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CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS

ANDRZEJ ZAJTZ

To Ivan Koldr, on the occaston of his 60th birthday

ABSTRACT. The study of diffeomorphism group actions requires methods of
infinite dimensional analysis. Really convenient tools can be found in the
Frolicher - Kriegl - Michor differentiation theory and its geometrical aspects.
In terms of it we develop the calculus of various types of one parameter diffeo-
morphism groups in infinite dimensional spaces with smooth structure. Some
spectral properties of the derivative of exponential mapping for manifolds are
given.

1. INTRODUCTION

The foundations of differential geometry stream visibly towards the geometry
in infinite dimensional spaces and to methods of infinite analysis. Adaptations to
Hilbert and Banach manifolds were done by P.Libermann and P. de la Harpe in the
seventies. Then R.S.Hamilton gave beautiful examples of making geometrical use
from the inverse function theorem of Nash and Moser in tame Fréchet spaces. The
theory of infinite Lie groups and Lie algebras was intensively developed, to mention
H. Omori, J. Milnor, J. Grabowski and others. Recently A. Kriegl and P. Michor
introduced, studied and effectively applied the concept of regular Lie groups, which
is more general and simpler than the one originating from Omori. They start from
the Milnor’s idea that smooth curves in the Lie algebra should integrate to smooth
curves in the group (an evolution operator exists). This allowed them to advance
immensely the foundations of geometry of principal bundles of infinite dimension,
e.g.. the theory of connections, invariant calculus and Lie theory of regular Lie
groups. It is worth to underline their result that Lie algebra homomorphisms
integrate to Lie group homomorphisms, if the source group is simply connected
and the image group is regular.

Classical differentiation in linear spaces of arbitrary dimension uses Banach
spaces; but most function spaces are not Banach spaces, in particular those oc-
curring on smooth manifolds. Another deficiency is that the space C*°(E, F') of
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Key words and phrases: flow, diffecomorphism group, regular Lie group action, Frolicher-
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smooth maps is no longer a Banach space. The space of vector fields on a smooth
manifold M is naturally a modelling vector space for the diffeomorphism group
Diff(M), but it is in a canonical way a non-normable (nuclear) Fréchet space.
Other difficulties in applying the Banach space theory to diffeomorphism groups
are indicated by Hamilton in [4].

Among many theories of differentiation in non-normable spaces, seemingly the
most appropriate and conceptually simpliest is that created by Frolicher and Kriegl
[1]. Tt is based on the Boman’s idea of testing smoothness along smooth curves.

A mapping f : F — F between locally convex vector spaces 1s called smooth or
C* | if it maps smooth curves into smooth curves, i.e., if

foceC® (R F) forall ceC®(R,E).

Definition. A locally convex vector space E is called convenient ( we shall call
it briefly a Con-space) if for a curve ¢ : R — E, f o ¢ smooth for all continuous
functionals f on E implies ¢ is smooth.

An equivalent defining property is that for every smooth curve in £ Riemann
integrals exist over compact intervals.

Remark. For finite dimensional smooth manifolds the locally convex topology of
C*®(M, N) is the classical ¢ compact-open topology of uniform convergence on
compact sets of all derivatives (cf. M.Hirsch, Differential Topology, 1976).

We shall be in need to apply some fundamental properties of the category of
convenient spaces which we quote below after [1] and [6].

1. The space C™(FE,F) of smooth maps is canonically a Con-space. The
subspace L(E, F') of all bounded linear maps is closed in C*°(E, F'). A linear (or
multilinear) map is smooth if and only if it is bounded.

2. The category Con is cartesian closed, i.e.,

C®(E x F,G)= C®(E,C™(F,G))

is a linear diffeomorphism of Con-spaces.
3. If f:U C F — F issmooth then the derivative

Df(z)v := lim Iz +tv) - f(z)

t—0 t

exists and is linear, and smooth as a map Df : U x F — F as well as a map
Df : U — L(E,F) where L(E,F) has the topology of uniform convergence on
bounded subsets. The chain rule holds.

4. (Taylor expansion) Let U C E be an open subset in the final topology
with respect to all smooth curves on E (i.e., the ”¢® —topology)”. Let f: U — F
be a smooth map, # € U and « 4 [0, 1]Jv € U. Then the mean value theorem

fa o) = @)+ [ (DN +t0).0de
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and the usual Taylor’s formula hold.

5. (The smooth uniform boundedness theorem) A linear map f : E' — C*™(F, ()
is smooth if and only if the evaluation map evy, f : ' — G'is smooth for each y € F.

6. All Fréchet spaces are convenient; also the Schwartz space of test functions
with compact support in R” 1s convenient.

7. The notions of a smooth manifold, tangent bundle, Lie group, smooth Lie
group action, etc., are defined in a classical way. In particular, for finite dimen-
sional smooth manifolds M, N, where M is supposed to be compact, the space
C(M, N) has a natural structure of a smooth manifold in the Con category (de
facto it is a Fréchet manifold, with the collection of all C”™ norms)

The group Dif f(M) of smooth diffeomorphisms of M is open in C*°(M, M) and
is a smooth convenient Lie group. The tangent space at the identity is naturally
identified with its model space, and equally with the linear space T'(T'M) of smooth
vector fields on M.

It should be noted that in the noncompact case, there have to be assumed
certain behaviors at infinity; for instance, some or all C”"-norms bounded, compact
supports, etc. Accordingly, we get a Banach, Fréchet or convenient vector space
structure.

For any vector bundle E over M, we let T'(E) denote the real vector space of
continuous sections of E. In turn, for f : N — M, T(f*TM) is the space of vector
fields along f( = maps N — T M covering f).

We shall make the identifications for the tangent spaces to the diffeomorphism
group at the identity and at an arbitrary diffeomorphism f:

TiaDif f(M) = T(T'M) and Ty Dif f(M) = D(f*TM).
We let f, and f* be the smooth linear maps in T'(T'M) given by
LX=(TFX)of™,  FX=(TH(Xof),

which represent the adjoint actions of f on I'(T'M). In the next section we give
particulars concerning the X-derivative of the exponential map and its Taylor
expansions. The formula for the derivative was computed first in another way
by J. Grabowski [3]. For basic concepts in modern foundations of differential
geometry the reader can refer to Koldi-Michor-Slovak in [5].

2. THE MAP X — exp X

2.1. Higher order derivatives. Let M be a finite dimensional smooth and
compact manifold. Then D(M) = Diff(M) has the structure of a Fréchet Lie
group with the strong C'* topology; it is also a convenient regular Lie group (in the
sense of Kriegl-Michor) and its ¢*- topology coincides with the above mentioned
Whitney topology. The Lie algebra of D(M) is T(T'M), the space of vector fields
on M with the negative of the usual Lie bracket.

Each vector field X generates a global one-parameter group ¢t — exptX for
t € R. Thus we have a map

¢ :T(TM)x M x R— M
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(X,2,t) — (exptX)(x).
X being smooth, the map ¢ is also smooth in z,f. We want to look closer at the
smoothness in X. We denote by D and T denote the derivative in X and the
usual tangent map operator, respectively. The X-derivative at ¢X in direction Y
is then
d
Dexp(tX)Y = T

S

exp (X + sY).
s=0
To compute the derivative we start with computing the (left) logarithmic derivative
of exp.

T(exp(=X)) - Dexp(X)Y = Texp(—X))

exp(X + sY)
s=0

d b d
T 520/0 Eexp(—tX) oexpt(X + sY)dt
' d
= / — {=T(exp(—tX)) - X oexpt(X + sY)
o ds|,—o
+T(exp(—=tX)) - (X + sY)oexpt(X + sY)}dt
1
d
= / 7 sT(exp(—tX)) - Y oexpt(X + sY)dt
0 @8|5=

1 1
= / T(exp(—tX)) Y oexptXdt = / (exp X)*Ydt.
0 0

Hence we obtaln

1 1
(2.1) Dexp(X)Y =T(exp X) - / (exptX)'Ydt = / (exptX).Ydtoexp X.
0 0
From this we get for ¢; = exp?X the formula

3 3
(2.2) DéY = qut./o ¢TY ds :/0 (¢:)2Yds o ¢y

Clearly Dexp(X)Y is a smooth vector field on M and the map (X,Y) —
DexptX -Y is continuous in the C"*-topology.

Remark. In the noncompact case we may also consider the derivative Dexp(tX)
defined by formulae (2.1). If necessary one may change the vector field by a scalar
factor to obtain one which defines a global flow. If we deal with local problems in
which the exponential mapping is involved, we can take the derivative at tX for t
small enough so that the formula

¢
Dexp(tX)Y = T(exptX) / (exp sX)*Yds
0

is well defined in an open subset of M x R.
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In this way one can apply the calculus developed on compact manifolds to study
groups of compactly supported diffeomorphisms,; or groups of germs of diffeomor-
phisms at a fixed point and their smooth actions, also in the noncompact case
(one of typical subjects in the theory of natural bundles). Contrary to the global
compact approach, there seems to be no literature on whether the behavior of the
exponential map is also so bad in the local version, at least that I know of.

For a fixed X we introduce the mean adjoint operators A and B on T(TM)
defined by

1 1
2.3 AY = s)Yd BY = *Yds.
(2.3) /0<¢> s /Om s

Now, (2.1) can be written

D&Y = AY 06 = T - BY,
or briefly
(2.4) Dé=Aod=Ts-B

where we set ¢ = exp X.

In order to compute higher order X-derivatives D*¢, it is enough to use re-
peatedly (2.2) and the following formula for the derivative of the adjoint map
X — (exptX).Y = (¢1)Y

D((exptX).Y) -7 = [(exth)*Z,/O (exp SX)*YdS]

where [,] denotes the Lie bracket of vector fields. This formula will be derived
in Section 2. Clearly all the higher order derivatives are smooth families (with X
as parameter) of multilinear differential operators in T'(T'M). Therefore the map
X — exp X is smooth.

As example we give a formula for the second order derivative, for brevity we
use the operator A; = fot(exp sX).Yds,

D¥(exptX). (Y, Z) = {A[Y, A Z) + T(AY) - A Z} oexp X.

The map X — A(X) is exactly the (right) logarithmic derivative §exp of the
exponential map. (For the details on logarithmic derivatives of smooth maps from
manifolds into convenient Lie groups cf. [6])

2.2. Taylor expansion of exp X. Let M = E be a Con-space. We can identify
TM =FEx Fand T(TM) = C®(E,E). Let X € C®(FE, E) be a vector field on
E which admits a global flow exp tX. Then

(2.5) DyexptX = X oexptX, exp0 = idg.

X can also be considered as a differential operator on C*°(E, F) by ¥ — XY =
DY oexptX)(t = 0).



360 ANDRZEJ ZAJTZ

Since D*(exp X)(X = 0) = Df(exptX)(t = 0), the Taylor expansion of exp X
at X = 0 coincides with the one for ¢ — exptX at ¢t = 0.
From (2.5) we obtain easily

(2.6) DE(Y oexptX) = (X(k)Y) oexptX
Thus

tk
(2.7) Yoexth:Y—l—tXY—|—~~~—|—EX(’“)Y—I—R;C

(TR
Ry = / %X(“’l)}/oexp sXds
0 !

The formal Taylor series will be then Y o exptX ~ XY,
In view of (2.5) by integration we get

2

t tk
exptX o id + 14X + XX + EX<’“—1>X+...

or finite expansion at X =0

1k (NTRAY
(2.8) exptX =did+tX+---+ EX(k_l)X —I—/ %X(k))(oexp sXds
. 0 .

We can show that if £ = R"™ and X is real analytic then the Taylor series
converges uniformly for small ¢ to yield

exptX =id+y EX(’“‘UX.
k=1

2.3. Invertibility of the X-derivative. There has been written a lot on the
bad behavior of the exponential map and its derivative Dexp(X) in respect of
their invertibility on compact manifolds (N. Kopell, J. Palis; R. S. Hamilton, J.
Grabowski). We would like to say something positive. To gain this we ask first for
the invertibility of the derivative at a point. More on spectral properties of maps
connected with the exponential will appear in a separate paper.

We start with the modified formula (2.4)
(2.9) Déog™l = A.

We observe that the injectivity or surjectivity of the derivative D¢, where ¢ =
exp X, coincides with that for the mean adjoint operator A. Therefore we study
our problem via A.

It should be noted that the differential operator ad(X) : ¥ — [X,Y] is the
infinitesimal generator of the group {é;}, ¢ € R, of continuous linear operators in
T(TM). In turn, ad(—X) is the infinitesimal generator of the group {(é:).}.
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These one-parameter groups are strongly continuous in the sense that for all
Y, limio¢fY =Y. Consequently, we have

ad(X) /Ot(qu)*Yds = /Ot(qbs)*ad(X)Yds =Y — (¢1)Y.

For ¢ = 1 1t can be written
(2.10) ad(X)oA=Aocad(X)=1— ¢..

Lemma 1. The following facts are true.

(1) If a closed subspace of T(T'M) is invariant under the group (¢+)«, then it
is also invariant under ad(X) and A.

(2) If I — ¢. is injective, surjective or invertible on a closed (¢¢).-invariant
subspace of T(T'M), then so are respectively both ad(X) and A.

(3) ker(I — ¢.) = {Y; such that YV = fol eIk (6).Yds satisfies [Yi, X] =
2wikYy, for some k € 7 } = {Y; such that (¢1).Y is periodic with period 1}

(4) A is the identity on ker ad(X) and

(2.11) ker(I — ¢.) = ker ad(X) & ker A
(topological direct sum).

Proof. (1) ad(X)- invariance follows by differentiation of (¢;).Y at ¢t = 0 for ¥
in the subspace. Then the invariance under A follows from (2.10).

The assertion (2) is a direct consequence of (2.10).

The first equality in (3) can be verified as follows

1
Vi, X] = /0 e 2™k (($0) Y ) ds = (¢ — )Y + 27ik Y5,

where we integrated by parts. So YV is in ker(¢. — I) if and only if Y3 is an
eigenvector of ad(X) with eigenvalue —2mik. Now, the second set in (3) comes
from the implication

Y =Y = (de41):Y = (¢1):Y

for all ¢.

To prove (4), let Y be in ker ad(X), so [X,Y] = 0. Tt follows that Y is a fixed
point of all isomorphisms (¢¢).. Therefore AY =Y. As to the remaining part of
(4), let Y be in ker(] — ¢.), so the map ¢t — (¢;).Y is periodic with period 1, and
let

(2.12) (60 = Yo+ Y Vet
k=1
1 1 )
(2.13) Yo = / (¢5)Yds,  Yp= / eIk (64). Y ds
0 0

be its Fourier series. We see that Yy = AY | hence Y € ker A if and only if the first
Fourier coefficient is zero. On the other hand we easily get ad(X)Yy = Y —¢.Y =0,
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so Yy is in ker ad(X). This proves the decomposition (2.11). Since ad(X) and A
are closed linear operators on T'(T'M) it follows that ker ad(X) and ker A are closed
(disjoint) subspaces; hence the sum (2.11) is topological. d

Additionally we indicate the following property of Fourier coefficients Y3, k € 7,
from (2.13).

(2.14) (6:):Yi = ™%V,
which is equivalent to
(2.15) [Vi, X] = 27ikYy,.

The equivalence verifies as follows: (2.14) implies (2.15) by differentiation at ¢ = 0.
For the inverse, we pass from (2.15) to

d .

[(¢)t)*Yk,X] = E(¢f)*Yk = 27TZ]€(¢¢)*Y]€

Thus (¢+).Y) satisfies differential equation Y/ = 2xikY with initial condition
Y (0) = Y%, whose solution is Y (¢) = Y;e?™***. Hence (2.14).

Theorem 1. The derivative Dexp X is injective if and only if equations (2.14)
or (2.15) have only trivial solutions for k # 0. The non-trivial solutions Yy, span
over R the kernel of Dexp X.

Proof. Tmposing (¢_¢). on (2.12) and using (2.14) we get easily
V= (¢)Yo+ Y Yi=Yo+ > Vi,

E>1 E>1

since Yy is a fixed point of the adjoint operator. Moreover, again using (2.14) we
compute AY; = fol(gbt)*kat = fol e?™*ty, dt = 0. This completes the proof. O

Remark. Since (exp X).X = X for every X, the operator I — ¢, is never injective
in the entire space T'(T'M ). Therefore it is reasonable to consider the above spectral
properties on closed invariant subspaces, which we mentioned in Lemma 1.

Recall by the way that f € D(M) is an Anosov diffeomorphism if and only if
f« = I is an automorphism on T'(T'M) (cf. Mather [7]); hence the

Corollary. An Anosov diffeomorphism never imbeds into a flow.

It is worth to remark that the set of all Anosov diffeomorphisms on Riemannian
compact manifold is open in Dif f1(M), so they are not so few.

Proposition 1. Let E =T (TM) be the space of all compactly supported vector
fields on a smooth, connected and noncompact manifold M. Suppose that a vector
field X on M 1s complete and defines a flow ¢; which has no relatively compact
trajectories except fized points, which are hyperbolic. Then Dexp(X), as well as
ad(X), are injective on E.
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Proof. Tt is enough to show that equations (2.14) have only trivial solutions. Tt
is easy to see that the subspace F of T(T'M) is invariant under the adjoint action
of any flow. We write (2.14) in the form

(2.16) (T6r.Y) (67 (x)) = *™HY ()

for some integer k. If the trajectory ¢:(z) is not compact, then there isa T = T(x)
such that the point (b;l(l‘) is outside the support of Y. Then the LHS is zero, so
is also the RHS; hence Y (z) = 0.

Suppose now that £ = a 1s a critical hyperbolic point of X. Then for all ¢t € R,
¢:(a) = a, Tgs(a) = e'P+X and this linear operator in the tangent space 7, M has
no eigenvalue with modulus equal to 1. In this case (2.16) writes

(2.17) e P XY (a) = ™Y (a)
which implies immediately ¥(a) = 0. O

Recall that an Anosov flow on a complete Riemannian manifold M is a flow
¢y whose induced flow T'¢; on T'M is hyperbolic in the following sense: The
tangent bundle T'M can be written as the Whitney sum of 3 invariant subbundles,
TM =FE; & FE_® FE, where on E,, T'¢; is contracting, on E_, T'¢; is expanding
and Fy 1s the one-dimensional bundle defined by the infinitesimal generator of
¢;. An important class of examples of Anosov flows are the geodesic flows on the
tangent bundles of Riemannian manifolds of negative curvature.

Proposition 2. If a vector field X on a complete Riemannian manifold M gen-
erates an Anosov flow ¢y, then the derivative of the exponential map at X is an
isomorphism of T(TM).

Proof. By standard arguments (cf. Mather [7]) it follows that for the restriction
of the adjoint operator ¢, to I'(F; 4+ E_) there exists a continuous inverse (I —
¢.)"". We let p,,p1 denote respectively the projections of I'(T'M) onto I'(Ep) and
T'(F4 4+ E_). Then using (2.9) and (2.10) we verify directly that, given a vector
field Z on M, the equation

Dexp(X)Y =72
has a unique solution
(2.18) Y = (ad(X) o (I —¢.) "t opi +po)Z o o,

where ¢ = exp X and Y depends continuously on 7. a

Proposition 3. For a € M and ¢; = exptX, the linear map Y — D(¢:).Y (a)
from T(T'M) into the tangent space Ty, oy M is surjective except uniquely when
X(a) = 0 and the operator Do X in T,M has an eigenvalue A = @ for some
ke Z\{0}.
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Proof In view of (2.6) it suffices to consider the surjectivity of the map ¥ —

fo a)ds valued in T, M. Using the Taylor expansion of second order in ¢,
with dt(¢f) = (¢1)[Y, X], we obtain

(2.19) /Ot(qbs)*Yds =Y+ /Ot(t — 5)(6s)a[Y, X]ds.

Since for small ¢ the problem can be considered 1n a local chart on M around a,
we can choose Y to be locally constant = Y,. Then [Y,, X] = D, X.Y, and setting
Py =T¢s 0D, X o¢5t it follows from (2.19)

(2.20) /O(qss)*yodsz(m/o (t — 5)Ps(a)ds)Y,

For sufficiently small ¢ the operator at Y, on the RHS is invertible. Thus there is
at, >0 such that Y — fg((bs)*Y(a)ds Is surjective onto T, M for all 0 < ¢ < t,.
Suppose now that X(a) # 0, so ¢s(a) # a for small s. We take ¢t; > ¢, such
that the trajectory ¢, (a) is not periodic or that ¢; is not greater than the minimal
period in the opposite case. We choose an open subset U such that ¢;1(z) € U
for 0 < s < t, and ¢; () is not in U for t, < s < t;. Then for any vector field ¥

with support in U
t to
/ (¢s)sYds = / (¢5)+Yds
0 0

fort, <t <t;. For suitable ¢, this means that the surjectivity in question prolongs
to all ¢ from the interval [0,¢;]. If the trajectory is periodic it follows from above
that ¥ — fo )« Y ds is surjective for the minimal period and consequently for
arbitrary ¢.

Let in turn X(a) = 0. Then ¢,(a) = a for all s, To,(a) = e*P«X and

/Ot((bs)*Y(a)ds = /Ot e PeXy (a)ds

The eigenvalues of the operator fot e*PeX ds are of the form fot e ds = €
A is an eigenvalue of D, X. Therefore the operator above is invertible if and only
if A# 27;—”“ for k& being non-zero integers. d

3. DIFFERENTIATION OF SOME TYPES OF FLOWS

3.1. General case and evolution flows. Let X be a vector Con-space, F' a
smooth convenient manifold, and L : X — ['(T'F) a C'* map such that each vector
field L(X) integrates uniquely to a smooth flow FIX : F' x R — F. Then FIY is a
1-parameter group of diffeomorphisms of /' and we have

d

(3.1) EFJX L(X)oFlIX, — FLY =idp,

(3.2) T(FIX) L(X) = L(X) o FII¥,
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where T(FIX) : TF — TF is the tangent map. Applying a similar procedure as
in the case of the flow exptX, which corresponds to L(X) = X, we can derive the
formula for the X-derivative of FIX. We start with

d
T(FIX)-DFEX .Y = T(FIX)) - FLE+sY

s=0

_ 4
~ds
and similarly transform it using both formulae (3.1) and (3.2):

' d
/—szuF1§+sYdu
s=0+0 du

13
= / T(FIX,) di {L(X 4 sY) = L(X)} o FIX+Y dy
0 $ls=0

! X d
= T(Fl —
/0 ( —u) dS

13 13
:/ T(FI_U)DL(X)YoFlffdu:/ (FIX)*DL(X)Y ds
0 0

/ DL(X +vY)Ydvo FIX+Y duy
0

s=0

Hence it follows finally

D(FIX).Y = T(FI*) /t(Flf)* o DL(X)Yds

13
(3.3) = / (FIX), o DL(X)Yds o FI*
0

Formally, for ¢ = 1, (3.3) follows from (2.1) by the chain rule applied to D(exp oL)
We deliberately repeated the procedure to see explicitely that it works also in

the case of evolution flows which we consider in the following generalized sense:
Let X,V € C*°(J,X), for a closed interval J = [—a,a] C R, or J = R, denote

smooth curves (or l-parameter smooth families) in X'. Thus X = (X;)es.

Definition. With L : X — T(TF) as above we define the (evolution) integral of
L(X) to be the unique smooth curve g € C®(F, F), if such exists, satisfying the
ordinary differential equation

d
(3.4) 790 = L(X:) 0 g(2),
for ¢ € J, with initial condition g(0) = idp. If we denote the solution g(¢) by FI*
(or FltL(X) if necessary), we shall call the family FI* the evolution flow generated
by L(X) if
(i) FIX leaves the family L(X) invariant :
3.5) T(FIX).L(X;) = L(Xy) o FIX.

ii) If L(X) has an evolution integral then so does —L(X).

(
(
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Lemma 2. Foreacht € J the map FIX is an diffeomorphism of M and Flt_L(X) =
(Fiy -1,

Proof. We have from (3.4) and (3.5)

d

~(FIE NP M) = LX) pif o i H) (P L) L(Xer ;MY = 0.

Since the initial value at ¢ = 0 is the i¢dp, the result follows.

Observe that in the case of L(X) independent of ¢, the unique solution of the
Cauchy problem (3.1) satisfies Flt)i_s = FIX o FIX, which in turn implies the in-

vertibility of FIX and the invariance condition (3.2), equivalent to (FIX).L(X) =
L(X). This is not the case if L(X) depends on ¢.

As the relations (3.1) and (3.2) were sufficient to derive (3.3), an analogous
formula holds also for evolution flows.

t
(3.6) DFIf .Y = T(Flf‘)/ (FIX)* o DL(X,)Y.ds.
0
(3.3) is a particular case of (3.6) if X; is constant.

Let F' = G be a convenient Lie group with Lie algebra X' = ¢, and let L(X;) =
Rx, be the right invariant vector field generated by X; € ¢g. Then L(X;) o g(t) =
T, (ug(t))Xt where ¢ : GXG — G is the product in G and p® is the right translation.
In this case the solution g(t) is called (see [6]) the right evolution of X and denoted
by Evoll.(X)(t). It follows readily that

PIf™> = PEvoir,(X)(t) - G — G

is the evolution flow generated by Rx with X € C*®(R,g). Recall that G is a
reqular Lie group in the sense of Kriegl-Michor if the right evolution exists for
every smooth curve X; in g. Then the map evol” : C*(R,g) — G defined by
evol” (X) := g(1) generalizes the exponential mapping exp : ¢ — G. In particular,
the formula (3.6) computed at the unity e reads

B DEOO0Y = T ) [ (Buoli(X)(6)Y (5)ds

since FIFX (e) = uEvolg(X)(t)(e) = Evoll,(X)(t) and Ry(e) =Y.

Comment. Let us note that although Ewol(X) € C*®(R,G) and Flfix ¢
C®(G,C*®(R,()), they are in 1-1 correspondence. It seems also that the flow
version formula (3.6) is a bit more general than (3.7) containing de facto FI#x in
the first term on the right.

Remark. Let F' be a linear space and suppose that FI;X is a 1-parameter group
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of linear operators on F. Then T(FIX) = FIX. If, moreover, the map L is linear
then DL(X)Y = L(Y), and in this case (3.6) writes

13
(3.8) DFIX .Y = Flf‘/ FIX, o L(Y)o FIXds.
0

3.2. Flows induced by action of a regular Lie group. Let G be a regular
Lie group (cf. [6]) acting smoothly on a convenient manifold F' with action p :
GxF — F.Fora€Gand f € F let p, be the translation of F' and p/ the orbital
projection G — F.

We let g denote the Lie algebra of G and for X € g we set

L(X)(f) = epf - X FltX(f) = peprX(f)a

so that L(X) is the fundamental vector field on F induced by X and FiX the flow
generated by L(X). As for finite Lie groups the following identity holds

Ty pal(Y () = L(A(@)Y )(pal ).
For a = exptX this translates into
(3.9) T(FEF) - L(Y)(f) = Li(exp £X). Y )Y(FEX ()
which gives
(3.10) (FIX)s o L(Y) = L((exp tX).Y)
and similarly
(3.11) (FIX)* o L(Y) = L((exptX)*Y)
Proposition 4. The “fundamental vector field map” L commules with adjoint

actions (exptX), in g and (FIX). in T(TF), and the differentiation formula (3.8)
reads now

(3.12) Dpespix ()Y = I / (exp ). Y d5) (pesp x (/)

= T(pesp ) ()1 / (exp sX)7Y ds)(/)

where f € F.

The first assertion follows from (3.9). To get (3.12) we commuted the integral
with the linear operator I in (3.8) and used (3.10) and (3.11).
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3.3. The case L(X) = the Lie derivative. Now we consider the case when
the diffeomorphism group of a smooth compact manifold M acts smootly on a
convenient manifold N with action p as above. We let X* denote the fundamental
vector field on N induced by the vector field X on M.

As we know the space F':= C*°(M, N) is a smooth convenient manifold. The
action p induces naturally a smooth action p* of D(M) on F defined by

pH(o, f)=p(d, foo™).

The flow FIX, defined now by Pexpix» 18 generated by the Lie derivative (strictly:
the negative of)
LX) f)=XPof-TfoX

valued in the tangent space at f to F', i.e., in T(f*TN). Obviously L(X) is the
fundamental vector field on C'°°(M, N) induced by X.

All the results of the previous section apply in this particular case.

We may take N = F and F' = T'(E) where F is a natural bundle over M. Then
f is a section of £ and ¢.f = p’;)(f o ¢~1) is the usual action of diffeomorphisms
on sections.

In particular, let £ = TM and f =Y a vector field on M, then

FIX(YV) = (exptX).Y, LX)V =[Y,X].

Substituting it to the differentiation formula (3.12) we obtain

(3.13) D((exptX).Y).Z = [(exptX). 7, /Ot(exp sX).Yds]

= ad(/ot(exp sX).Yds)((exptX).7).

3.4. Groups of bounded operators.

Definition. A one parameter family 73,¢ € R, of bounded linear operators on a
Con-space F'1s a differentiable group of bounded operators, or briefly a (7 group,
if 1t satisfies

(i) To =1
(i) Tiys =TT, for t€R

(iii) Lf :=lim_g T’ft_f exists for every f € F.

The linear operator L : F — F is the infinitesimal generator of the group.
Lemma 3. The mapt — Ty from R into L(F, F') is bounded on compact intervals.

Proof. Suppose that for every interval [0, ¢] its image by 7" is unbounded. Then
there is a sequence t, — 0 whose image {73, } is unbounded. From the uniform
boundedness theorem it follows that for some f € F the set {T;_ f} is unbounded,
contrary to (iii) which implies that T; f is convergenent to f. Thus we proved
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that there is a 6 > 0 such that the subset T}y 5 C L(F, F") is bounded. Now, for
every f € F and a € R the set

71[a,a+6]f = TaﬂO,é]f

is bounded in F since the operator 7T, is bounded. Again using the pointwise
boundedness argument we conclude the proof of the lemma. d

Lemma 4. If T} is a Cy group then for every f € F, t — Ty f 1s a continuous
function from R into F.

Proof. Let ¢, h € R, then
Tipnf =T f =T(Thf - f).

Since Ty : F' — Fis a bounded linear operator, it is also continuous (even smooth),
so the term on the right hand side tends to zero, as T, f — f. a

Lemma 5. Let Ty be a Cy group and let L be its infinitesimal generator, then for
f € F we have:

) 1 t+h
(1) %li%ﬁ/t T, fds = T, .
t
2) L(/ T,fds) = Tof — f.
0
dT =LT,f=1;L
(3) 7 =L f=T,Lf.

Proof.(1) follows directly from the continuity of t — T3 f. For f € Fand h > 0
T, — 1

1 1 1
/0 Tofds = ¢ /0 (Tysnf — T, f)ds

1 t+h 1 1
= — T, fds — — T, fd
h/o fds h/o fds

and the RHS tends to T3 f — f as h — 0, which proves (2).
For (3) we have
T —1 T —1
T =T —T.J

as t — 0. Hence the commutativity and the first equality in (3). |

Theorem 2. If L s the infinitesimal generator of a Cy group Ty in a convenient
(resp. Fréchet) space then

(a) L is a closed (resp. bounded) linear operator.

(b) L determines the group uniquely.

(¢) The mapt — Ty is smooth.
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Proof. L is evidently linear and defined on the whole of F'. Since F' is a complete
linear metric space, to have L bounded it is enough to show that L is a closed
operator, by the closed graph theorem. To show that L is closed, let f, — f and
Lf, — ¢ as n — co. By integration of (3) we have

t
Tifo = fo :/ T,Lfds.
0

The integrand on the right converges to T,;g uniformly on bounded intervals.
Therefore letting n — oo gives

t
TJ—fz/ Tygds.
0

Dividing it by ¢ # 0 and letting ¢ — 0 we see by using (1) that Lf = g, which was
to be proved.

In order to prove (b) let Sy be also a Cy group of bounded linear operators
with infinitesimal generator L. From (3) it follows readily that the function s —
Ti_sSs f 1s differentiable and that

d

d_ﬂ—sssf = _LE—ssz+ E—sLSs = 0.
S

Therefore s — Ti_Ss f 1s constant and so its values at s = 0 and s = t are the
same, which means T} f = Sy f for every f € F.
Now, (c¢) follows from (3) of Lemma 5, from which we derive successively

(TLHW =I*Tf =T, L 1

Since by lemma 4 the map ¢t — T} f 1s continuous, it follows that all the derivatives
(th)(k) exist and are continuous, so t — T f i1s smooth for every f € F'. To get
(¢c) we apply the smooth uniform boundedness theorem. This completes the proof
of the theorem. d

Comment. It i1s not only for the sake of simplicity that we consider € groups
instead of Cy groups of linear bounded operators. For Cy groups the regularity
condition (iii) of the definition is replaced by : limy_o Ty f = f for every f €
F. Consequently, the infinitesimal generator L is densely defined in F' and in
general L is unbounded if F' is a Banach space (cf. Pazy [9], from where we
adapted some simple relations). In practice, in spaces of smooth functions, the
infinitesimal generators are linear differential operators, which are bounded in
appropriate Fréchet spaces (contrary to as it is in Banach spaces). So we may start
from the C level. Anyway the Montgomery-Zippin theorem on the smoothness of
a continuous action of the reals on a smooth manifold does not work here.

Suppose that F' is a convenient vector space and L a linear map from A" into
End(E) such that every operator L(X) is the infinitesimal generator of a Cy group
of bounded linear operators 7/X ;¢ € R, on F.

As a direct consequence of the results above the following theorem can be stated.
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Theorem 3. Let TX | X € X, be a family of C1 groups of bounded linear operators
in a Con-space F', with infinitesimal generators L(X), then

1o | “TX fds = (17~ D,

0
LOOTE f = TR LX) = S5,
dn

dt_nTtX = L(X)"TY,

1 1
Iy =1 [y uias = [ 1 LT,
0] 0]

(Taylor expansion)
X v 2 ¢ k
TX T = fHDO0f + L 4 L0

e Nk
+/ %L(X)k“Tstds.
0 .

The map t — 77X f is smooth for every X and f. Thus the composite T o L is
an element of the function space C®(X,C®(F x R, F')), which by the property
of cartesian closedness can be canonically identified with C®°(X x F' x R, F'), so
T o L is smooth with respect to the triple of variables (X, f,1).
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