
Archivum Mathematicum

František Neuman
Transformation theory of linear ordinary differential equations -- from local to
global investigations

Archivum Mathematicum, Vol. 33 (1997), No. 1-2, 65--74

Persistent URL: http://dml.cz/dmlcz/107598

Terms of use:
© Masaryk University, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107598
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 65 { 74TRANSFORMATION THEORY OF LINEARORDINARY DIFFERENTIAL EQUATIONS {FROM LOCAL TO GLOBAL INVESTIGATIONSFranti¹ek NeumanDedicated to the memory of Professor Otakar Bor�uvkaAbstract. A survey of investigations of linear di�erential equations from the pointof view of transformations is described. These investigations started in the middleof the last century and continued till the present time. Essential step was donein the �fties by O. Bor�uvka, who started global investigations of the second orderequations.The early beginning of the study of di�erential equations is closely connectedwith the discovery and development of in�nitesimal calculus by G. W. Leibnitz(1646 { 1716) and I. Newton (1643 { 1727) at the end of the 17th century. Thenthe theory of di�erential equations was developed at the same time as other partsof mathematics. The integration factor and the method of variation of parameterswere introduced by J. Bernoulli in 1691 and 1693, the special equationy0 = a(x)y2 + b(x)y + c(x)was studied by J. P. Riccati in 1724, solutions of linear equations with constantcoe�cients were discovered by L. Euler in 1750. Among signi�cant contributorsof this period there were Ch. Huygens, J. L. d'Alembert, A. C. Clairaut, J.Wallis, B. Taylor, J. Stirling, C. MacLaurin, P. S. Laplace, J. L. Lagrange, G.Monge, J. and D. Bernoulli, J. Liouville, E. Weyr, A. Cauchy, and S. Lie. Theirnames occur in the titles of many celebrated methods and theorems, not onlyin the theory of di�erential equations. Multidisciplinarity at least in the rankof \pure mathematics" was not of so rare occurrence at that time. The studyof di�erential equations was often naturally connected with problems in physics,astronomy, engineering and, of course, also with the development of the other partsof mathematics, especially geometry. Let us mention just one example from many1991 Mathematics Subject Classi�cation : 34A30, 34C10, 34C20.Key words and phrases: linear di�erential equations, global investigations, transformations.Research supported by the grants No. 201/96/0410 of the Czech Republic and No. 119404of the Academy of Sciences.



66 FRANTI©EK NEUMANothers: hundreds of applications of Hill's equation (linear second order equationwith periodic coe�cients) in mechanics, astronomy, the theory of electric circuits,of the electric conductivity of metals, and of the cyclotron.In each area of mathematics there is a signi�cant step consisting in investigationnot only particular, single, individual objects (matrices, triangles, curves, surfaces,: : : , di�erential equations), but in considering connections among these objects,such as transformations, motions, deformations of the objects one into another.For linear di�erential equations this step was done in 1834 by E. E. Kummer[3], who was the �rst who considered a transformation, a substitution of the form(1) z(t) = f(t)y(h(t))converting solutions y = y(x) of a second order linear di�erential equationy00 + p1(x)y0 + p0(x)y = 0into solutions z = z(t) of another equation of the same kind,z00 + q1(t)z0 + q0(t)z = 0:Nonlinear 3rd order equations expressing the relations among the coe�cients ofthese equations and involving functions f and h from the transformation are nowcalled the Kummer equations as well as the transformation itself.Then also higher order linear di�erential equations, their invariants and canoni-cal forms were studied by F. Brioschi, A. R. Forsyth, E. Laguerre, E. Forsyth, justto mention only some of them. They considered the transformation (1) still in-volving two functions as already introduced by Kummer. Perhaps the best knownresult from the second half of the last century is the so-called Laguerre-Forsythcanonical form of linear di�erential equations of the n-th ordery(n) + pn�1(x)y(n�1) + pn�2(x)y(n�2) + � � �+ p0(x)y = 0characterized by the vanishing of the coe�cients of the (n � 1)st and (n � 2)ndderivatives of the independent variables, i.e. equations of the formy(n) + pn�3(t)y(n�3) + � � �+ p0(t)y = 0:However, it was not until 1893 that P. St�achel [8], and independently S. Lie[4] one year later, proved that the transformation considered by Kummer and allhis successors is in fact the most general pointwise transformation that under adi�erentiability condition converts any linear homogeneous di�erential equation ofthe nth order, n � 2, into an equation of the same kind.Only their result gave the justi�cation to all the previous investigations be-cause, basically, Kummer and others exploited only the fact that linearity andhomogeneity of equations are preserved. The 1st order equations admit a widerclass of transformations. However, it is not so important, because they can be



TRANSFORMATION THEORY 67solved explicitly in a \closed form", by \quadratures" (formulas involving coef-�cients, their derivatives and anti-derivatives in �nite compositions of \known"functions, like addition, multiplication, x 7! xn, x 7! ex, x 7! sinx, etc.)But, still di�erentiability conditions remained in assumptions after St�achel andLie and it posed an open question: Do they exist transformations not smoothenough?At the beginning of this century, in 1910, G. D. Birkho� presented an example ofa third order equation not transformable into the Laguerre-Forsyth canonical formon its whole interval of de�nition. By this example he pointed out that the previousinvestigations were of local character as a whole. This was not very encouraging,since many important questions required global investigations. Local methodsand results are not su�cient when studying problems of a global nature, suchas boundedness, periodicity, asymptotic and oscillatory behavior, nonvanishingsolutions, and consequently the factorization of linear di�erential operators, aswell as many other questions.In connection with local investigations of di�erential equations in the 19th cen-tury, the following remark might explain why perhaps neither the problem of theglobal character of results was posed. I think that the mathematicians of that timewere preoccupied by analytic functions due to their very successful applicationsin several areas. The following note of J. Hadamard (1865-1963) in his article inEncyclopédie Fran�caise [2] from 1937 may illustrate the situation in the case of theexistence theorem for di�erential equations: \Au temps de mes études, la méth-ode de Cauchy-Lipshitz (celle de Picard n'avoit pas été créée) ne nous avait mêmepas été signalée. Lorsqu'un hasard mit quelques-uns d'entre nous en présence del'exposé de Lipschitz, nous nous y intéressâmes comme �a, une démonstration nou-velle, mais sans nous rende compte qu'il y avait l�a, un résultat di�érent de celuique nous connaissions."Of course, there were isolated results of a global character, like e.g., the SturmSeparation and Comparison Theorems on zeros of solutions of the second orderlinear di�erential equations, and others. However, there was not a uni�ed the-ory o�ering su�ciently general methods and dealing systematically with globalbehavior of solutions. To demonstrate it, let us mention that G. Sansone's [7]example of a third order linear di�erential equation with all oscillatory solutionsoccurred as late as in 1948. It was 17 years after G. Mammana [5] in 1931 showedhow the non-existence of such an equation would have been a basic (su�cient andnecessary) condition for factorization of linear di�erential operators (of the thirdorder).It sometimes happens after �nding an interesting achievement, that one canunderstand better the thought descriptions and methods in papers or books ofmathematicians of the previous periods, and discovers that what he considers asa completely new, or at least partially new, was already known. Just the styleof writing was di�erent from the present one. (Of course, I have not in mindthe absence of conditions of non-zero denominators or a su�cient smoothness offunctions whose derivatives are required.)However, on two examples, namely on the canonical equations and on the de-



68 FRANTI©EK NEUMANscription of distribution of zeros of solutions, we want to show that there wasindeed an absence of solutions of some global problems concerning linear di�eren-tial equations, whose answers are not hidden in old papers.In the �fties O. Bor�uvka started the systematic study of global properties ofthe second order linear di�erential equation,y00 + p(x)y = 0; p 2 C0(a; b); �1 � a < b � 1;the equation in some sense the �rst one from those whose solutions are not availablein a \closed form"; on the other hand, the equation with an extensive literature.He carried out an in-depth investigation and summarized his original methods andresults in his monograph [1] published in 1967 in Berlin, and in extended form in1971 in London.In the last 40 years, starting from Bor�uvka's methods and results for the secondorder equations, an intensive research of linear di�erential equations of an arbitraryorder was carried out what resulted in developing su�ciently general methodsand results describing global properties of these equations. It is important tomention that not only analytic methods were involved in those investigations.Also algebraic, topological and geometrical tools, including di�erential geometricalones, together with methods and results of the theory of dynamical systems, andespecially of functional equations made it possible to deal with problems of aglobal nature in contrast to the previous local investigations of isolated results orexamples.Consider the n-th order linear homogeneous di�erential equation, n � 2,P � y(n) + pn�1(x)y(n�1) + � � �+ p0(x)y = 0with continuous coe�cients pi 2 C0(I) on an open interval I = (a; b) (bounded orunbounded), �1 � a < b � 1.We again consider pointwise transformations of solutions of equation P into anequation Q Q � z(n) + qn�1(t)z(n�1) + � � �+ q0(t)z = 0qi 2 C0(J); J = (c; b); �1 � c < d � 1;of the form z(t) = f(t)y(h(t))converting solutions y of P into solutions z of Q. Here f; h 2 Cn(J); f(t) 6= 0on J and h0(t) 6= 0 on J (this is not necessary to suppose, as St�achel and Liedid; the general form of the transformations and the smoothness of the functionsfollow from the requirement of homeomorphism of the pointwise transformationof solutions).However, in addition, we require h(J) = I;



TRANSFORMATION THEORY 69i.e., h is a Cn-di�eomorphism of the (whole) interval J onto the (whole) interval I.It means that we want to transform solutions on their whole interval of de�nitioninto solutions of the transformed equation again on the whole interval. With thisrequirement we call � to be a global transformation of equation P into Q.To overcome the di�culty that we have no \formula" for solutions based oncoe�cients, we proceed in a similar way as in algebra: for the nth order polyno-mials we denote by �1; : : : ; �n their zeros and work with them. Here we \identify"or \represent" an equation P by (any of) its n-tuple of linearly independent so-lutions y1; : : : ; yn (and we exploit the fact that each such an n-tuple of functionsdetermines the equation P uniquely and at the same time it is characterized bycontinuous derivations up to the n-th order with the nonvanishing Wronskian,W (x) 6= 0 for each x 2 I). We write briey this n-tuple as the column vectory = 0B@ y1...yn1CA 2 Cn(I); W [y](x) 6= 0:At this moment, the transformation � applied to each of the solutions y1; : : : ; yncan be written as(�) z(t) = A � f(t)y(h(t));a nonsingular constant n by nmatrixA expresses only another choice of an n-tupleof independent solutions of the same equation Q. This is because the solutionspace of the n-dimensional vector space whose bases are just the n-tuples withnonvanishing Wronskians.Two aspects in our further considerations seem to be important:Algebraic, when equations P;Q; : : : (together with their intervals of de�nition,because we want to handle the situation globally) are considered as objects, andtransformations �; �; : : : are morphisms of a category.Geometrical, when y being a representative of an equation P is considered asa curve in the n-dimensional vector space Vn, the independent variable x viewedas its parameter.An equation P is (globally) transformable into Q if a (global) transformation� exists, converting solutions of P into solutions of Q in the sense of formula (�),briey: P� = Q:This relation of transformability is an equivalence relation, and the set of all lineardi�erential equations for each (or all) n � 2 is decomposed into the classes ofequivalent equations. Moreover, if we de�ne the composition of transformations,morphisms, � � � by (P�)� = P (� � �);



70 FRANTI©EK NEUMANthe category of linear di�erential equations becomes the Ehresmann groupoid (i.e.��1 always exists), and the classes of equivalent equations (together with globaltransformations) become the Brandt groupoids (\connected" components). Fromthis algebraic points of view we immediately see the importance of the so-calledstationary group of an equation P , the group of all (global) transformations of theequation into itself. These stationary groups completely determinate the structureof all transformations between two equations. It is also evident that a globalcanonical form is a special form of representative equations available in each classof equivalence. Moreover, we know that conditions on a particular selection of such\special representatives", \canonical forms" depended on us if only each class ofequivalence admits at least one equation of this type (the less the better).However, besides these two already mentioned important tasks:characterization of stationary groups, andglobal canonical forms,there is also another one, namely, to �nd (su�cient and necessary condition, hope-fully \e�ective") for two given equations to be globally transformable:criterion of global equivalence.For the second order equations the answers to these questions were done by O.Bor�uvka [1]. He gave a complete characterization of all stationary groups, and hiscanonical form for the second order equations wasy00 + y = 0 on I;where I runs through the denumerable set of intervalsf(0; �=2); (0; �); : : :; (0; k�=2); : : : ; (0;1); (1;1)g:Let us note, that we have in fact a denumerable set of equations in this canonicalform, since each equation is considered globally, i.e. together with its interval ofde�nition. Bor�uvka's criterion of global equivalence can be roughly formulated asfollows:Two second-order linear homogeneous equations are globally equivalent if andonly if their solutions have the same number of zeros.In particular, a both-side oscillatory equation is globally equivalent just onlyto any other again both-side oscillatory equation (canonical form of this class isy00 + y = 0 on (�1;1)), a one-side oscillatory equation just to any other one-(either left or right, but not both)-side oscillatory equation (y00 + y = 0 on (0;1)is canonical), etc., see above intervals for canonical forms.Let us mention that this criterion is not \e�ective" in general, we have noexplicit formula involving coe�cients to know the number of zeros of solutions(only sometimes some su�cient conditions, say for equations to be oscillatory).For the n-th order equations the list of all possible stationary groups was ob-tained with their complete characterization [6]. There are, up to conjugacy, 10di�erent types (some types involving a denumerable set of subtypes), ranging



TRANSFORMATION THEORY 71from the (maximal) three parametric group of (increasing and decreasing) di�eo-morphisms of Ronto R to the (minimal) trivial group consisting from the identityon R only.Global canonical forms of linear di�erential equations of the n-th order werederived under several (di�erent) requirements by using either geometrical meth-ods (including Cartan's moving-frame-of-reference method) or combination of theanalytic calculation and the theory of functional equations. For a geometricalapproach it is important how we can \see" the whole class of equations globallyequivalent to a given one, say P , with its n-tuple of linearly independent solutionsy, now a curve y in Vn.z = f � y(h)Considering the transformation (�), the change of the independent variablex = h(t) cannot be seen \geometrically" on the set of points of y, this is an(admissible) reparameterization. And multiplication by a nonzero factor f gives asection f �y on the cone K inVn formed by the half-lines going from the origin andpassing the points of the curve y. The matrixA in (�) does not change an equation,it selects only a certain n-tuple of solutions. All equations globally equivalent toa given equation P are obtained when only f and h run through all admissiblefunctions, the matrix A may be �xed, say the unit matrix. From this geometricalpoint of view, to select a \special", \canonical" form means to choose a \special"section (by f) on a �xed cone K (given by P ) and its "special" parameterization(by h). If these \special" requirements are arbitrarily chosen, however in such amanner that they can be applied to all curves y, we come to special n-tuples andthe corresponding equations may be announced as \canonical".One of those choices (after making the vector space Vn an Euclidean space En)is the central projection of the curve y onto the unit sphere Sn�1 (f = 1=jyj)and then introducing the length parameterization into this projection (y=jyj :=z; jz0(t)j = 1). Since this can be always done without any additional require-ments, the corresponding equations may be called globally canonical (others maybe obtained, if we prefer other than length parameterization, e.g. jz0(t)j = 1+ t2).Another choice of conditions, based on �nding all covariant functors of cer-tain subcategories of linear di�erential equations obtained by functional equations,leads us to introduce



72 FRANTI©EK NEUMANy(n) + y(n�2) + pn�3(x)y(n�3) + � � �+ p0(x)y = 0on some intervals I � R as global canonical forms. This gives the following globalcanonical forms: y00 + y = 0 (cf. Bor�uvka [1])for the second order, y000 + y0 + p0(x)y = 0for the third order, and y(IV ) + y00 + p1(x)y0 + p0(x)y = 0for the forth order equations on certain intervals, etc.We could see that if Laguerre and Forsyth had taken our1 0 1instead of their 1 0 0as the �rst three coe�cients, they would have got global forms instead of theirlocal ones. To impose some two conditions on coe�cients is correct, since two(rather arbitrary) functions f and h occur in global transformations. However,there is a question, on which coe�cients, and whether the zero is always the bestchoice.For linear di�erential equations of the nth order, n � 3, we can in general(i.e. with exception of one special type of equations) decide from the coe�cientswhether two given equations are or are not globally equivalent (without solvingthese equations). That means that on contrast to the second order equations,for higher order equations in general we have an e�ective criterion of the globalequivalence.The methods developed enable us to �nd new interesting global invariants ofthe n-th order equations, involving e.g. the order of smoothness (di�erentiability)of coe�cients, the invariants that can occur only for su�ciently large order ofequations.Answers to questions concerning global behavior of solutions and global trans-formations of linear di�erential equations required combination of various tech-niques and results from di�erent areas of mathematics. Some of them are easier,some sophisticated, some involving not easy calculations of an analytic nature.However, there are several of them that are interesting for their simplicity andtransparency. These concern namely questions about possible distribution of ze-ros of solutions.



TRANSFORMATION THEORY 73Hence, consider again an equation P and its n-tuple of linearly independentsolutions y as a curve in the n-dimensional space Vn. The relationc1y1(x0) + � � �+ cnyn(x0) = 0can be read in two equivalent ways:a) the solution c1y1(x) + � � �+ cnyn(x) of P has a zero at x0,b) the curve y intersects the hyperplane c1�1 + � � � + cn�n = 0 (passing theorigin) at the point y(x0) of the parameter x0.The equivalence of a) and b) (�xed P , arbitrary c1; : : : ; cn) gives the theoremon the geometric representation of zeros of solutions. For Vn to be Euclideanwe consider instead of y, its central projection y=jyj on the unit sphere Sn�1(now, without the change of parameterization). Then b) is valid for y=jyj insteadof y which in now on the (compact) Sn�1 and great circles on Sn�1 representhyperplanes; the multiple zeros correspond to the contacts of higher orders.By using this approach we can sometimes see without lengthy and tiresomecalculations, simply by drawing a curve on the unit sphere (at least for S2), whatis possible and what is impossible in distribution of zeros. We are not saying thatthis is a proof, but certainly it gives hints on how to proceed with the proof. Thismethod also makes some complicated constructions or proofs easily understandableand gives suggestions concerning possible results or investigations of open problemsin this area (sometimes it may even discover an inaccuracy in lengthy "�� proofs).Let us illustrate our approach on two examples.n=2:Due to the nonvanishing determinant, det(y;y0) 6= 0 the radius vector y andthe tangent vector y0 are linearly independent, hence the curve y encircles (inpositive or negative direction) the origin (never passing it). Its central projectionon the unit sphere S1, the unit circle, is an arc v = y=jyj on it (possibly encirclingorigin several, even countable many times). Hyperplanes are straight lines. Wemay observe:between any two consecutive intersections of the line H1 with the arc v there isjust one intersection of v with the line H2, x0 < x1 < x2:
In our interpretation it gives exactly the separation theorem for second orderequations.



74 FRANTI©EK NEUMANn=3:
A \prolonged cycloid" v = v(x) goes periodically in�nitely many times aroundthe equator of the unit sphere S2 in E3 as its parameter x runs from �1 to +1.This curve is su�ciently smooth, of the class C3(�1;1), and without points ofinexions, i.e. v;v0, and v00 are not colinear, or det(v;v0;v00) 6= 0. Each greatcircle onS2 intersects v at points with an in�nite sequence of parameters (both forx ! �1 and x ! 1). In our interpretation, each solution of the corresponding3rd order linear di�erential equation is oscillatory (to both sides), another veryevident example of an equation demonstrating the impossibility of factorization ofall linear di�erential operators of the third order.The details can be found in [6].References[1] O. Bor�uvka, Lineare Di�erentialtransformationen 2. Ordnung, VEB Verlag, Berlin 1967;extended English version: Linear Di�erential Transformations of the Second Order, EnglishUniversities Press, London 1973.[2.] J. Hadamard, Les �equations di��erentielles, In: Encyclopédie Fran�caise, T.I., 1.76 - 10, Paris1937.[3] E. E. Kummer, De generali quadam aequatione di�erentiali tertii ordinis, Progr. Evang.K�onigl. Stadtgymnasium Liegnitz 1834 (reprinted in J. Reine Angew. Math. 100 (1887),1-10).[4] S. Lie, F. Engel, Theorie der Transformationgruppe, Teubner, Leipzig 1930.[5] G. Mammana, Decomposizione delle espressioni di�erenziali lineari omogenee in prodottidi fattori simbolici e applicazione rellativa allo studio delle equazioni di�erenziali lineari,Math. Z. 33 (1931), 186-231.[6] F. Neuman, Global Properties of Linear Ordinary Di�erential Equations, 334 pages, Math-ematics and Its Applications, East European Series 52, Kluwer Academic Publishers (withAcademia Praha) Dordrecht / Boston / London 1991, ISBN 0-7923-1269-4.[7] G. Sansone, Studi sulle equazioni di�erenziali lineari omogenee di terzo ordine nel camporeale, Revista Mat. Fis. Teor. Tucuman 6(1948), 195-253.[8] P. St�ackel, �Uber Transformationen von Di�erentialgleichungen, J. Reine Angew. Math. 111(1893), 290-302.Mathematical InstituteAcademy of Science, branch Brno�Zi�zkova 22612 62 Brno, CZECH REPUBLICE-mail: neuman@ipm.cz
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