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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 355 { 372CALCULUS OF FLOWS ON CONVENIENT MANIFOLDSAndrzej ZajtzTo Ivan Kol�a�r, on the occasion of his 60th birthdayAbstract. The study of di�eomorphism group actions requires methods ofin�nite dimensional analysis. Really convenient tools can be found in theFr�olicher - Kriegl - Michor di�erentiation theory and its geometrical aspects.In terms of it we develop the calculus of various types of one parameter di�eo-morphism groups in in�nite dimensional spaces with smooth structure. Somespectral properties of the derivative of exponential mapping for manifolds aregiven. 1. IntroductionThe foundations of di�erential geometry stream visibly towards the geometryin in�nite dimensional spaces and to methods of in�nite analysis. Adaptations toHilbert and Banach manifoldswere done by P.Libermann and P. de la Harpe in theseventies. Then R.S.Hamilton gave beautiful examples of making geometrical usefrom the inverse function theorem of Nash and Moser in tame Fr�echet spaces. Thetheory of in�nite Lie groups and Lie algebras was intensively developed, to mentionH. Omori, J. Milnor, J. Grabowski and others. Recently A. Kriegl and P. Michorintroduced, studied and e�ectively applied the concept of regular Lie groups, whichis more general and simpler than the one originating from Omori. They start fromthe Milnor's idea that smooth curves in the Lie algebra should integrate to smoothcurves in the group (an evolution operator exists). This allowed them to advanceimmensely the foundations of geometry of principal bundles of in�nite dimension,e.g.: the theory of connections, invariant calculus and Lie theory of regular Liegroups. It is worth to underline their result that Lie algebra homomorphismsintegrate to Lie group homomorphisms, if the source group is simply connectedand the image group is regular.Classical di�erentiation in linear spaces of arbitrary dimension uses Banachspaces; but most function spaces are not Banach spaces, in particular those oc-curring on smooth manifolds. Another de�ciency is that the space C1(E;F ) of1991 Mathematics Subject Classi�cation: 58B25, 22E65.Key words and phrases: 
ow, di�eomorphism group, regular Lie group action, Fr�olicher-Kriegl di�erential calculus, 1-parameter group of bounded operators.



356 ANDRZEJ ZAJTZsmooth maps is no longer a Banach space. The space of vector �elds on a smoothmanifold M is naturally a modelling vector space for the di�eomorphism groupDiff(M ), but it is in a canonical way a non-normable (nuclear) Fr�echet space.Other di�culties in applying the Banach space theory to di�eomorphism groupsare indicated by Hamilton in [4].Among many theories of di�erentiation in non-normable spaces, seemingly themost appropriate and conceptually simpliest is that created by Fr�olicher and Kriegl[1]. It is based on the Boman's idea of testing smoothness along smooth curves.A mapping f : E ! F between locally convex vector spaces is called smooth orC1, if it maps smooth curves into smooth curves, i.e., iff � c 2 C1(R;F ) for all c 2 C1(R;E):De�nition. A locally convex vector space E is called convenient ( we shall callit brie
y a Con-space) if for a curve c : R ! E, f � c smooth for all continuousfunctionals f on E implies c is smooth.An equivalent de�ning property is that for every smooth curve in E Riemannintegrals exist over compact intervals.Remark. For �nite dimensional smooth manifolds the locally convex topology ofC1(M;N ) is the classical C1 compact-open topology of uniform convergence oncompact sets of all derivatives (cf. M.Hirsch, Di�erential Topology, 1976).We shall be in need to apply some fundamental properties of the category ofconvenient spaces which we quote below after [1] and [6].1. The space C1(E;F ) of smooth maps is canonically a Con-space. Thesubspace L(E;F ) of all bounded linear maps is closed in C1(E;F ). A linear (ormultilinear) map is smooth if and only if it is bounded.2. The category Con is cartesian closed, i.e.,C1(E � F;G) �= C1(E;C1(F;G))is a linear di�eomorphism of Con-spaces.3. If f : U � E ! F is smooth then the derivativeDf(x)v := limt!0 f(x + tv) � f(x)texists and is linear, and smooth as a map Df : U � E ! F as well as a mapDf : U ! L(E;F ) where L(E;F ) has the topology of uniform convergence onbounded subsets. The chain rule holds.4. (Taylor expansion) Let U � E be an open subset in the �nal topologywith respect to all smooth curves on E (i.e., the "c1� topology)". Let f : U ! Fbe a smooth map, x 2 U and x+ [0; 1]v 2 U . Then the mean value theoremf(x + v) = f(x) + Z 10 (Df)(x + tv):vdt



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 357and the usual Taylor's formula hold.5. (The smooth uniformboundedness theorem) A linear map f : E ! C1(F;G)is smooth if and only if the evaluation map evyf : E ! G is smooth for each y 2 F .6. All Fr�echet spaces are convenient; also the Schwartz space of test functionswith compact support in Rn is convenient.7. The notions of a smooth manifold, tangent bundle, Lie group, smooth Liegroup action, etc., are de�ned in a classical way. In particular, for �nite dimen-sional smooth manifolds M;N , where M is supposed to be compact, the spaceC1(M;N ) has a natural structure of a smooth manifold in the Con category (defacto it is a Fr�echet manifold, with the collection of all Cr norms)The groupDiff(M ) of smooth di�eomorphisms of M is open in C1(M;M ) andis a smooth convenient Lie group. The tangent space at the identity is naturallyidenti�ed with its model space, and equally with the linear space �(TM ) of smoothvector �elds on M .It should be noted that in the noncompact case, there have to be assumedcertain behaviors at in�nity; for instance, some or all Cr-norms bounded, compactsupports, etc. Accordingly, we get a Banach, Fr�echet or convenient vector spacestructure.For any vector bundle E over M , we let �(E) denote the real vector space ofcontinuous sections of E. In turn, for f : N !M , �(f�TM ) is the space of vector�elds along f ( = maps N ! TM covering f).We shall make the identi�cations for the tangent spaces to the di�eomorphismgroup at the identity and at an arbitrary di�eomorphism f :TidDiff(M ) = �(TM ) and TfDiff(M ) = �(f�TM ):We let f� and f� be the smooth linear maps in �(TM ) given byf�X = (Tf:X) � f�1; f�X = (Tf)�1:(X � f);which represent the adjoint actions of f on �(TM ): In the next section we giveparticulars concerning the X-derivative of the exponential map and its Taylorexpansions. The formula for the derivative was computed �rst in another wayby J. Grabowski [3]. For basic concepts in modern foundations of di�erentialgeometry the reader can refer to Kol�a�r-Michor-Slovak in [5].2. The map X ! expX2.1. Higher order derivatives. Let M be a �nite dimensional smooth andcompact manifold. Then D(M ) = Diff(M ) has the structure of a Fr�echet Liegroup with the strong C1 topology; it is also a convenient regular Lie group (in thesense of Kriegl-Michor) and its c1- topology coincides with the above mentionedWhitney topology. The Lie algebra of D(M ) is �(TM ), the space of vector �eldson M with the negative of the usual Lie bracket.Each vector �eld X generates a global one-parameter group t ! exp tX fort 2 R. Thus we have a map� : �(TM )�M � R!M



358 ANDRZEJ ZAJTZ(X;x; t)! (exp tX)(x):X being smooth, the map � is also smooth in x; t. We want to look closer at thesmoothness in X. We denote by D and T denote the derivative in X and theusual tangent map operator, respectively. The X-derivative at tX in direction Yis then D exp(tX)Y = dds ����s=0 exp t(X + sY ):To compute the derivative we start with computing the (left) logarithmic derivativeof exp. T (exp(�X)) �D exp(X)Y = T (exp(�X)) dds ����s=0 exp(X + sY )= dds ����s=0 Z 10 ddt exp(�tX) � exp t(X + sY )dt= Z 10 dds ����s=0 f�T (exp(�tX)) �X � exp t(X + sY )+T (exp(�tX)) � (X + sY ) � exp t(X + sY )gdt= Z 10 dds ����s=0 sT (exp(�tX)) � Y � exp t(X + sY )dt= Z 10 T (exp(�tX)) � Y � exp tXdt = Z 10 (expX)�Y dt:Hence we obtain(2:1) D exp(X)Y = T (expX) � Z 10 (exp tX)�Y dt = Z 10 (exp tX)�Y dt � expX:From this we get for �t = exp tX the formula(2:2) D�tY = T�t � Z t0 ��sY ds = Z t0 (�s)�Y ds � �t:Clearly D exp(X)Y is a smooth vector �eld on M and the map (X;Y ) !D exp tX � Y is continuous in the C1-topology.Remark. In the noncompact case we may also consider the derivative D exp(tX)de�ned by formulae (2.1). If necessary one may change the vector �eld by a scalarfactor to obtain one which de�nes a global 
ow. If we deal with local problems inwhich the exponential mapping is involved, we can take the derivative at tX for tsmall enough so that the formulaD exp(tX)Y = T (exp tX) � Z t0 (exp sX)�Y dsis well de�ned in an open subset of M �R.



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 359In this way one can apply the calculus developed on compact manifolds to studygroups of compactly supported di�eomorphisms, or groups of germs of di�eomor-phisms at a �xed point and their smooth actions, also in the noncompact case(one of typical subjects in the theory of natural bundles). Contrary to the globalcompact approach, there seems to be no literature on whether the behavior of theexponential map is also so bad in the local version, at least that I know of.For a �xed X we introduce the mean adjoint operators A and B on �(TM )de�ned by(2:3) AY = Z 10 (�s)�Y ds BY = Z 10 ��sY ds:Now, (2.1) can be written D�Y = AY � � = T� �BY;or brie
y(2:4) D� = A � � = T� �Bwhere we set � = expX:In order to compute higher order X-derivatives Dk�, it is enough to use re-peatedly (2.2) and the following formula for the derivative of the adjoint mapX ! (exp tX)�Y = (�t)�YD((exp tX)�Y ) � Z = �(exp tX)�Z; Z t0 (exp sX)�Y ds�where [ , ] denotes the Lie bracket of vector �elds. This formula will be derivedin Section 2. Clearly all the higher order derivatives are smooth families (with Xas parameter) of multilinear di�erential operators in �(TM ). Therefore the mapX ! expX is smooth.As example we give a formula for the second order derivative, for brevity weuse the operator At = R t0 (exp sX)�Y ds,D2(exp tX)�(Y; Z) = fAt[Y;AtZ] + T (AtY ) �AtZg � expX:The map X ! A(X) is exactly the (right) logarithmic derivative � exp of theexponential map. (For the details on logarithmic derivatives of smooth maps frommanifolds into convenient Lie groups cf. [6])2.2. Taylor expansion of expX. Let M = E be a Con-space. We can identifyTM = E � E and �(TM ) = C1(E;E). Let X 2 C1(E;E) be a vector �eld onE which admits a global 
ow exp tX. Then(2:5) Dt exp tX = X � exp tX; exp 0 = idE :X can also be considered as a di�erential operator on C1(E;E) by Y ! XY =Dt(Y � exp tX)(t = 0):



360 ANDRZEJ ZAJTZSince Dk(expX)(X = 0) = Dkt (exp tX)(t = 0); the Taylor expansion of expXat X = 0 coincides with the one for t! exp tX at t = 0.From (2.5) we obtain easily(2:6) Dkt (Y � exp tX) = (X(k)Y ) � exp tXThus(2:7) Y � exp tX = Y + tXY + � � �+ tkk!X(k)Y +RkRk = Z t0 (t� s)kk! X(k+1)Y � exp sXdsThe formal Taylor series will be then Y � exp tX ' etXY .In view of (2.5) by integration we getexp tX ' id+ tX + t22!XX + � � �+ tkk!X(k�1)X + � � �or �nite expansion at X = 0(2:8) exp tX = id+ tX + � � �+ tkk!X(k�1)X + Z t0 (t� s)kk! X(k)X � exp sXdsWe can show that if E = Rn and X is real analytic then the Taylor seriesconverges uniformly for small t to yieldexp tX = id+ 1Xk=1 tkk!X(k�1)X:2.3. Invertibility of the X-derivative. There has been written a lot on thebad behavior of the exponential map and its derivative D exp(X) in respect oftheir invertibility on compact manifolds (N. Kopell, J. Palis, R. S. Hamilton, J.Grabowski). We would like to say something positive. To gain this we ask �rst forthe invertibility of the derivative at a point. More on spectral properties of mapsconnected with the exponential will appear in a separate paper.We start with the modi�ed formula (2.4)(2:9) D� � ��1 = A:We observe that the injectivity or surjectivity of the derivative D�, where � =expX; coincides with that for the mean adjoint operator A. Therefore we studyour problem via A.It should be noted that the di�erential operator ad(X) : Y ! [X;Y ] is thein�nitesimal generator of the group f��tg; t 2 R; of continuous linear operators in�(TM ). In turn, ad(�X) is the in�nitesimal generator of the group f(�t)�g:



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 361These one-parameter groups are strongly continuous in the sense that for allY; limt!0 ��tY = Y: Consequently, we havead(X) Z t0 (�s)�Y ds = Z t0 (�s)�ad(X)Y ds = Y � (�t)�Y:For t = 1 it can be written(2:10) ad(X) �A = A � ad(X) = I � ��:Lemma 1. The following facts are true.(1) If a closed subspace of �(TM ) is invariant under the group (�t)�, then itis also invariant under ad(X) and A:(2) If I � �� is injective, surjective or invertible on a closed (�t)�-invariantsubspace of �(TM ), then so are respectively both ad(X) and A.(3) ker(I � ��) = fY ; such that Yk = R 10 e�2�iks(�s)�Y ds satis�es [Yk; X] =2�ikYk for some k 2 Z g = fY; such that (�t)�Y is periodic with period 1 g(4) A is the identity on ker ad(X) and(2:11) ker(I � ��) = ker ad(X) � kerA(topological direct sum).Proof. (1) ad(X)- invariance follows by di�erentiation of (�t)�Y at t = 0 for Yin the subspace. Then the invariance under A follows from (2.10).The assertion (2) is a direct consequence of (2.10).The �rst equality in (3) can be veri�ed as follows[Yk; X] = Z 10 e�2�iks((�s)�Y )0ds = (�� � I)Y + 2�ikYk;where we integrated by parts. So Y is in ker(�� � I) if and only if Yk is aneigenvector of ad(X) with eigenvalue �2�ik. Now, the second set in (3) comesfrom the implication ��Y = Y ) (�t+1)�Y = (�t)�Yfor all t.To prove (4), let Y be in ker ad(X), so [X;Y ] = 0. It follows that Y is a �xedpoint of all isomorphisms (�t)�. Therefore AY = Y . As to the remaining part of(4), let Y be in ker(I � ��), so the map t! (�t)�Y is periodic with period 1, andlet(2:12) (�t)�Y = Y0 + 1Xk=1Yke2�ikt;(2:13) Y0 = Z 10 (�s)�Y ds; Yk = Z 10 e�2�isk(�s)�Y dsbe its Fourier series. We see that Y0 = AY , hence Y 2 kerA if and only if the �rstFourier coe�cient is zero. On the other hand we easily get ad(X)Y0 = Y���Y = 0,



362 ANDRZEJ ZAJTZso Y0 is in ker ad(X). This proves the decomposition (2.11). Since ad(X) and Aare closed linear operators on �(TM ) it follows that ker ad(X) and kerA are closed(disjoint) subspaces; hence the sum (2.11) is topological. �Additionally we indicate the following property of Fourier coe�cients Yk; k 2 Z,from (2.13).(2:14) (�t)�Yk = e2�ikYk;which is equivalent to(2:15) [Yk; X] = 2�ikYk:The equivalence veri�es as follows: (2.14) implies (2.15) by di�erentiation at t = 0.For the inverse, we pass from (2.15) to[(�t)�Yk; X] = ddt(�t)�Yk = 2�ik(�t)�Yk:Thus (�t)�Yk satis�es di�erential equation Y 0 = 2�ikY with initial conditionY (0) = Yk, whose solution is Y (t) = Yke2�ikt. Hence (2.14).Theorem 1. The derivative D expX is injective if and only if equations (2.14)or (2.15) have only trivial solutions for k 6= 0. The non-trivial solutions Yk spanover R the kernel of D expX:Proof. Imposing (��t)� on (2.12) and using (2.14) we get easilyY = (��t)�Y0 +Xk�1Yk = Y0 +Xk�1Yk;since Y0 is a �xed point of the adjoint operator. Moreover, again using (2.14) wecompute AYk = R 10 (�t)�Ykdt = R 10 e2�iktYkdt = 0. This completes the proof. �Remark. Since (expX)�X = X for every X, the operator I��� is never injectivein the entire space �(TM ). Therefore it is reasonable to consider the above spectralproperties on closed invariant subspaces, which we mentioned in Lemma 1.Recall by the way that f 2 D(M ) is an Anosov di�eomorphism if and only iff� � I is an automorphism on �(TM ) (cf. Mather [7]); hence theCorollary. An Anosov di�eomorphism never imbeds into a 
ow.It is worth to remark that the set of all Anosov di�eomorphisms on Riemanniancompact manifold is open in Diff1(M ), so they are not so few.Proposition 1. Let E = �c(TM ) be the space of all compactly supported vector�elds on a smooth, connected and noncompact manifold M . Suppose that a vector�eld X on M is complete and de�nes a 
ow �t which has no relatively compacttrajectories except �xed points, which are hyperbolic. Then D exp(X), as well asad(X), are injective on E.



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 363Proof. It is enough to show that equations (2.14) have only trivial solutions. Itis easy to see that the subspace E of �(TM ) is invariant under the adjoint actionof any 
ow. We write (2.14) in the form(2:16) (T�t:Y )(��1t (x)) = e2�iktY (x)for some integer k. If the trajectory �t(x) is not compact, then there is a T = T (x)such that the point ��1T (x) is outside the support of Y . Then the LHS is zero, sois also the RHS; hence Y (x) = 0.Suppose now that x = a is a critical hyperbolic point of X. Then for all t 2 R,�t(a) = a, T�t(a) = etDaX and this linear operator in the tangent space TaM hasno eigenvalue with modulus equal to 1. In this case (2.16) writes(2:17) etDaXY (a) = e2�iktY (a)which implies immediately Y (a) = 0: �Recall that an Anosov 
ow on a complete Riemannian manifold M is a 
ow�t whose induced 
ow T�t on TM is hyperbolic in the following sense: Thetangent bundle TM can be written as the Whitney sum of 3 invariant subbundles,TM = E+ �E� �Eo where on E+, T�t is contracting, on E�, T�t is expandingand E0 is the one-dimensional bundle de�ned by the in�nitesimal generator of�t. An important class of examples of Anosov 
ows are the geodesic 
ows on thetangent bundles of Riemannian manifolds of negative curvature.Proposition 2. If a vector �eld X on a complete Riemannian manifold M gen-erates an Anosov 
ow �t, then the derivative of the exponential map at X is anisomorphism of �(TM ).Proof. By standard arguments (cf. Mather [7]) it follows that for the restrictionof the adjoint operator �� to �(E+ + E�) there exists a continuous inverse (I ���)�1. We let po; p1 denote respectively the projections of �(TM ) onto �(E0) and�(E+ + E�). Then using (2.9) and (2.10) we verify directly that, given a vector�eld Z on M , the equation D exp(X)Y = Zhas a unique solution(2:18) Y = (ad(X) � (I � ��)�1 � p1 + po)Z � �;where � = expX and Y depends continuously on Z. �Proposition 3. For a 2 M and �t = exp tX, the linear map Y ! D(�t)�Y (a)from �(TM ) into the tangent space T�t(a)M is surjective except uniquely whenX(a) = 0 and the operator DaX in TaM has an eigenvalue � = 2�ikt for somek 2 Z n f0g:



364 ANDRZEJ ZAJTZProof. In view of (2.6) it su�ces to consider the surjectivity of the map Y !R t0 (�s)�Y (a)ds valued in TaM . Using the Taylor expansion of second order in t,with ddt(�t)�Y = (�t)�[Y;X], we obtain(2:19) Z t0 (�s)�Y ds = tY + Z t0 (t� s)(�s)�[Y;X]ds:Since for small t the problem can be considered in a local chart on M around a,we can choose Y to be locally constant = Yo. Then [Yo; X] = DxX:Yo and settingPs = T�s �DxX � ��1s it follows from (2.19)(2:20) Z t0 (�s)�Yods = (tI + Z t0 (t � s)Ps(a)ds)YoFor su�ciently small t the operator at Yo on the RHS is invertible. Thus there isa to > 0 such that Y ! R t0 (�s)�Y (a)ds is surjective onto TaM for all 0 < t � to.Suppose now that X(a) 6= 0, so �s(a) 6= a for small s. We take t1 > to suchthat the trajectory �t1(a) is not periodic or that t1 is not greater than the minimalperiod in the opposite case. We choose an open subset U such that ��1s (x) 2 Ufor 0 < s < to and ��1s (x) is not in U for to � s < t1. Then for any vector �eld Ywith support in U Z t0 (�s)�Y ds = Z to0 (�s)�Y dsfor to < t � t1. For suitable to this means that the surjectivity in question prolongsto all t from the interval [0; t1]. If the trajectory is periodic it follows from abovethat Y ! R t0 (�s)�Y ds is surjective for the minimal period and consequently forarbitrary t.Let in turn X(a) = 0. Then �s(a) = a for all s, T�s(a) = esDaX andZ t0 (�s)�Y (a)ds = Z t0 esDaXY (a)dsThe eigenvalues of the operator R t0 esDaXds are of the form R t0 es�ds = et��1� where� is an eigenvalue of DaX. Therefore the operator above is invertible if and onlyif � 6= 2�ikt for k being non-zero integers. �3. Differentiation of some types of flows3.1. General case and evolution 
ows. Let X be a vector Con-space, F asmooth convenient manifold, and L : X ! �(TF ) a C1 map such that each vector�eld L(X) integrates uniquely to a smooth 
ow F lX : F �R! F: Then F lXt is a1-parameter group of di�eomorphisms of F and we have(3:1) ddtF lXt = L(X) � F lXt ; FLX0 = idF ;(3:2) T (F lXt ) � L(X) = L(X) � F lXt ;



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 365where T (F lXt ) : TF ! TF is the tangent map. Applying a similar procedure asin the case of the 
ow exp tX, which corresponds to L(X) = X, we can derive theformula for the X-derivative of F lX . We start withT (F lX�t) �DFlXt � Y = T (F lX�t) dds ����s=0 F lX+sYt= dds ����s=0 Z t0 dduF lX�uF lX+sYu duand similarly transform it using both formulae (3.1) and (3.2):= Z t0 T (F lX�u) dds ����s=0 fL(X + sY ) � L(X)g � F lX+sYu du= Z t0 T (F lX�u) dds ����s=0 Z s0 DL(X + vY )Y dv � F lX+sYu du= Z t0 T (F l�u)DL(X)Y � F lXu du = Z t0 (F lXs )�DL(X)Y dsHence it follows �nallyD(F lXt ):Y = T (F lXt ) Z t0 (F lXs )� �DL(X)Y ds(3:3) = Z t0 (F lXs )� �DL(X)Y ds � F lXtFormally, for t = 1, (3.3) follows from (2.1) by the chain rule applied to D(exp �L)We deliberately repeated the procedure to see explicitely that it works also inthe case of evolution 
ows which we consider in the following generalized sense:Let X;Y 2 C1(J;X ), for a closed interval J = [�a; a] � R, or J = R, denotesmooth curves (or 1-parameter smooth families) in X . Thus X = (Xt)t2J .De�nition. With L : X ! �(TF ) as above we de�ne the (evolution) integral ofL(X) to be the unique smooth curve g 2 C1(F; F ), if such exists, satisfying theordinary di�erential equation(3:4) ddtg(t) = L(Xt) � g(t);for t 2 J , with initial condition g(0) = idF . If we denote the solution g(t) by F lXt(or F lL(X)t if necessary), we shall call the family F lX the evolution 
ow generatedby L(X) if(i) F lXt leaves the family L(X) invariant :(3:5) T (F lXt ):L(Xt) = L(Xt) � F lXt :(ii) If L(X) has an evolution integral then so does �L(X).



366 ANDRZEJ ZAJTZLemma 2. For each t 2 J the map F lXt is an di�eomorphism ofM and F l�L(X)t =(F lL(X)t )�1.Proof. We have from (3.4) and (3.5)ddt (F lL(X)t �F l�L(X)t ) = L(Xt)�F lL(X)t �F l�L(X)t �T (FLL(X)t ):L(Xt)�F l�L(X)t = 0:Since the initial value at t = 0 is the idF , the result follows.Observe that in the case of L(X) independent of t, the unique solution of theCauchy problem (3.1) satis�es F lXt+s = F lXt � F lXs , which in turn implies the in-vertibility of F lXt and the invariance condition (3.2), equivalent to (F lXt )�L(X) =L(X). This is not the case if L(X) depends on t.As the relations (3.1) and (3.2) were su�cient to derive (3.3), an analogousformula holds also for evolution 
ows.(3:6) DFlXt � Y = T (F lXt ) Z t0 (F lXs )� �DL(Xs)Ysds:(3.3) is a particular case of (3.6) if Xt is constant.Let F = G be a convenient Lie group with Lie algebra X = g, and let L(Xt) =RXt be the right invariant vector �eld generated by Xt 2 g. Then L(Xt) � g(t) =Te(�g(t))Xt where � : G�G! G is the product inG and �a is the right translation.In this case the solution g(t) is called (see [6]) the right evolution ofX and denotedby EvolrG(X)(t). It follows readily thatF lRXt = �EvolrG(X)(t) : G! Gis the evolution 
ow generated by RX with X 2 C1(R; g). Recall that G is aregular Lie group in the sense of Kriegl-Michor if the right evolution exists forevery smooth curve Xt in g. Then the map evolr : C1(R; g) ! G de�ned byevolr (X) := g(1) generalizes the exponential mapping exp : g ! G. In particular,the formula (3.6) computed at the unity e reads(3:7) DEvolrG(X)(t):Y = Te(�EvolrG(X)(t)) Z t0 (EvolrG(X)(s))�Y (s)dssince F lRXt (e) = �EvolrG(X)(t)(e) = EvolrG(X)(t) and RY (e) = Y .Comment. Let us note that although EvolrG(X) 2 C1(R;G) and F lRX 2C1(G;C1(R;G)), they are in 1-1 correspondence. It seems also that the 
owversion formula (3.6) is a bit more general than (3.7) containing de facto F lRX inthe �rst term on the right.Remark. Let F be a linear space and suppose that F lXt is a 1-parameter group



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 367of linear operators on F . Then T (F lXt ) = F lXt . If, moreover, the map L is linearthen DL(X)Y = L(Y ), and in this case (3.6) writes(3:8) DFlXt � Y = F lXt Z t0 F lX�s � L(Y ) � F lXs ds:3.2. Flows induced by action of a regular Lie group. Let G be a regularLie group (cf. [6]) acting smoothly on a convenient manifold F with action � :G�F ! F . For a 2 G and f 2 F let �a be the translation of F and �f the orbitalprojection G! F:We let g denote the Lie algebra of G and for X 2 g we setL(X)(f) := Te�f �X FlXt (f) := �exp tX (f);so that L(X) is the fundamental vector �eld on F induced by X and F lXt the 
owgenerated by L(X). As for �nite Lie groups the following identity holdsTf�aL(Y )(f) = L(Ad(a)Y )(�a(f)):For a = exp tX this translates into(3:9) T (F lXt ) �L(Y )(f) = L((exp tX)�Y )(F lXt (f))which gives(3:10) (F lXt )� � L(Y ) = L((exp tX)�Y )and similarly(3:11) (F lXt )� � L(Y ) = L((exp tX)�Y )Proposition 4. The "fundamental vector �eld map" L commutes with adjointactions (exp tX)� in g and (F lXt )� in �(TF ), and the di�erentiation formula (3.8)reads now(3:12) D�exp tX(f):Y = L(Z t0 (exp sX)�Y ds)(�exp tX(f))= T (�exp tX)(f):L(Z t0 (exp sX)�Y ds)(f)where f 2 F .The �rst assertion follows from (3.9). To get (3.12) we commuted the integralwith the linear operator L in (3.8) and used (3.10) and (3.11).



368 ANDRZEJ ZAJTZ3.3. The case L(X) = the Lie derivative. Now we consider the case whenthe di�eomorphism group of a smooth compact manifold M acts smootly on aconvenient manifoldN with action � as above. We let X� denote the fundamentalvector �eld on N induced by the vector �eld X on M .As we know the space F := C1(M;N ) is a smooth convenient manifold. Theaction � induces naturally a smooth action �� of D(M ) on F de�ned by��(�; f) = �(�; f � ��1):The 
ow F lXt , de�ned now by ��exp tX , is generated by the Lie derivative (strictly:the negative of) L(X)(f) = X� � f � Tf �Xvalued in the tangent space at f to F , i.e., in �(f�TN ). Obviously L(X) is thefundamental vector �eld on C1(M;N ) induced by X.All the results of the previous section apply in this particular case.We may take N = E and F = �(E) where E is a natural bundle over M . Thenf is a section of E and ��f = ���(f � ��1) is the usual action of di�eomorphismson sections.In particular, let E = TM and f = Y a vector �eld on M , thenF lXt (Y ) = (exp tX)�Y; L(X)Y = [Y;X]:Substituting it to the di�erentiation formula (3.12) we obtain(3:13) D((exp tX)�Y ):Z = [(exp tX)�Z; Z t0 (exp sX)�Y ds]= ad(Z t0 (exp sX)�Y ds)((exp tX)�Z):3.4. Groups of bounded operators.De�nition. A one parameter family Tt; t 2 R, of bounded linear operators on aCon-space F is a di�erentiable group of bounded operators, or brie
y a C1 group,if it satis�es(i) T0 = I(ii) Tt+s = TtTs for t 2 R(iii) Lf := limt!0 Ttf�ft exists for every f 2 F:The linear operator L : F ! F is the in�nitesimal generator of the group.Lemma 3. The map t! Tt from R into L(F; F ) is bounded on compact intervals.Proof. Suppose that for every interval [0; �] its image by T is unbounded. Thenthere is a sequence tn ! 0 whose image fTtng is unbounded. From the uniformboundedness theorem it follows that for some f 2 F the set fTtnfg is unbounded,contrary to (iii) which implies that Ttnf is convergenent to f . Thus we proved



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 369that there is a � > 0 such that the subset T[0;�] � L(F; F ) is bounded. Now, forevery f 2 F and a 2 R the setT[a;a+�]f = TaT[0;�]fis bounded in F since the operator Ta is bounded. Again using the pointwiseboundedness argument we conclude the proof of the lemma. �Lemma 4. If Tt is a C1 group then for every f 2 F , t ! Ttf is a continuousfunction from R into F .Proof. Let t; h 2 R, thenTt+hf � Ttf = Tt(Thf � f):Since Tt : F ! F is a bounded linear operator, it is also continuous (even smooth),so the term on the right hand side tends to zero, as Thf ! f . �Lemma 5. Let Tt be a C1 group and let L be its in�nitesimal generator, then forf 2 F we have:(1) limh!0 1h Z t+ht Tsfds = Ttf:(2) L(Z t0 Tsfds) = Ttf � f:(3) ddtTtf = LTtf = TtLf:Proof.(1) follows directly from the continuity of t! Ttf: For f 2 F and h > 0Th � Ih Z t0 Tsfds = 1h Z t0 (Ts+hf � Tsf)ds= 1h Z t+h0 Tsfds � 1h Z t0 Tsfdsand the RHS tends to Ttf � f as h! 0, which proves (2).For (3) we have Th � Ih Ttf = TtTh � Ih f ! Ttfas t! 0. Hence the commutativity and the �rst equality in (3). �Theorem 2. If L is the in�nitesimal generator of a C1 group Tt in a convenient(resp. Fr�echet) space then(a) L is a closed (resp. bounded) linear operator.(b) L determines the group uniquely.(c) The map t! Tt is smooth.



370 ANDRZEJ ZAJTZProof. L is evidently linear and de�ned on the whole of F . Since F is a completelinear metric space, to have L bounded it is enough to show that L is a closedoperator, by the closed graph theorem. To show that L is closed, let fn ! f andLfn ! g as n!1. By integration of (3) we haveTtfn � fn = Z t0 TtLfnds:The integrand on the right converges to Tsg uniformly on bounded intervals.Therefore letting n!1 givesTtf � f = Z t0 Tsgds:Dividing it by t 6= 0 and letting t! 0 we see by using (1) that Lf = g, which wasto be proved.In order to prove (b) let St be also a C1 group of bounded linear operatorswith in�nitesimal generator L. From (3) it follows readily that the function s !Tt�sSsf is di�erentiable and thatddsTt�sSsf = �LTt�sSsf + Tt�sLSs = 0:Therefore s ! Tt�sSsf is constant and so its values at s = 0 and s = t are thesame, which means Ttf = Stf for every f 2 F .Now, (c) follows from (3) of Lemma 5, from which we derive successively(Ttf)(k) = LkTtf = TtLkf:Since by lemma 4 the map t! Ttf is continuous, it follows that all the derivatives(Ttf)(k) exist and are continuous, so t ! Ttf is smooth for every f 2 F . To get(c) we apply the smooth uniform boundedness theorem. This completes the proofof the theorem. �Comment. It is not only for the sake of simplicity that we consider C1 groupsinstead of C0 groups of linear bounded operators. For C0 groups the regularitycondition (iii) of the de�nition is replaced by : limt!0 Ttf = f for every f 2F . Consequently, the in�nitesimal generator L is densely de�ned in F and ingeneral L is unbounded if F is a Banach space (cf. Pazy [9], from where weadapted some simple relations). In practice, in spaces of smooth functions, thein�nitesimal generators are linear di�erential operators, which are bounded inappropriate Fr�echet spaces (contrary to as it is in Banach spaces). So we may startfrom the C1 level. Anyway the Montgomery-Zippin theorem on the smoothness ofa continuous action of the reals on a smooth manifold does not work here.Suppose that F is a convenient vector space and L a linear map from X intoEnd(E) such that every operator L(X) is the in�nitesimal generator of a C1 groupof bounded linear operators TXt ; t 2 R; on F .As a direct consequence of the results above the following theorem can be stated.



CALCULUS OF FLOWS ON CONVENIENT MANIFOLDS 371Theorem 3. Let TXt ; X 2 X ; be a family of C1 groups of bounded linear operatorsin a Con-space F , with in�nitesimal generators L(X), thenL(X) Z t0 TXs fds = (TXt � I)f;L(X)TXt f = TXt L(X)f = ddtTXt f;dndtnTXt = L(X)nTXt ;DTXt Y = TXt Z t0 (TXs )�L(Y )ds = Z t0 TXt�sL(Y )TXs ds;(Taylor expansion)TXt f = f + tL(X)f + t22!L(X)2f + � � �+ tkk!L(X)kf+ Z t0 (t� s)kk! L(X)k+1TXs fds:The map t ! TXt f is smooth for every X and f . Thus the composite T � L isan element of the function space C1(X ; C1(F � R;F )), which by the propertyof cartesian closedness can be canonically identi�ed with C1(X � F � R;F ), soT � L is smooth with respect to the triple of variables (X; f; t).References[1] Fr�olicher, A., Kriegl, A., Linear spaces and di�erentiation theory, Pure and Applied Math-ematics, J. Wiley, Chichester, 1988.[2] Grabowski, J., Free subgroups of di�eomorphism groups, Fundamenta Math. 131(1988),103-121.[3] Grabowski, J., Derivative of the exponential mapping for in�nite dimensional Lie groups,Annals Global Anal. Geom. 11(1993), 213-220.[4] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7(1982), 65-222.[5] Kol�a�r, I., Michor, P., Slov�ak, J., Natural operations in di�erential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993.[6] Kriegl, A., Michor, P., Regular in�nite dimensional Lie groups, to appear, J. of Lie Theory,37.[7] Mather, J., Characterization of Anosov di�eomorphisms, Ind.Math., vol. 30, 5(1968), 473-483.
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