr !Js for 0 � s � r, where J0 = idFM(M), satisfying(1.1) �rs � eJr(f) = eJs(f) � �rs for 0 � s � r and any f 2 FM(M ):More generally, given E 2 FM(M ) and a pair s � r there are r� s+1 projections(c.f. .[8])(1.2) �r!is = J(�i�1s�1) � �ri i = s; s + 1; : : : ; r:Note that �r!ss = �rs and Z 2 eJrE is semi-holonomic i� for any 1 � s � r(1.3) �rs(Z) = �r!is (Z) 2 eJsE whenever i = s + 1; s+ 2; : : : ; r:An element X 2 eJrx(M;N ) can be represented by its coordinates (X��1 ;::: ;�r ) 2eJr0 (Rm;Rn), where �1; : : : ; �r = 0; 1; 2; : : : ;m; � = 1; : : : ; n (c.f. [9]) which givesthe coordinate expression�r!is : (X��1;::: ;�r ) 7! (X��1;::: ;�s�1;0;:::;0;�s;0;::: ;0);(1.4) where �s is in the i-th place:Recall also the rule for the composition of non-holonomic jets (c.f. [2]) de�nedrecurrently as follows. If Z = j1x� 2 eJrx(M;N ) and W = j1y� 2 eJry (N;Q), where � :M  eJr�1(M;N ) and � : N  eJr�1(N;Q) are local sections in a neighbourhoodof x 2 M and y = �r0(Z) 2 N respectively, then their composition W � Z is givenby (c.f. [1])(1.5) W � Z = j1x(u 7! �(�r�10 �(u)) � �(u)):In coordinates, this rule is best expressed recurrently as follows: The coordinateUk1;::: ;kr of U = W � Z is obtained by formally applying the di�erential operatorDr to the function Uk1 ;::: ;kr�1(W �j1;::: ;jr�1 ; Z�i1;::: ;ir�1) and writingZ�i1;::: ;ir�1;0 instead of 'the value of Z�i1;::: ;ir�1 ',Z�i1;::: ;ir�1;ir instead of DrZ�i1;::: ;ir�1 ,W �j1;::: ;jr�1;0 instead of 'the value of W �j1;::: ;jr�1 ', andPns=1W �j1;::: ;jr�1;sZs0;::: ;0;ir instead of DrW �j1;::: ;jr�1 .In particular, we obtain the following



HIGHER ORDER CARTAN CONNECTIONS 345Lemma 1.1. Let Z 2 eJr+1x (M;N );W 2 eJr+1y (N;Q) and let �r+1r (Z) = jrx[y]. LetZ have coordinates Z�i1;::: ;ir ;ir+1; is = 0; 1; : : : ;m; � = 1; : : : ; n and let W havecoordinates W �j1;::: ;jr+1 ; jk = 0; 1; : : : ; n; � = 1; : : : ; q. Then the coordinates ofU = W � Z are given byU�i1;::: ;ir;ir+1 = nXj=1W �0;::: ;0;j;0;::: ;0Zji1;::: ;ir ;ir+1 ;where the subscript j is in the place of the �rst non-zero index among i1; : : : ; ir; ir+1.Note that by our assumption Z�i1;::: ;ir;0 = 0 hence also U�i1;::: ;ir;0 = 0.One veri�es easily that(1.6) �sq � �r!is = �rq for 0 � q < s � i � rand(1.7) �r!is (A �B) = �r!is (A) � �r!is (B)for any two non-holonomic r-jets for which the composition A �B is de�ned.2. First order Cartan connectionsRecall the standard de�nition as given in e.g. [3]. Given a Lie groupG, a subgroupG0 � G and a principal bundle P 0(M;G0) | giving rise to a reduction P 0(M;G0) �P (M;G), with P (M;G) the extension by G0 � G | a Cartan connection for thispair is a one-form ! on P 0 with values in the Lie algebra T (G)e satisfying !(A�) = Afor every A 2 T (G0)e; (Ra)�! = ad(a�1)! for every a 2 G0 and such that !(Y ) = 0implies Y = 0 2 T (P 0). It follows then that dimG=G0 � dimM . Note that in [3]and elsewhere one assumes equality of these dimensions. If that is the case we shallspeak of a classical Cartan connection giving rise to an absolute parallelism on P 0.Standard examples of classical Cartan connections are(i) an a�ne connection on M : here P 0 = PM , the standard frame bundle of M ,and P is the a�ne bundle, ie. the extension of the structure group GL(m;R)of PM by the a�ne group;(ii) a conformal connection on M : here P = PM and P 0 is a conformal structureon M , ie. a reduction of GL(m;R) to CO(M ) = fA 2 GL(m;R) : tAA =cI for some c > 0g. Such a Cartan connection is equivalent to one associatedwith the pair given by P = P 2M , the bundle of second order holonomic framesof M , and a reduction of it to a certain subgroup of its structure group G2m(c.f. [3]);(iii) a projective connection on M : here P = P 2M as above, and P 0 is anotherreduction of it to a suitable subgroup of its structure group G2m (c.f. [3]).A connection in a principal bundle P (M;G) can also be seen as a morphismC : P ! J1P of FM(M ) satisfying �10 �C = idP and C(hg) = C(h) � j1ph[g] for anyh 2 P , g 2 G. Here � denotes the jet-prolongation of the action of G on P (c.f. [1],[2] and [6]). This can be generalized to Cartan connections.



346 GEORGE VIRSIKProposition 2.1. For any reduction of principal bundles P 0(M;G0) � P (M;G)there is a canonical one-to-one correspondence between Cartan connections ! :T (P 0)! T (G)e and morphisms � : P 0 ! J1P of FM(M ) satisfying(2.1) �10 � � = idP 0(2.2) �(h0g0) = �(h0) � j1p0h0 [g0]If Y 2 J10 (R; P 0)h0 and �(h0) � j1h0p0 � Y = Y then necessarily(2.3) Y = j10 [h0], where p0 : P 0!M is the projection.Proof. Let h0 2 P 0 be �xed and let ! : T (P 0)! T (G)e have the above properties,in particular !�� = idT (G0)e . Then, as in the case of P 0 = P , one can easily seethat �(h0) : T (M )x ! T (P )h0 , de�ned as �(h0)X = Y � (��!)(Y ), where Y is anyelement of T (P 0)h0 such that T (p0)Y = X, represents an element of J1P with therequired properties: (2.1) follows easily from the fact that �(h0) � j1h0p0 � Y = Ymeans !(Y ) = 0, hence Y = 0 by assumption. Conversely, if � : P 0 ! J1P hasthe listed properties then viewing again �(h0) as a linear map T (M )x ! T (P )h0 ,one de�nes !(Y ) =��1 (Y � �(h0)T (p0)Y ) for Y 2 T (P 0)h0 and any h0 2 P 0. Therequired properties of ! follow again easily from those of �.Remark. For the cannonical Cartan connection associated with the homoge-neous space G=G0 we have P 0(M;G0) = G(G=G0; G0) and P (M;G) = G=G0�G withthe one-form ! : T (G)g ! T (G)e de�ned by !(Y ) = T (Lg�1 )Y . The associated�(g) 2 J1(G=G0�G) de�ned by Proposition 2.1 becomes simply �(g) = (j1x; j1x[g]),where x = gG0.The choice of source 0 2 R in (2.3) is rather arbitrary in the sense that if (2.1)and (2.2) are satis�ed then (2.3) is equivalent to(2.4) W 2 J1a(V; P 0)h0 and �(h0) � j1h0 �W = W implies W = j1a[h0];where V is any manifold and a 2 V . In fact, assuming (2.4), let Y 2 J10 (R; P 0)h0be such that �(h0) � j1h0p0 � Y = Y . Then for any Z 2 J1a(V;R)0 we have �(h0) �j1h0p0 � Y � Z = Y � Z and thus by assumption Y � Z = j1a [h0]. As Z was arbitrary,one concludes from the chain rule that Y = 0 2 T (P 0)h0 , ie. Y = j10 [h0]. Conversely,assuming (2.4), one obtainsW �Z = 0 2 J1a(V; P 0)h0 , for any Z 2 J10 (R; V )a whenceagain W = j1a[h0]. 3. The general caseFrom now on all higher order jets, connections etc. will be assumed non-holono-mic unless otherwise stated. Recall (c.f. [6]) that an r-th order connection inP (M;G) is a morphism � : P ! eJrP of FM(M ) which satis�es �r0 � � = idPand �(hg) = �(h) � jrph[g] for any g 2 G.



HIGHER ORDER CARTAN CONNECTIONS 347Let (�;�G) : P 0(M;G0) ! P (M;G) be a �xed morphism of PB(M ). An r-th order �-connection (or relative connection) is a morphism � : P 0 ! eJrP ofFM(M ) which satis�es �r0 � � = � and �(h0g0) = �(h0) � jrp0h0 [�G(g0)] for anyg0 2 G0. Both an r-th order connection in a principal bundle as well as a �rstorder Cartan connection for P 0 � P are special cases of a relative connection. Also,if � is an r-th order connection in P 0(M;G0) then Jr(�) � � is an r-th order �-connection, and if � is an r-th order connection in P (M;G) then � � � is againan r-th order �-connection. Note that Prop. 6.1 of [6], Ch. II says that for any�rst order connection � in P 0 there is a unique �rst order connection � in P suchthat the two �-connections J(�) � � and � � � coincide. This can be extended toconnections of arbitrary order r � 1.Of course, not every �-connection can be written as Jr(�)�� for some connection� : P 0 ! eJrP 0; if it can, the �-connection will be called straight . On the otherhand, � = � �� de�nes a one-to-one correspondence between �-connections � andconnections � in P . To see this, �rst assume �1�� = �2��. Then for any h 2 P thereis an h0 2 P 0 and a g 2 G such that h = �(h0)g. Thus �1(h) = �1(�(h0)) � jrx[g] =�2(h). Hence there is at most one � such that � = � � �. One veri�es easily, that�(h) = �(h0) � jrx[g], de�nes the required connection in P .The following is obvious.Proposition 3.1. Let �1 : P2 ! P1 and �2 : P3 ! P2 be two morphisms ofPB(M ). Let further �1 : P2 ! eJrP1 be an r-th order �1-connection, and �2 :P3 ! eJsP2 be an s-th order �2-connection. Then(3.1) �1 � �2 := Js(�1) � �2 : P3 ! eJr+sP1is an (r + s)-th order (�1 ��2)-connection, (called their product), and(3.2) Js(�1) � �2 : P3 ! eJsP1is an s-th order (�1 ��2)-connection, (called the extension of �2 by �1).It is also easily veri�ed, that any �-connection � of order r � 1 gives rise tor � s+ 1 �-connections of order s where 1 � s � r, namely (c.f. (1.2) and (1.6))(3.3) �r!is � � = J(�i�1s�1) � �ri � � : P 0! eJsP for i = s; s + 1; : : : ; r;in particular to r �rst order �-connections(3.4) �r!i1 � � = J(�i�1) � �ri � � : P 0 ! J1P for i = 1; : : : ; r:It follows from Proposition 3.1 that if C is a c-th order �-connection, � is an a-thorder connection in P 0 and � a b-th order connection in P then � � C � � is an(a + b + c)-th order � -connection. We shall be interested only in the special casewhere C is a �rst order �-connection, � = �1 � : : : � �a and � = �1 � � � � � �b with�1; : : : ; �a and �1; : : : ; �b �rst order connections in P 0 and P respectively.



348 GEORGE VIRSIKProposition 3.2. Put r = a + b + 1, where a � 0 and b � 0 are some integers,and let(3.5) � = �1 � � � � � �b �C � �1 � � � � � �abe an r-th order � connection as above. Then�r!i1 � � = �i �� for i = 1; : : : ; b(3.6) = C for i = b+ 1= J(�) � �i�b�1 for i = b+ 2; : : : ; b+ a+ 1 = r:Proof. First note that �rr�1 � � = �rr�1 � J(�1 � � � � � �b �C � �1 � : : : � �a�1) � �a =�1 � : : : � �b �C � �1 � : : : � �a�1 (or �1 � : : :� �b if a = 0), hence �ri � � will be of theform (3.5) truncated to the �rst i terms only. Explicitly, �ri � � equals�1 � � � � � �i �� for i = 1; : : : ; b(3.7) �1 � � � � � �b �C for i = b+ 1�1 � � � � � �b �C � �1 � � � � � �i�b�1 for i = b+ 2; : : : ; r:Applying now J(�i�10 ) to these products we get the last connection preceded byJ(�) i� the other i � 1 terms contained C. This gives exactly (3.6) as required.We shall say that the r-th order �-connection � : P 0 ! eJrP has Cartan orderat least q, where 0 � q � r, if for each h0 2 P 0�(h0) � Jr(p0)Y = Jr(�)Y for some Y 2 eJr0 (R; P 0)h0(3.8) implies �rqY = jq0 [h0]:Here Jr(p0)Y = jrh0p0 �Y . Thus we use the same notation J for this endofunctor onany category of �bred manifolds over a �xed base given from the context (in thiscase R).The �-connection � is said to have Cartan order q if q � r is the largest integersatisfying (3.8), and � is called a Cartan �-connection if its Cartan order is r. Inview of Proposition 2.1, a �rst order Cartan connection for the pair P 0 � P is thesame thing as a �rst order Cartan �-connection, where � is the inclusion P 0 � P .Remark. In the same sense as (2.3) was equivalent to (2.4), also (3.8) is equiv-alent to �(h0) � Jr(p0)Y = Jr(�)Y for some Y 2 eJra(V; P 0)h0(3.9) implies �rqY = jqa[h0]; where V is any manifold and a 2 V:This is true in particular for V = M and a = x = p0h0. Note, however, that in thiscase the condition in (3.9) can never be satis�ed by Y 2 eJrP 0 with q > 0 sincej1x[h0] =2 J1P 0. On the other hand, if � is an immersion then (3.9) is always satis�ed



HIGHER ORDER CARTAN CONNECTIONS 349with Y 2 eJrx(M;P 0x)h0 and q = r. In fact, now Jr(p0)Y = jrx[x], so the relation in(3.9) becomes jrx[h] = Jr(�)Y 2 eJrx(M;Px)h, where h = �(h0). A simple applicationof the Rank theorem shows that � has a local left inverse whence Y = jrx[h0].Conversely, if � has Cartan order at least one then � must be injective. In fact,let g : R ker �G be smooth in a neighbourhood of 0; g(0) = e. If ker�G � G0 isnon-trivial then g can be chosen so that j10 (t 7! h0g(t)) 6= j10 [h0]. This means thatY = jr0(t 7! h0g(t)) will satisfy the condition in (3.8) but �r1Y 6= j10 [h0], and so theCartan order of � is 0.If F = G=�G(G0) then G acts to the left on F and one obtains the associated withP bundle E = (P � F )=G. For each x 2M the element e(x) = [�(h0); e�G(G0)] 2Ex; x = p0h0, is independent of the choice of h0 2 P 0x, and so we have a distinguishedsection e :M ! E. In case of a (classical) �rst order Cartan connection, the absolutedi�erential of this section de�nes a soldering of E along the section e. This canagain be generalised. First note that each h 2 P can be seen as a di�eomorphismfhg : F ! Eph assigning to � 2 F the element [h; �] giving rise to a compositionP�F ! E. If r > 1 then its prolongation is the composition eJr�1P� eJr�1(M;F )!eJr�1E; (Z;�) 7! [Z � �], which again for a �xed Z 2 eJr�1P is a di�eomorphismeJr�1(M;F )! eJr�1(M;Ex) and so we also have a composition eJr�1P � eJr�1E !eJr�1(M;F ); (Z; S) 7! Z�1 � S. Thus we can write the absolute di�erential withrespect to �(h0) = j1x� 2 eJrxP of e at x (c.f. [2] and [5]) as(3.10) re(x) = j1x(u 7! �(x) � (�(u)�1 � jr�1u e)) 2 eJrx(M;Ex)e(x):In particular, we get a map eJr0 (R;M )x! eJr0 (R;Ex)e(x)(3.11) X 7! re(x) �X:Note that the formula (3.10) can also be written as(3.12) re(x) = j1x(u 7! [�(x) � g(u); jr�1u [e�G(G0)]])where g(u) 2 eJr�1u (M;G)e is such that jr�1u (� � �) = �(u) � g(u) for some section� : M  P 0; �(x) = h0. To see this �rst assume r = 1 and let � be an arbitrarysmooth section as above. Then �(�(u)) = �(u)g(u) for some smooth g :M  G andso �(u)�1 �e(u) = g(u) ��(�(u))�1 �e(u) = g(u)�G(G0). Thus �(x) �(�(u)�1 �e(u)) =[�(x)g(u); e�G(G0)] as required. Note that g(u) depends on �(u), however not sothe equivalence class. If r > 1, observe that the composition P � G ! P | both(h; g) 7! hg as well as (h; g) 7! hg�1 | can be prolonged to a multiplicationeJr�1x P � eJr�1x (M;G)! eJr�1x P and so we conclude that there is an element g(u) 2eJr�1u (M;G)e with the required property. A prolongation of the formulae obtainedfor r = 1 leads to (3.12) for a general r � 1.Note also that g in (3.12) was chosen so that Jr(�)jrx� = �(h0) � ~g; ~g = jrxg 2eJrx(M;G)e, and though ~g depends on the choice of �;�(h0) uniquely determines itsequivalence class [~g] 2 eJrx(M;G)e= eJrx(M;�G(G0))e. Thus we can also write(3.13) re(x) = [j1x[�(x)] � ~g; jrx[e�G(G0)]]:



350 GEORGE VIRSIKProposition 3.3. If the r-th order �-connection � has Cartan order q � r then(3.11) is injective in the sense that re(x) � X = jr0 [e(x)] with X 2 eJr0 (R;M)ximplies �rqX = jq0 [x].Proof. The condition re(x)�X = jr0 [e(x)] can be written as re(x)�X = re(x)�jr0 [x]. By (3.13) we have re(x) �X = [j10[�(x)] � (~g �X); jr0 [e�G(G0)]] and similarlywith jr0 [e(x)] instead of X. Since the action of eJr0 (R; G) on eJr0 (R; P ) is free weconclude that ~g �X = ~g � jr0 [x], ie.~g �X = jr0 [e] since �r0~g = e. On the other hand,Jr(�)jrx� = �(h0) � ~g gives Jr(�)Z = �(h0) � X � ~g � X, where Z = jrx� � X 2eJr0 (R; P 0)h0 and so Jr(p0)Z = X. Thus we get Jr(�)Z = �(h0) � Jr(p0)Z � jr0 [e] orJr(�)Z = �(h0) �Jr(p0)Z which implies �rqZ = jq0 [h0] by the Cartan property of �.Applying Jq(p0) to this relation we obtain �rqX = jq0 [x] as required.Example. If P 0 = M �G0 and � = idM ��G then an r-th order �-connectionis in fact a map � : M � G0 ! eJr0 (M;G) satisfying �r0�(x; g0) = �G(g0) and�(x; g0g00) = �(x; g0) � jrx[�G(g00)]. Clearly, it has Cartan order at least q � r if�(x; g0) �X = Jr(�)Y; X 2 eJr0 (R;M)x; Y 2 eJr0 (R; G0)g0(3.14) implies �rqX = jq0 [x] and �rqY = jq0 [g0]:Let now M = Rm; G0 = GL(m;R); G= A(m), the a�ne group seen as a subgroupof GL(m + 1;R);�G(g0) = � g0 00 1�. Put�(x; g0) = jrxF = jrx�F11 F12F21 F22�(3.15) = jrx(u 7! �Pmi=1(ui � xi + 1)g0 u� x0 1 �):It is easily veri�ed that this de�nes a holonomic �-connection. We claim that itsCartan order is r. So let X 2 eJr0 (R;Rm)x; Y 2 eJr0 (R;Gl(mR)g0. The condition in(3.14) says jrxF �X = (jrg0�G) � Y:Since the second and higher order derivatives of F at x and of �G at g0 are all zero,it follows from the coordinate expression of the composition of non-holonomic jets(c.f. end of Section 1) that (3.16) in the �1; �2; : : : ; �r coordinate gives(3.17) mX�=1D�F (x)X��1;:::�r = (m;m)X(�;�)=(1;1)D(�;�)�G(g0)Y (�;�)�1;:::�runless, of course, �1 = �2 = : : := �r = 0. SinceD�F (x) = � g0 ��0 0 � and D(�;�)�G(g0) = ��(�;�) 00 0� ;where the ik entry in �(�; �) is �i��k� we conclude easily that X��1 ;:::�r = Y (�;�)�1 ;:::�r = 0for all �; � = 1; : : : ;m and �1; : : : �r that are not all zero. Thus X = jr0 [x] andY = jr0 [g0] showing that � de�ned in (3.15) has indeed Cartan order r.



HIGHER ORDER CARTAN CONNECTIONS 351Proposition 3.4. If � : P 0 ! eJrP is a �-connection such that for some 1 � q <s � i � r the �-connection �r!is � � : P 0 ! eJsP has Cartan order at least q, thenso does �.Proof. Let h0 2 P 0 be �xed and assume that �(h0) � Jr(p0)Y = Jr(�)Y for someY 2 eJr0 (R; P 0)h0 . Then by (1.7) we have also (�r!is � �(h0) � Js(p0) � �r!is )Y =(Js(�)��r!is )Y and so, by assumtion, (�sq ��r!is )Y = jq0 [h0] which by (1.6) implies�rqY = jq0 [h0] as required.Remark. If q = s, ie. if �r!is �� : P 0! eJsP is Cartan then (1.6) does not workand Proposition 3.4 must be applied with q = s � 1. Except when s = i in whichcase (1.6) is not needed. Thus we getCorollary 3.4a. If � : P 0 ! eJrP is a �-connection such that for some 1 � s �i � r the �-connection �r!is � � : P 0 ! eJsP is Cartan then � has Cartan order atleast s � 1. If �rs � � is Cartan, then � has Cartan order at least s.In particular, if �r1 � � is Cartan, then the Cartan order of � must be at leastone.Proposition 3.5. If the �-connection � : P 0 ! eJrP is such that for some 0 < s �r the �-connection �rs � � : P 0 ! eJsP has Cartan order less than s, then so has �.Proof. Let Z 6= js0[h0] 2 eJs0 (R; P 0)h0 be such that (�r!is ��)(h0)�Js(p0)Z = Js(�)Zand put Y = jr�s0 [Z]. Then Jr(p0)Y = jr�s0 [Js(p0)Z];�(h0) � Jr(p0)Y = jr�s0 [(�rs ��)(h0) � Js(p0)Z];Jr(�)Y = jr�s0 [Js(�)Z] so Y satis�es the condition in (3.8) but�rsY 6= js0[h0] as required.In particular if �r1 � � is not Cartan then the Cartan order of � must be zero.A �rst order connection in a principal bundle can, of course, never be a Cartanconnection. It follows now that neither can an r-th order connection, where r � 1.More generally, we haveProposition 3.6. The Cartan order of a straight �-connection of order r � 1 isalways zero.Proof. Let � = Jr(�) � �. We have seen that � has Cartan order zero, ie. there isan Y 2 eJs0 (R; P 0)h0 ; �r1Y 6= j10 [h0] such that �(h0)�Jr(p0)Y = Y . Hence Jr(�)�(h0)�Jr(p0)Y = Jr(�)Y with �r1Y 6= j10 [h0] showing that the Cartan order of � is lessthan one.Proposition 3.7. If � is an arbitrary r-th order �-connection and if � is a �rstorder connection in P 0 then the Cartan order of the (r + 1)-st order �-connection� � � is less than r + 1.Proof. Again, since the Cartan order of � is zero, there exists a Y = j10y 2J10 (R; P 0)h0 6= j10 [h0] such that �(h0) � J(p0)Y = Y which implies j1h0� � f�(h0) �J(p0)Y g[r] = j1h0��Y [r]. Here we have de�ned Y [r] = j10(t 7! jrx[y(t)]) 2 eJr+10 (R; P 0).Explicitly,(3.18) j1h0� � j10(t 7! jrt [c(p0(y(t)))]) = j10(t 7! �(y(t)) � jrt [y(t)];



352 GEORGE VIRSIKwhere we have written �(h0) = j1xc. The left hand side in (3.18) is easily seen tobe j1h0� � �(h0)[r] � Jr+1(p0)Y [r] | these are all composition of (r + 1)-jets | orf(J(�) � �)(h0)g � Jr+1(p0)Y [r] = (� � �)(h0) � Jr+1(p0)Y [r], whereas the right-hand-side is j10 (t 7! jrt [�r0�(y(t))]) = j10(t 7! jrt [�(y(t))]) = Jr+1(p0)Y [r]. Thus we haveshown that(3.19) (� � �)(h0) � Jr+1(p0)Y [r] = Jr+1(�) with Y [r] 6= jr0 [h0];and so the Cartan order of � � � is less than r + 1.A slight modi�cation of the proof gives immediatelyProposition 3.7a. If � is an arbitrary r-th order connection in P and if C is a�rst order �-connection that is not Cartan, then the Cartan order of the (r+ 1)-storder �-connection � �C is less than r + 1.Proposition 3.8. Let � be an r-th order connection in P , where the �-connection� � � is Cartan. Assume also that the r �rst order connections �r!i1 � � � � areCartan. Let further C be a �rst order Cartan �-connection. Then the (r + 1)-storder �-connection � �C is also Cartan.Proof. Since the Cartan property is local, we can assume P 0 = M�G0; P = M�Gand Ï�(x; g0) = (x;�G(g0)). Then, as in (3.14), we have to show that(� �C)(x; g0) �X = Jr+1(�)Y;(3.20) X 2 eJr+10 (R;M )x; Y 2 eJr+10 (R;G0)g0implies X = jr+10 [x] and Y = jr+10 [g0]:We have �r+1r �(��C) = ��� and so by our assumption and Corollary 3.4a we knowthat �r+1r (X) = jr0 [x] and �r+1r (Y ) = jr0 [g0]. IfXji1;:::ir ;ir+1 ; j = 1; : : : ;m; is = 0 or 1and Y �i1;:::ir;ir+1 ; � = 1; : : : ; q0 = dimG0; is = 0 or 1 are the coordinates of X andY respectively, then this means that Xji1;::: ;ir;0 = 0 as well as Y �i1;::: ;ir;0 = 0. Thecoordinates K�j1;:::jr ;jr+1 ; � = 1; : : : ; q = dimG; js = 0; 1; : : : ;m of (� � C)(x; g0) 2eJr+1x (M;G)g ; g = �G(g0), are obtained from those of � and C as follows:If the coordinates of C(x; g0) 2 J1(M;G) are C�i ; � = 1; : : : ; q; i = 0; 1; : : : ;mand those of � : M � G ! eJrx(M;G)g are the functions H�j1;:::jr ; � = 1; : : : ; q =dimG; js = 0; 1; : : : ;m thenK�j1 ;:::jr;0 = H�j1;:::jr;0(x; g), and for jr+1 6= 0(3.21) K�j1;:::jr;jr+1 = Djr+1 (u 7! H�j1;:::jr (u;C(u))= qX=1(DH�j1;:::jr )(x; g)Cjr+1 + (Djr+1H�j1;:::jr )(x; g):Note that because of (�r0 � �)(u; a) = a, ie. H�0;:::0(u; a) = a, we have(3.22) DH�0;:::0 = �� and DjH�0;:::0 = 0 for  = 1; : : : ; q; and j = 1; : : : ;m:



HIGHER ORDER CARTAN CONNECTIONS 353We can now apply Lemma 1.1 to the coordinate version of the relation in (3.20) toobtain(3.23) mXj=1K�0;::: ;0;j;0;::: ;0Xji1;:::ir ;ir+1 = qX=1(D��G)(x; g0)Y i1;::: ;ir;ir+1 :Substituting from (3.21) and observing (3.22) we get(3.24) K�0;::: ;0;j;0;::: ;0 = H�0;::: ;0;j;0;::: ;0(x; g) and K�0;::: ;0;j = C�j :Consequently, (3.23) says(3.25) mXj=1H�0;::: ;0;j;0;::: ;0(x; g)Xji1;:::ir;ir+1 = qX=1(D��G)(x; g0)Y i1;::: ;ir;ir+1if i1 = : : : = ir = 0 and only ir+1 6= 0, or(3.26) mXj=1C�j Xji1;:::ir;ir+1 = qX=1(D��G)(x; g0)Y i1;::: ;ir ;ir+1otherwise. It follows from (1.4) that H�0;::: ;0;j;0;::: ;0(x; g) are the coordinates of(�r!j1 � � ��)(x; g0) and so (3.25) implies Xj0;:::0;ir+1 = 0 as well as Y 0;:::0;ir+1 = 0because �r!j1 � � �� were assumed Cartan. Similarly (3.26) implies Xji1;:::ir;ir+1= 0 and Y i1;:::ir ;ir+1 = 0 because C was assumed Cartan. This completes the proof.Proposition 3.9. Let C be a �rst order �-connection, �1; : : : ; �a �rst order con-nections in P 0 and �1; : : : ; �b �rst order connections in P . If �1 ��; : : : ; �b �� andC are all Cartan connections then the Cartan order of the r-th order �-connection(3.5) � = �1 � � � � � �b �C � �1 � � � � � �ais b+ 1.Proof. Proposition 3.8 guarantees that the Cartan order of the (b + 1)-st order�-connection �rb+1 �� = �1 � � � ���b �C is b+1. By Corollary 3.4a the Cartan orderof � is thus at least b+ 1. If a > 0 then Proposition 3.7 says that the Cartan orderof �rb+2 � � = �1 � � � � � �b � C � �1 is less than b + 2 and so by Proposition 3.5 alsothe Cartan order of � is less than b+ 2.More generally,Proposition 3.10. Let �1; : : : ; �a; �1; : : : ; �b and C = �b+1 �� be �rst order con-nections as above. Let 0 � s � b + 1 be such that the sequence �1 � �; : : : ; �s ��consists of Cartan connections but �s+1 � � is not Cartan. Then the Cartan orderof the r-th order �-connection (3.5) is exactly s.Proof. Proposition 3.9 guarantees that the Cartan order of �rs �� = �1� : : :��s��is s and Corollary 3.4a that that of � is at least s. Since �s+1 �� is not Cartan it



354 GEORGE VIRSIKfollows from Proposition 3.7a that �rs+1 � � = �1 � : : : � �s+1 � � has Cartan orderless than s+ 1. So by Proposition 3.5 also the Cartan order of � is less than s+ 1,hence equals s as required.A special case is that of a � = � � : : : � � � �, (� repeated r-times), where� � � : P 0 ! J1P is a single Cartan connection. Proposition 3.9 guarantees thatthis � is an r-th order Cartan �-connection. In case of the Cartan �-connectionC = � � � cannonically associated with the homogeneous space G=G0, with � : G0 !G the inclusion map, (see Remark after Propostion 2.1) the corresponding r-thprolongation � = � � : : : � � � � : G! Jr(G=G0 � G) can easily be seen to be givenby �(g) = (jrx; jrx[g]), where x = gG0, which is self-evidently Cartan of order r asexpected. References[1] Ehresmann C., Extension du calcul des jets aux jets non holonomes, C.R.A.S. Paris 239(1954), 1762{1764.[2] Ehresmann C., Sur les connexions d'ordre sup�erieur, Atti V 0 Cong. Un. Mat. Italiana,Pavia-Torino, 1956, 326{328.[3] Kobayashi S., Transformation groups in di�erential geometry, Ergebnisse der Mathematik70, Springer Verlag, 1972.[4] Kobayashi S., Nomizu K., Foundations of di�erential geometry, Vol. 1, Wiley-Interscience,1963.[5] Kol�a�r I., Some higher order operations with connections, Czech. Math. J. 24(99) (1974),311{330.[6] Kol�a�r I., On some operations with connections, Math. Nachrichten 69(1975), 297{306.[7] Kol�a�r I., Michor P. W., Slov�ak J., Natural Operations in Di�erential Geometry, Springer-Ver-lag, 1993.[8] Virsik G., Total connections in Lie groupoids, Arch. Math. (Brno) 31 (1995), 183-200.[9] Virsik G., Bunch connections, Di�. Geom. and Applications, Proc. Conf. 1995, Brno, Czechrepublic, Masaryk University, Brno (1996), 215-229.Department of MathematicsMonash UniversityClaytonVictoria 3168, AUSTRALIAE-mail : virsik@sci.monash.edu.au
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